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TiO
2
-based materials have been widely studied in the field of photocatalysis, sensors, and solar cells. Besides that, TiO

2
-based

materials are of great interest for energy storage and conversion devices, in particular rechargeable lithium ion batteries (LIBs).
TiO
2
has significant advantage due to its low volume change (<4%) during Li ion insertion/desertions process, short paths for fast

lithium ion diffusion, and large exposed surface offering more lithium insertion channels. However, the relatively low theoretical
capacity and electrical conductivity of TiO

2
greatly hampered its practical application. Various strategies have been developed to

solve these problems, such as designing different nanostructured TiO
2
to improve electronic conductivity, coating or combining

TiO
2
with carbonaceous materials, incorporating metal oxides to enhance its capacity, and doping with cationic or anionic dopants

to form more open channels and active sites for Li ion transport. This review is devoted to the recent progress in enhancing the
LIBs performance of TiO

2
with various synthetic strategies and architectures control. Based on the lithium storage mechanism, we

will also bring forward the existing challenges for future exploitation and development of TiO
2
-based anodes in energy storage,

which would guide the development for rationally and efficiently designing more efficient TiO
2
-based LIBs anodes.

1. Introduction

Lithium ion batteries (LIBs) are becoming the best choice in
portable electronics, implantable devices, power tools, and
hybrid/full electric vehicles (EVs) for their high working
voltage, low self-discharge rate, long cycle life, high energy,
and power density [1, 2]. Using electric vehicles instead of
traditional gasoline powered transportation can significantly
reduce pollution of combustion gas and increase energy
security. More importantly, the high energy efficiency of
LIBs also has potential application in various large electric
grid applications, including improving the energy efficiency
of wind, solar, tidal, and other clean energy; thus LIBs
are expected to have a very favorable impact on building
an energy-sustainable economy [3, 4]. Figure 1 shows the
forecasted evolution of the LIBs demand in the future years
[5]; we think we will see economical battery-driven electric
vehicles sooner than most people expect.

Up to now, the vast majority of commercial LIBs rely,
at the cathode side, on transition metals oxides or phos-
phates active material (LiCoO

2
[6], LiNiO

2
[7], LiMnO

2

[8], LiFePO
4
[9], LiMnPO

4
[10], etc.), while graphite is

commonly used as anode active material. Figure 2 is the
principle of a typical lithium ion battery; both anodes
and cathodes could shuttle lithium ion back and forth
between them. The electrolyte is usually made of polypropy-
lene/polyethylene which contains lithium salts (i.e., LiPF

6
)

in alkyl organic carbonates. The separator between anode
and cathode can allow the diffusion of Li ions from cathode
to anode during the charging and the reverse discharging
process.

The anode is a crucial part in LIBs; therefore, the research
and the development on the current situation of anode
materials are one of the most important factors to determine
the performance of this device. An ideal anode material shall
meet the following requirements [11, 12]: (1) high specific
surface area and large exposed surface offering more lithium
insertion channels, (2) low volume change during Li ion
insertion/desertions process, which is important for good
cycling stability, (3) large pore size and short paths for fast
lithium ion diffusion with high speed, which is crucial for
good rate capability, (4) low internal resistance which leads to
fast charging and discharging, (5) low intercalation potential
for Li, (6) low price, (7) environment friendly. Based on the
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Table 1: Comparison of advantages and limitations of TiO
2
and other anode materials [11–15].

Materials Theoretical capacity
(mAh g−1) Advantages Common issues

TiO
2 330

Fast lithium ion diffusion; low cost;
environmentally friendly; good
safety

Low capacity; low electrical
conductivity; poor rate capability

Metal oxides (CuO, NiO, Fe
3
O
4
, etc.) 500–1200 High capacity; high energy; low cost

Low coulombic efficiency; unstable
SEI formation; low electrical
conductivity; poor capacity
retention

Carbon 372 Good working potential; low cost;
good safety

Low coulombic efficiency; high
irreversible capacity

Si 4200 High specific capacities Large irreversible capacity; poor
cycling

Sn 990 Good safety; low cost; good
electrical conductivity Poor cycling
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Figure 1: Forecasted expansion in demand for lithium ion batteries.
Reprinted from [5].

Li ion storage mechanisms, anode materials can be classi-
fied into the following categories: carbon based materials,
such as graphite, amorphous carbon, carbon nanotubes, and
graphene; alloy/dealloy materials, such as Si, Sn, Ge, Al,
and Bi; transition metal oxides (MxOy, M = Cu, Mn, Fe,
Co, Ni, etc.); metal sulphides; metal phosphides and metal
nitrides [13–15]. Figure 3 shows the potential versus Li/Li+
and the corresponding capacity density of some potential
active anode materials. In the whole, transition metal oxides
always have relatively higher potential and capacity.

Among these transition metal oxides, TiO
2
is one of the

most promising anode candidates for LIBs, which exhibits
excellent structural stability, high discharge voltage plateau
(more than 1.7 V versus Li+/Li), excellent cycling stability,
environmentally friendly, high safety, and low cost [16, 17].
However, some limitations of TiO

2
exist as well, such as low

capacity, low electrical conductivity, and poor rate capability.
Table 1 compares advantages and limitations of TiO

2
and

other anode materials. The reversible lithium ion insertion

and extraction from TiO
2
occur according to the following

reaction [18]:

𝑥Li+ + TiO
2
+ 𝑥e− ←→ Li

𝑥
TiO
2

(1)

where𝑥 can range between 0 and 1, depending strongly on the
TiO
2
polymorph, particle size, and morphology. Therefore,

the electrochemical performance of TiO
2
highly depends on

their structural parameters such as crystallinity, size, mor-
phology, polymorphs, and specific surface area. Table 2 sum-
marizes the structural and electrochemical profiles of various
TiO
2
polymorphs [19]. Amongst these, the anatase, rutile,

brookite, and bronze phases of TiO
2
have been reported

for LIBs applications. However, there are some problems
which exist in practical application, that is, low electrical
conductivity (10−12–10−7 s cm−1) and diffusion coefficient of
lithium ions (10−15–10−9 cm2 s−1), always leading to the poor
rate capability of TiO

2
anodes, which result from their low

electric conductivity with the lack of open channels [20–22].
Based on the analysis of shortcomings of TiO

2
anodes,

several different strategies have been developed to address
these issues of TiO

2
-based anodes and summarized in this

review, such as designing different nanostructured TiO
2
,

coating or combining TiO
2
with carbonaceous materials and

metal oxides to change the physical and chemical surface,
and selective doping with heteroatoms to form more open
channels and active sites for Li ion transport, as well as
increasing the intrinsic conductivity. Indeed, these methods
lead to many advantages in improving the capacity, cycling
stability, and rate capability of TiO

2
.

2. Research on the LIBs Property of
TiO2-Based Anodes

2.1. Different Structures. Different structures usually exhibit
unique performance based on their surface and structural
properties. Thus, various morphologies of TiO

2
have been

synthesized to obtain superior electrochemical properties.

2.1.1. One-Dimensional Nanostructures. One-dimensional
(1D) nanostructures including nanorods, nanoneedles,
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Figure 2: Schematic representation of lithium insertion/deinsertion mechanism for current rechargeable lithium battery.

Table 2: Structural and electrochemical properties of various TiO
2
polymorphs [19].

Structure Space group Density (g cm−3) Lattice parameter values Lithiation quantity (mole)
Bulk Nano

Rutile Tetragonal P42/mnm 4.13 𝑎 = 4.59,
𝑐 = 2.96

0.1 0.85

Anatase Tetragonal 141/amd 3.79 𝑎 = 3.79,
𝑐 = 9.51

0.5 1.0

Brookite Orthorhombic Pbcv 3.99
𝑎 = 9.17,
𝑏 = 5.46,
𝑐 = 5.14

0.1 1.0

TiO
2
-B (bronze) Monoclinic C2/m 3.64

𝑎 = 12.17,
𝑏 = 3.74,
𝑐 = 6.51,
𝛽 = 107.298

0.71 1.0

TiO
2
-II (Columbite) Orthorhombic Pbcn 4.33

𝑎 = 4.52,
𝑏 = 5.5,
𝑐 = 4.94

TiO
2
-H (hollandite) Tetragonal 14/m 3.46 𝑎 = 10.18,

𝑐 = 2.97

TiO
2
-III (baddeleyite) Monoclinic P21/c

𝑎 = 4.64,
𝑏 = 4.76,
𝑐 = 4.81,
𝛽 = 99.28

TiO
2
-R (ramsdellite) Orthorhombic Pbmn 3.87

𝑎 = 4.9,
𝑏 = 9.46,
𝑐 = 2.96

TiO
1
-O I Orthorhombic

TiO
2
-O II Orthorhombic

nanotubes, nanofibers, and nanowires could serve as
an electron express way along the axial direction for
electron collection due to a shorter collection time for
the efficient electron transportation [31, 32]. For example,
single-crystalline TiO

2
nanowires have an electron mobility

of ∼1 cm2 V−1 s−1, nearly 1-2 orders higher than that of
polycrystalline nanoparticles [33, 34].Thus, 1Dnanostructure
is conductive to shorten the diffusion length for electrons
and lithium, increase the electrode/electrolyte interfacial

area, and accommodate volume changes arising from the
lithium ion insertion/extraction process [35]. Moreover, due
to the unique structural flexibility, 1D material with good
mechanical properties has potential in various binder-free
and flexible electronics and photonics [36–38].

1D TiO
2
with different nanostructure (Figure 4) includ-

ing nanotubes, nanofibers, and nanorods has been designed
for high performance anodes in LIBs. The significance of 1D
TiO
2
on battery performance was demonstrated by several
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Figure 3: Comparing of some potential anode materials for lithium
ion batteries.

groups. Tammawat andMeethong reported that anatase TiO
2

nanofiber anodes were directly used as an anode active mate-
rial in LIBs without an additive or a binder. The nanofibers
exhibited a high lithium storage capacity, a stable cycle life,
and good rate capability [39].The enhanced reversible capac-
ity and cycling performance of the anatase TiO

2
nanofibers

are attributed to the large surface area of the nanofibers, small
nanocrystalline size, large Li nonstoichiometric parameters,
and the increased electronic conductivity. Armstrong et al.
prepared TiO

2
nanowires; these unique structures gave a

higher capacity of 305mAh g−1 compared to 240mAh g−1
of bulk TiO

2
[40–42]. The enhanced capacity closely related

to the good electronic conductivity and large surface area.
Wei et al. reported a highly ordered anodic TiO

2
nanotube

arrays with a tube length of 9mm. These nanofibers exhib-
ited significantly better microbattery performance (i.e., areal
capacities, rate capability, and cycling stability) than both
previously TiO

2
-based electrodes and other 3D microbattery

electrodes. They suggested that the enhanced performance
depends strongly on the long range ordering and crystallinity
of the nanotube structures [18]. Wang et al. prepared a
hybrid Li ion capacitor based on TiO

2
nanobelt array and

graphene hydrogels cathode. It is found that the densities
of the capacitor can reach an energy density of 21Wh kg−1
and a high power density of 19 kWkg−1 [43]. The above
studies also show that self-ordered 1D nanoarchitectures
grown directly on a current collector are helpful to have
a regularly oriented property and good contact with the
current collector, enhancing the lithium ionic and electrical
conductivities. Designing 1D structure is an effective way to
improve the Li storage properties of TiO

2
.

2.1.2. Two-Dimensional Structure. Two-dimensional (2D)
nanomaterials often have large exposed surfaces and specific
facets, which is very effective in high energy storage appli-
cations such as LIBs and supercapacitors. More importantly,
2D nanostructures can offer short ion diffusion length and
open charge transport channel for electrolyte penetration

and buffer the volume variations during the Li ion inter-
calation/deintercalation process [45–48]. Lithium insertion
in this kind of material is just like surface lithium storage;
both sides of 2D structure can store lithium ion, which can
meet the requirement of fast and more lithium storage. A
large number of 2D nanomaterials have been explored as
anodes for LIBs, including graphene [49, 50], transitionmetal
dichalcogenides (MoS

2
, WS
2
) [51, 52], ternary transition

metal carbides (Ti
3
C
2
, Ti
2
C) [53–55], and metal oxides

(V
2
O
5
, MoO

3
) [56, 57].

For TiO
2
, 2D structures could provide stable framework,

effective grain boundaries, and short path for lithium ion
diffusion and storage compared with 0D nanoparticles and
1D nanostructures. Significant efforts have been made on the
fabrication of 2D TiO

2
materials. Li et al. synthesized meso-

porous TiO
2
nanoflakes with size of 10–20 nm via hydrother-

mal methods using Ti(SO
4
)
2
as titanium source and NaOH

solution as alkaline medium. The result of electrochemical
performance test shows that the prepared TiO

2
nanoflakes

with shorter calcining time have high discharge specific
capacity (261.5mAh g−1) and good cycling performance [25].
In the process of heat treatment, longer calcining time results
in uneven nanometer size and obvious reunion phenomenon.
Shorter calcining time usually leads to more stable structure
and higher specific surface area. Thus, both the lithium stor-
age specific capacity of TiO

2
and the cycling stability of the

battery can be improved [25]. Zhu et al. first synthesized the
mesoporous single-grain layer anatase TiO

2
nanosheets using

a simple and easily reproducible method. The obtained TiO
2

nanosheets exhibited a discharge capacity of 73mAh g−1 with
obvious voltage plateaus over 4000 cycles, highlighting them
as promising anode material for long-term LIBs [58]. Wu
et al. demonstrated a simple and green approach for the
synthesis of anatase petal-like TiO

2
nanosheets; the unique

structure showed high capacity and good cycling stability.
This is because obtained petal-like TiO

2
nanosheets showed

a comparative surface area of 28.4m2 g−1, which should
provide shorter diffusion distance for Li ions and should be
beneficial for electrochemical performance of the electrode
[29]. Some typical TiO

2
nanosheets used in the lithium

storage were listed in Table 3. It can be seen that 2D TiO
2

nanosheets exhibit the superior capacities, improved cycling
stability and rate capabilities, owing to unique exposed facets,
shortened path, and reserved porous structures.

2.1.3. Three-Dimensional Porous Structure. Recently, three-
dimensional (3D) porous structurematerials exhibiting inter-
esting electrochemical performance in LIBs have attracted
more attention, due to their special nature including highly
exposed skeleton, tunable pore size, high porosity, high
specific surface area, and low bulk density [59, 60]. As
described, first, the unique structure is conductive to enhance
the diffusion kinetics for its short diffusion paths for Li ions.
Second, the pores are beneficial to enable easy infiltration of
electrolyte and fast liquid-phase Li ion diffusion, reducing the
concentration polarization and increasing rate performance
and capacity of the cell. Third, the continuous network of
3Dporous structure can provide better electrical conductivity
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Figure 4: SEM images of different kinds of 1D TiO
2
nanostructures. Thin wall TiO

2
nanotubes ((a) and (b)), nanofibers (c), and nanorods

(d). Reprinted from [18, 38, 44].

Table 3: The capacity of reported 2D TiO
2
materials for lithium storage.

Number Structures Performance Ref.
Reversible capacity Charge/discharge rates

1 Carbon-supported ultrathin anatase TiO
2

nanosheets ∼150mAh g−1 850mAg−1 [23]

2 Anatase TiO
2
nanosheets ∼150mAh g−1 1675mAg−1 [24]

3 TiO
2
nanoflakes ∼261mAh g−1 33mAg−1 [25]

4 2D rutile TiO
2
-MoO

3
hybrid structure ∼240mAh g−1 600mAg−1 [26]

5 Mesoporous TiO
2
nanobelts and

graphene sheets ∼430mAh g−1 1500mAg−1 [27]

6 TiO
2
hollow spheres ∼148mAh g−1 850mAg−1 [28]

7 Mesoporous anatase TiO
2
sheets/rGO ∼161mAh g−1 335mAg−1 [12]

8 petal-like TiO
2
nanosheets ∼180mAh g−1 400mAg−1 [29]

∼170mAh g−1 850mAg−1

9 Sandwich-like, stacked ultrathin titanate
nanosheets ∼155mAh g−1 1700mAg−1 [30]

∼135mAh g−1 3400mAg−1

compared to loosely connected particles. Forth, the porosity
in 3D structure should help in accommodating volume
change during charging/discharging process andmaintaining
the structural integrity of the electrode [61, 62]. Up to
now, different hollow structures such as hollow spheres,
nanoboxes, and nanotubes are explored to be used as high

performance LIBs anodes [63–66]. And the same happens for
TiO
2
; the introduction of porosity into TiO

2
nanomaterials

also can improve the cycling stability and increase the capac-
ity at high charge-discharge rates due to the increased contact
surface area and shortened path length for diffusion of Li
ions [67–70]. Highly crystalline, nonordered mesoporous
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Figure 5: The morphology of different hollow TiO
2
structures. Reprinted from [67, 68, 73, 74].

TiO
2
nanocrystalline with high specific surface area and

having anatase as the dominant phase have been reported
by Gerbaldi and other researchers, which showed very high
rate capability and excellent stability upon very prolonged
cycling [71, 72]. Besides, the storage characteristics of the
mesoporous samples in lithium test cells were reported, and
a close correspondence between the structural properties of
materials and the electrochemical performance was studied.
The presence of mesopores is thought to be important for
high rate performances and favorable for electrolyte ions
transport. Lou’s group recently reported the TiO

2
hollow

spheres and submicroboxes, owing to the high surface area,
porous shells, and small primary nanoparticles; these TiO

2

hollow structures possess significantly improved lithium
storage properties with superior lithium storage properties
in terms of high specific capacity, long-term cycling stability,
and excellent rate capability [73, 74]. Figure 5 shows the
typical morphology of different hollow TiO

2
structures, all of

which exhibit outstanding electrochemical performance.

2.2. Coating or Combining TiO
2
with CarbonaceousMaterials.

Carbon materials such as active carbon, carbon nanotubes,
and graphene have been extensively used for sorption, sens-
ing, photocatalyst, electrocatalyst, and energy storage appli-
cations, owing to their abundance, accessibility, low health

risk, suitable surface areas, and extreme chemical and thermal
stabilities [75–80]. Especially in LIBs and supercapacitors,
carbon materials are very popular for their superior conduc-
tivity, good chemical stability, and mechanical property [81–
84].

2.2.1. Carbon Coating. Carbon coating is an effective and
common approach to improve the electrochemical perfor-
mance of the anode materials. The role of carbon has also
been studied, such as reducing the charge transfer resistance
and improving the Li ions diffusion, enhancing electron
transport, buffering the large volume changes during the
charge/discharge process, and acting as a passivation layer to
prevent the aggregation of active materials [66, 85, 86]. Some
research has proved that the SEI (solid electrolyte interphase)
film for carbon coated materials was found to be much
thinner than the SEI film on uncoated active materials; thus,
initial charge-discharge efficiency can be greatly enhanced
[87, 88]. For example, Xia et al. investigated the effect of
carbon coating on TiO

2
; these TiO

2
/carbon hybrids could

enhance electronic conductivity and provide flexible space
for suppressing the large volume expansion during cycling
[89]. E. Portenkirchner reports that the anatase TiO

2−𝑥
-C

nanotubes demonstrate a superior Li storage capacity as high
as 320 (±68)mAh g−1, nearly twice as high as pure TiO

2−𝑥
.
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Figure 6: The morphology of carbon coated TiO
2
spheres and their cycling performance. Reprinted from [91].

Electrochemical impedance spectroscopy reveals smaller
charge transfer resistances for TiO

2−𝑥
-C nanotubes at the

solid/liquid interface which improves the transfer of lithium
ions from the electrolyte into the electrode [90]. Besides,
the composites also showed higher initial charge-discharge
efficiency compared to pure TiO

2
; the reason can be ascribed

to the formation of thinner SEI films. Zheng and cowork-
ers prepared nitrogen-containing carbon modified porous
TiO
2
composites. The as-prepared composites also exhibited

enhanced rate performance and superior cyclability for LIBs
compared to pure TiO

2
(Figure 6). The study indicates that

N doping is favorable to improve the electronic conductivity
and the composites possessed much lower charge transfer
resistance than that of TiO

2
[91].

2.2.2. Combining TiO
2
with Carbon Nanotubes (CNTs). In

recent years, CNTs have been approved to be a good anode
material for lithiumbatteries due to their unique 1D structure,
high conductivity (106 Sm−1 for single-walled carbon nan-
otubes and >105 Sm−1 for multiwalled carbon nanotubes),
low gravity (0.8–1.8 g cm−3), high mechanical properties
(Young’s modulus of the order of 1.2 TPa), and high surface
area (>100m2 g−1) [92–96]. Some studies showed that CNTs
could exhibit reversible capacities anywhere from 300 to
1000mAh g−1 after chemical treatment; the value is sig-
nificantly higher than the theoretical capacity of graphite
(320mAh g−1) [97–100]. Numerous CNTs conjugated with
a variety of nanostructured materials and metal oxides
have been synthesized to obtain good electrochemical per-
formance [101–103]. For example, CNTs@TiO

2
composites

have been synthesized by controlled hydrolysis of titanium
isopropoxide over CNTs (as shown in Figures 7(a) and 7(b)).
When CNTs are used as lithium ion battery electrodes, their
inclusion is beneficial for an extreme enhancement of the rate
capability of lithium ion uptake and release in TiO

2
; it also

favors the interfacial lithium ion intake from the solution
by reducing the inherent charge transfer resistance. CNTs
efficiently provide electrons to the nanostructure through the
formation of Ti-C bonds, then effectively assisting lithium ion
incorporation [104]. Zhao’s group synthesized TiO

2
/CNTs

composite through chemical vapor deposition method. The
in situ synthesized composite showed better electrochemical

performance (high specific capacity and long-term cycling
stability) than the pristine TiO

2
. This is because CNTs in the

composites not only supply an efficient conductive network
but also keep the structural stability of the TiO

2
particles,

ultimately resulting in the improved electrochemical perfor-
mance [105].

2.2.3. Combining TiO
2
with Graphene. Graphene is a single

atomic plane of graphite and consists in a honey comb net-
work of sp2 carbons bonded into two-dimensional sheets
with nanometer thickness, due to its unique properties, in-
cluding high intrinsic carrier mobility (200 000 cm2 V−1 s−1),
relevant mechanical strength, excellent conductivity
(5000Wm−1 K−1), high optical transmittance (∼97.7%), large
theoretical specific surface area (2630m2 g−1), and superior
mechanical strength which make graphene a suitable anode
material for LIBs [105–111]. Besides, the rich functional
groups on the surface of graphene make it an appealing 2D
substrate for the anisotropic growth of different kinds of
active materials [112, 113]. For example, Fang el al.’s group
prepared novel mesoporous graphene nanosheets with an
excellent reversible capacity of 833mAh g−1 after 60 cycles
[114]; this capacity is much higher than the theoretical
lithium storage of graphite. This can be ascribed to the
high contact surface area for lithium ion adsorption and
intercalation, as well as edges and other defects. Thus, many
synthetic strategies have been reported for TiO

2
/rGO hybrid

nanostructures; Ti-C bond in the hybrids is crucial for rapid
interfacial charge transferring. Etacheri et al. chemically
bonded mesoporous TiO

2
nanosheets to rGO sheets through

a photocatalytic reductionmethod, resulting in the formation
of Ti3+-C bonds between TiO

2
and rGO. These TiO

2
/rGO

hybrid nanostructures demonstrate superior specific
capacity, excellent rate capability, and capacity retention
compared to a physical mixture of TiO

2
and rGO [115].

The reason can be attributed to the higher electrochemical
performance of TiO

2
/rGO hybrid nanostructures to efficient

interfacial charge transfer between TiO
2
nanosheets and

rGO, which is fostered by Ti3+-C bonds. Figure 8 shows the
SEM and digital images of TiO

2
/rGO hybrid films; insets in

Figure 8(b) display the flexibility of the corresponding films
upon bending. The high flexibility of graphene could be an
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Figure 7: (a) and (b) are the TEM images of CNTs@TiO
2
nanocomposite material. Reprinted from [105].
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Figure 8: (a) and (b) are the SEM and digital images of TiO
2
/rGO hybrid films, respectively. Insets display the flexibility of the corresponding

films upon bending. Reprinted from [116].

excellent supporting matrix or coating layer to accommodate
the volume change during the charge/discharge process. This
is crucial for maintaining the good cycling stability [116].

2.3. CombiningMetal Oxides with TiO
2
. Combining different

physical and electrochemical properties of components with
TiO
2
and utilizing the respective advantage to increase the

capacitance are a feasiblemethod, such as using high conduc-
tivematerials (conducting polymers) [117, 118], increasing the
surface area (carbon nanotubes) [104, 105], and using high
performance redox-active transition metal oxides (MnO

2
)

[119]. Among the above materials, metal oxide coatings can
efficiently improve the capacitive performance of the mate-
rials through intruding synergistic effects into an electrode
system, such as in SnOx@TiO

2
core-shell composites, due to

the nearly zero volume change of TiO
2
in insertion of Li+ ions

process, making it suitable as a backbone or protective layer
for SnOx to restrain the pulverization and achieve an excellent
high rate cycling ability and good cycling stability [120–123].
Recently, synergistic TiO

2
-MoO

3
core-shell nanowire arrays

were prepared via a facile hydrothermal growth of ordered
TiO
2
nanowires followed by a subsequent controllable elec-

trodeposition of nano-MoO
3
. The composites exhibited high

gravimetric capacity, good rate performance, and cycling
stability. Figure 9 is the SEM images of the pristine TiO

2

nanowire array and optimized TiO
2
-MoO

3
hybrid array

anode with different magnifications. The strong synergistic
effect existing in this design can be summarized as follows:
(1) nearly negligible lattice changes during Li ion inser-
tion/extraction, which is crucial to maintain excellent cycling
stability. (2) The electrodeposited MoO

3
shell provides both

reversible large capacity and good electrical conductivity
for its nanosize effect and intrinsic characteristics. (3) The
TiO
2
nanowire array can provide direct electron transport

pathway between active material and current collector; Li
ions can easily intercalate into the composites, manifesting an
excellent rate capability and a significantly improved cycling
performance [124]. Other transition metal oxides coating
TiO
2
composites were also deeply investigated, such as TiO

2
-

V
2
O
5
, TiO
2
-CoO, and TiO

2
-SnO
2
[125–128].

2.4. Doping with Ion or Atom Dopants. For the low elec-
trical conductivity and ion diffusivity of TiO

2
, doping with

appropriate ions or atoms is advantageous since this method
can improve the intrinsic nature of TiO

2
by adjusting its

electronic structure, increase the internal surface area and
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Figure 9: (a) SEM images of the pristine TiO
2
nanowire array. (b)–(d) SEM images of the optimized TiO

2
-MoO

3
hybrid array anode with

different magnification. Reprinted from [124].

electrical conductivity, and form more open channels and
active sites for Li ion transport via the expanding interplanar
spacing of TiO

2
lattices [129, 130]. The reported dopants

include Fe3+ [131], Ti3+ [132], Sn4+ [133], B [134, 135], and N
[136], all of which show beneficial effect on increasing the
electrical conductivity more or less.

2.4.1. Ion Dopants. Doping Ti3+ in the TiO
2
structure can

provide conduction band electrons and undoubtedly im-
proves its conductivity, which also helps to increase the
reversible capacity. Ren et al. presented a simple and con-
trollable method to prepare the Ti3+ doped TiO

2
by a solvo-

thermal process at lower temperature. The doped TiO
2

nanoparticles showed much enhanced electrochemical per-
formance in reversible capacity, rate performance, and stabil-
ity comparing with the pure TiO

2
[132]. This is because Ti3+

doping can increase the electrical conductivity of TiO
2
. Liu et

al. synthesized Ti3+ doped TiO
2
nanotube arrays which also

exhibited excellent lithium ion intercalation performance
with an initial discharge capacity of 101mAh g−1 at a high
current density of 10 A g−1 [137].Themuch improved lithium
ion intercalation properties were attributed to the easy phase
transition promoted by the surface defects, that is, Ti-C,
Ti3+, and O2− vacancies, which could serve as nucleation
centers. In addition, the rate performance was also improved
due to the enhanced electrical conductivity. Sn4+, Fe3+, and

other metal ions were also investigated as dopants to improve
the electrochemical performance [133, 138]. Kyeremateng
and coworkers reported that the Sn doped TiO

2
nanotubes

delivered much higher capacity values compared to simple
TiO
2
nanotubes. The outstanding electrochemical behaviour

is proposed to be related to the enhanced lithium diffusivity
evidenced with Cottrell plots (Figure 10) and the rutile-type
structure imparted with the Sn doping. The results showed
that lithium ion insertion into Sn doped TiO

2
is about 40

times faster than into undoped TiO
2
[133].

2.4.2. AtomDopants. Atoms doping is also a useful technique
to increase the internal surface area and electrical conductiv-
ity of anode materials. For example, boron (B) and nitrogen
(N) doping had been proven to be an effective strategy
for improving the electrochemical performance of carbon
materials [139–143]. For example, B doped graphite has a
larger lattice constant value, 𝑎

0
, and a smaller 𝑑

002
distance

than ideal graphite, due to replacement of the carbon atoms
with boron [144], leading to increases in both the crystallinity
and electronic property of carbon as a Li-host material.
Jeong et al. synthesized B doped TiO

2
materials through

a simple one-pot process. The doped sample containing a
relatively large amount of B possesses cylindrical pores that
are favorable for lithium ion transfer, leading to the highest
diffusion coefficient. Consequently, the doped anodes exhibit
significantly improved cyclic capacities compared to the
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Figure 10: Cottrell plots for the determination of Li+ diffusion
coefficients in TiO

2
and Sn doped TiO

2
. Reprinted from [133].

nondoped TiO
2
sample [134]. Furthermore, nitrogen doping

has been proven to be an effective strategy for improving the
capacity of TiO

2
.This is because nitrogen doping can improve

the electric conductivity aswell as the ionic conductivity; after
introducing the N atoms, the distortion of Ti-O lattice can
affect the electrochemical reactions on the interfaces between
electrodes and the electrolyte, as well as lithium ion diffusion
in the Ti-O lattice [68, 145–147].

3. Conclusions and Outlook

In summary, this review showed the amount of research
efforts towards the development and improvement of TiO

2
-

based anode materials for LIBs. Several elegant strategies

aiming to boost the electrochemical performance and pro-
mote the practical application of TiO

2
have offered, including

fabrication of nanostructures with different morphologies
and sizes, modification by various coating materials (carbon
materials and metal oxides), elements doping. The unique
design allows achieving high lithium storage and good
cycling stability based on the high lithium ion flux at the
electrode/electrolyte interface, low internal resistance, short
paths for fast lithium ion diffusion, and low volume change
during Li ion insertion/desertions process. When combining
these exquisite features together, it is possible for maximizing
their electrochemical advantages to meet the present energy
demands.

Firstly, the performance of TiO
2
depends strongly on its

particle size and morphology. Therefore, different structures
of TiO

2
are explored to improve the electrochemical per-

formance of TiO
2
. In a second category, combining TiO

2

with carbonaceous materials such as active carbon, CNTs,
and graphene, the composite anode materials can obtain
moderate conductivity, large surface area, good chemical
stability and mechanical property. In the third, metal oxides
such as Fe

2
O
3
, SnO
2
, andMnO

2
can provide larger capacities

and high energy density compared to pure TiO
2
, which had

been combined to improve the overall anode performance.
Fourthly, for the low electrical conductivity and ion diffu-
sivity of TiO

2
, doping with appropriate ions or atoms is

advantageous since this method can improve the intrinsic
nature of TiO

2
by adjusting its electronic structure and

forming more open channels and active sites for Li ion
transport via the expanding interplanar spacing of TiO

2

lattices.
Finally, from this short review, we can conclude that high

energy density, high cycle life, and high efficiency battery
will still be the mainstream in the future growth of lithium
batteries. In order to utilize the TiO

2
-based materials as

effective anodes in commercial LIBs, interdisciplinary effort
in this area is however required.

Although considerable advances have been achieved in
improving the Li ion storage performance of TiO

2
, several

fundamental issues are still needed to be solved. For example,
nanomaterials usually show large surface area, which leads to
more significant side reactions and results in low coulombic
efficiency. Besides, nanopowder has lower density compared
to the block material, which would reduce the volumetric
energy density of battery. The following two possible strate-
gies may be helpful to solve the abovementioned problem: (1)
adopting surface modification or coating to reduce unnec-
essary side reactions; (2) designing hierarchical structures to
enhance the tap density of anode materials.
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[92] J. A. Puértolas and S. M. Kurtz, “Evaluation of carbon nan-
otubes and graphene as reinforcements for UHMWPE-based



14 Journal of Nanomaterials

composites in arthroplastic applications: a review,” Journal of the
Mechanical Behavior of Biomedical Materials, vol. 39, pp. 129–
145, 2014.

[93] Q. Wang and B. Arash, “A review on applications of carbon
nanotubes and graphenes as nano-resonator sensors,” Compu-
tational Materials Science, vol. 82, pp. 350–360, 2014.

[94] C. Kang, R. Baskaran, J. Hwang, B.-C. Ku, and W. Choi, “Large
scale patternable 3-dimensional carbon nanotube-graphene
structure for flexible Li-ion battery,” Carbon, vol. 68, pp. 493–
500, 2014.

[95] H. Liu, “Carbon nanotubes anchored with SnO
2
nanosheets as

anode for enhanced Li-ion storage,” Journal ofMaterials Science:
Materials in Electronics, vol. 25, no. 8, pp. 3353–3357, 2014.

[96] H. Pan, “Graphitic carbon nitride nanotubes as Li-ion battery
materials: a first-principles study,” The Journal of Physical
Chemistry C, vol. 118, no. 18, pp. 9318–9323, 2014.
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