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This study addresses the chaotic phenomena and nonlinear responses in a vibroacoustic system. It is the first study about the
chaotic phenomena in a vibroacoustic system, which is formed by a flexible panel coupled with a cavity. A multimode formulation
is developed from the acoustic governing equation and nonlinear structural governing equation.The chaotic and various nonlinear
responses are computed from the multimode formulation using a numerical integration method. The results obtained from the
proposedmethod and classical harmonic balancemethod are generally consistent. A set of modal convergence studies is performed
to check the proposed method. The effects of various parameters on triggering the nonchaotic responses to chaotic responses in a
vibroacoustic system are studied in detail.

1. Introduction

Over the past decades, numerous researchers have been
working on research topics related to chaos science, nonlinear
vibration, and vibroacoustics (e.g., [1–6]). In practice, linear
designs for chaotic and nonlinear machines or structures are
inappropriate and result in unsafety. In fact, there are many
physical machines and structures, which would undergo
chaotic and nonlinear vibrations. For example, Tian et al.
[7] studied the nonlinear aeroelastic characteristics of a
trapezoidal wing in hypersonic flow. In their numerical
results, it was found that the geometrical parameters of
trapezoidal wing imposed significant effects on the nonlinear
aeroelastic behaviors of wing structure; and the evolution
processes of chaos exhibited remarkable difference for the
wing configurations considered in the study. Rao et al. [8]
presented a work about the dynamics of a cracked rotor
system with oil-film force in parameter space. The “eye” of
chaos was found in the cracked rotor system, emerging as the
accumulation limit of forward and reverse period-doubling
bifurcation cascades. Asemani and Vatankhah [9] proposed
a new control system to stabilize the unstable periodic orbit
of chaotic spinning disks with incomplete state information.
The proposed control structure was developed according to

the T-S fuzzy systems and its design procedure fulfilled the
constraint in the T-S fuzzy dynamic output feedback control
signal. Akbarimajd and Yousefi [10] proposed a new control
strategy based on Takagi-Sugeno fuzzy model for deceasing
the power system oscillation. In the control system, the
stability of the whole closed-loop model was enhanced using
a general Lyapunov-Krasovskii functional. The proposed
strategy was applied to a 16-machine/68-bus power system.
In the nonlinear time domain simulations, the effectiveness
of the proposed method was checked.

Moreover, so far, there are few research works about both
nonlinear vibration and structural acoustics [11–15], although
numerous studies about linear vibroacoustic (e.g., [16–19])
and nonlinear vibration (e.g., [20–24]) have been carried out.
In [11, 12], Lee et al. did the research works about the sound
radiation and absorption of a curved panel, which underwent
nonlinear vibrations. In the simulation results, there were no
chaotic phenomena observed. Lee et al. [13] studied the sound
radiation of a chaotically vibrating curved beam/panel. In the
theoretical model, there was no structural acoustic coupling
term considered. In other words, the problem in [13] is not
structural-acoustic and is different from the one in this study.
Inmost of the linear structural-acoustic studies, various panel
absorbers and panel-cavity systems were investigated. It was

Hindawi
Complexity
Volume 2018, Article ID 7076150, 12 pages
https://doi.org/10.1155/2018/7076150

http://orcid.org/0000-0003-1657-4503
https://doi.org/10.1155/2018/7076150


2 Complexity

CavityRigid Rigid

�e acoustic pressure
induced by the source panel 

vibration

�e panel vibration which is 
considered as the excitation 

source 

Side view

ISO view

Curved panel

Source panel

Note that the initial centre deflection is small
when compared with the cavity depth. �erefore,
it is assumed that the cavity depth is constant

Figure 1: Nonlinear vibroacoustic system: a curved panel backed by a cavity.

assumed that the structural vibrations in the systems were
small andmainly focused on the sound absorption and sound
reduction. For example, Lee et al. [16] studied the acoustic
absorption of a finite flexible microperforated panel backed
by an air cavity. The absorption formula for the microperfo-
rated absorber was based on the modal analysis solution of
the classical plate equation coupled with the acoustic wave
equation. Choy et al. [19] proposed a compact flow-through
plate silencer using reinforced composite plates. The light-
weight and high stiffness property was a crucial element in
the silencer design. The other concept in the design was that
the sound reflection from the plate of the silencer caused
a desirable noise reduction from low to medium frequency
with wide broadband. In practice, the structural parts in
these panel absorbers and panel-cavity systems might be
very thin and undergoing nonlinear vibration. In the studies
of nonlinear vibration, various structures and systems (e.g.,
beam, plate, shell, and spring-mass) were investigated. Some
of them focused on the solution methods. For example,
Fan et al. [20] studied the steady-state periodic and quasi-
periodic responses of van der Pol-Mathieu system.They pro-
posed combining the method of multiple scales and double
perturbation technique to obtain the special periodic and
quasi-periodic solutions. Huang and Zhu [21] investigated
the nonlinear dynamic responses of an Euler-Bernoulli beam
attached to a rotating rigid hub with a constant angular
velocity.They used Lagrange’s equations based on discretized
expressions of kinetic and potential energies of the system to
develop the spatially discretized governing equations. Then,
they used the incremental harmonic balance method to solve
the governing equations and obtain the results of periodic
responses and period-doubling bifurcations.

To the best of the author’s knowledge, this study is the
first one about the chaotic phenomena in a vibroacoustic

system which considers the structural acoustic coupling.
The multimode formulation is developed and solved by
the numerical integration method. The effects of various
parameters on triggering the nonchaotic responses to chaotic
responses in a vibroacoustic system are studied in detail.

2. Theory

Figure 1 shows a vibroacoustic system that is formed by a
curve structure backed by a cavity. The governing equation
of the acoustic pressure within the cavity is the well-known
wave equation [26, 27]

∇2𝑃𝑄 − 1𝐶2𝑎
𝜕2𝑃𝑄𝜕𝑡2 = 0, (1)

where 𝑃𝑄 is the acoustic pressure, 𝐶𝑎 is the sound speed, and𝑄 represents the structural mode number.
Consider the modal decomposition approach and then𝑃𝑄 is expressed in terms of

𝑃𝑄 = 𝐽∑
𝐽=1

𝑃𝑄𝐽 (𝑡) 𝜑𝐽 (𝑥, 𝑦, 𝑧) , (2)

where 𝜑𝐽 is the 𝐽th acoustic mode shape and 𝑃𝑄𝐽 is the
corresponding modal response; 𝐽 is the number of acoustic
modes used. According to [26, 27], the mode shape function
is taken to be those in an enclosurewith rigid boundaries (i.e.,
cos(𝑙𝑥𝜋𝑥/𝐿𝑥) cos(𝑙𝑦𝜋𝑦/𝐿𝑦) cos(𝑙𝑧𝜋𝑧/𝐿𝑧), where 𝑙𝑥, 𝑙𝑦, and 𝑙𝑧
are the acoustic mode numbers).

Multiply 𝜑𝐽 to the right side of (1) and take integration
over the cavity volume, 𝑉:

∫
𝑉
𝜑𝐽∇2𝑃𝑄 𝑑V − ∫

𝑉

𝜑𝐽𝐶2𝑎
𝜕2𝑃𝑄𝜕𝑡2 𝑑V = 0. (3)
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Consider the technique of integration by parts:

∫
𝑉
𝜑𝐽∇2𝑃𝑄 𝑑V = ∫

𝑉
𝑃𝑄∇2𝜑𝐽 𝑑V + ∫

𝑆

𝜕𝑃𝑄𝜕𝑛 𝜑𝐽 𝑑𝑠, (4)

where 𝑛 represents the normal direction of the cavity bound-
ary surface and 𝑆 is the surface area.

Put (4) into (3):

∫
𝑉
𝑃𝑄∇2𝜑𝐽 𝑑V − ∫

𝑉

𝜑𝐽𝐶2𝑎
𝜕2𝑃𝑄𝜕𝑡2 𝑑V = −∫

𝑆

𝜕𝑃𝑄𝜕𝑛 𝜑𝐽 𝑑𝑠 (5)

⇒
−𝛼𝐽𝐽 [(𝑘𝐽)2 𝑃𝑄𝐽 (𝑡) + 1𝐶2𝑎

𝜕2𝑃𝑄𝐽 (𝑡)𝜕𝑡2 ] = −∫
𝑆

𝜕𝑃𝑄𝜕𝑛 𝜑𝐽 𝑑𝑠, (6)

where 𝛼𝐽𝐽 = ∫
𝑉
𝜑𝐽𝜑𝐽𝑑V; 𝑘𝐽 = √(𝑙𝑥𝜋/𝐿𝑥)2 + (𝑙𝑦𝜋/𝐿𝑦)2 + (𝑙𝑧𝜋/𝐿𝑧)2;𝜕𝑃𝑄/𝜕𝑛 = −𝜌𝑜(𝜕2𝑤𝑄/𝜕𝑡2) at 𝑧 = 0; 𝜕𝑃𝑄/𝜕𝑛 = −𝜌𝑜(𝜕2𝑤𝑜/𝜕𝑡2)

at 𝑧 = 𝐿𝑧; 𝜌𝑜 is the air density; 𝑙𝑥, 𝑙𝑦, 𝑙𝑧, 𝐿𝑥, 𝐿𝑦, and 𝐿𝑧 are the
acoustic modes numbers and cavity lengths in the 𝑥, 𝑦, and 𝑧
directions, respectively; 𝑤𝑜 and 𝑤𝑄 are the excitation source
displacement and curved panel displacement, respectively,
which are expressed in the following forms:

𝑤𝑜 = 𝐹 (𝑡) 𝜙1 (𝑥, 𝑦) , (7a)

𝑤𝑄 = 𝐴𝑄 (𝑡) 𝜙𝑄 (𝑥, 𝑦) , (7b)

where 𝐹(𝑡) and 𝐴𝑄(𝑡) are the harmonic excitation source
amplitude and curved panel amplitude; 𝜙1 and 𝜙𝑄 are the 1st
and 𝑄th vibration mode shape functions of the source panel
and curved panel, respectively. The boundary condition is
simply supported (i.e., sin(𝑄𝜋𝑥/𝐿𝑥)).

Put (7a) and (7b) into (6):

[(𝑘)2 − (𝑘𝐽)2] 𝛼𝐽𝐽𝑃𝑄𝐽 (𝑡) = 𝜌𝑜𝛾𝑄𝐽 𝜕2𝐴𝑄𝜕𝑡2 − 𝜌𝑜𝛾1𝐽 𝜕2𝐹𝜕𝑡2 , (8)

where 𝛾𝑄𝐽 = ∫
𝑆
𝜙𝑄𝜑𝐽 𝑑𝑠; 𝑘 is the wave number. The accelera-

tion of the source panel is assumed as 𝜕2𝐹/𝜕𝑡2 = 𝜅𝑔 sin(𝜔𝑡);𝜔
is the excitation frequency; 𝜅 is the dimensionless excitation
parameter and 𝑔 is the gravity of 9.81ms−2.

From (2), the acoustic pressure is expressed in terms of𝐴𝑄(𝑡). The acoustic pressure acting on the panel surface is
given by

𝑃𝑄 = 𝐽∑
𝐽=1

𝑃𝑄𝐽 (𝑡) 𝜑𝐽 (𝑥, 𝑦, 0) . (9)

According to (8), 𝑃𝑄𝐽(𝑡) can be rewritten in the following
form:

𝑃𝑄𝐽 (𝑡) = 𝜌𝑜𝛾𝑄𝐽[(𝑘)2 − (𝑘𝐽)2] 𝛼𝐽𝐽
𝜕2𝐴𝑄𝜕𝑡2

− 𝜌𝑜𝛾1𝐽[(𝑘)2 − (𝑘𝐽)2] 𝛼𝐽𝐽 𝜅𝑔 sin (𝜔𝑡) .
(10)

In [11, 12], the “beam-like” curved panel was adopted and
the flexural modes along the 𝑦 direction were ignored. It
was experimentally found that the flexural modes along
the 𝑦 direction were not very important in the nonlinear
phenomena. According to [11–13], the governing equation for
the nonlinear curved panel is expressed in the following form:

𝜌𝑑2𝑤𝑑𝑡2 + 𝐶𝑑𝑤𝑑𝑡 + 𝐸𝐼𝑑4𝑤𝑑𝑥4
= 𝐸𝐵ℎ𝐿𝑥 (𝑑2𝑤 + 𝑤𝑑𝑥2 )∫𝐿𝑥

0
(𝑑𝑤𝑑𝑥 𝑑𝑤𝑑𝑥 + 12 (𝑑𝑤𝑑𝑥 )

2)𝑑𝑥
+ 𝑃 (𝑡) = 0,

(11)

where 𝑤 is the transverse displacement of the panel; 𝑤 is
the initial deflection; 𝐸 is Young’s modulus; 𝜌 is the material
density; 𝐶 is the damping coefficient; 𝐵 is the width (= 𝐿𝑦)
and ℎ is the thickness; and 𝑃(𝑡) is the acoustic pressure acting
on the panel surface.

Consider the following modal decomposition:

𝑤 = 𝐴1 (𝑡) 𝜙1 (𝑥, 𝑦) + 𝐴2 (𝑡) 𝜙2 (𝑥, 𝑦)
+ 𝐴3 (𝑡) 𝜙3 (𝑥, 𝑦) + ⋅ ⋅ ⋅ . (12)

Put (12) into (11); multiply 𝜙𝑄 by each term on the right
side and take integration over the surface. In this study, the
first three structural modes are considered (i.e., 𝑄 = 1, 2, 3).
Note that, in the convergence study in the next section, it is
proven that the contribution of the 4thmode is veryminimal.
Therefore, the threemodal equations are developed and given
in the following:

∫𝐿𝑥
0

𝜙𝑄(𝜌𝑑2𝑤𝑑𝑡2 + 𝐶𝑑𝑤𝑑𝑡 + 𝐸𝐼𝑑4𝑤𝑑𝑥4
= 𝐸𝐵ℎ𝐿𝑥 (𝑑2𝑤 + 𝑤𝑑𝑥2 )
⋅ ∫𝐿𝑥
0

(𝑑𝑤𝑑𝑥 𝑑𝑤𝑑𝑥 + 12 (𝑑𝑤𝑑𝑥 )
2)𝑑𝑥 + 𝑃 (𝑡)) 𝑑𝑥

= 0, 𝑄 = 1, 2, 3

(13)

⇒
𝜌𝛽0011 𝑑2𝐴1𝑑𝑡2 + 𝜌𝜉𝜔1𝛽0011 𝑑𝐴1𝑑𝑡 + (𝐸𝐼𝛽4011

− 𝐸𝐵ℎ𝐿𝑥 𝛽1111𝛽2011 (𝐴𝑜)2)𝐴1
− 𝐸Ω𝐿𝑥 [

32𝛽1111𝛽2011𝐴𝑜 (𝐴1)2 + 12𝛽1111𝛽2022𝐴𝑜 (𝐴2)2
+ 12𝛽1133𝛽2011𝐴𝑜 (𝐴3)2 + 12𝛽1111𝛽2011 (𝐴1)3
+ 12𝛽1122𝛽2011𝐴1 (𝐴2)2 + 12𝛽1133𝛽2011𝐴1 (𝐴3)2]
= 𝜌𝑜( 𝐽∑

𝐽=1

(𝛾1𝐽)2[(𝑘)2 − (𝑘𝐽)2] 𝛼𝐽𝐽)
𝜕2𝐴1𝜕𝑡2
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Table 1

(a) Mode convergence for various excitation frequencies (nonchaotic, ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑥 = 0.6m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 2mm, 𝜅 = 4, 16 acoustic
modes).

Excitation freq., 𝜔 = 1st symmetric mode 1st antisymmetric mode 2nd symmetric mode 2nd antisymmetric mode
0.741𝜔𝑜 98.42 0.00 1.58 0.00
2.117𝜔𝑜 97.85 0.00 2.15 0.00
2.510𝜔𝑜 99.44 0.00 0.56 0.00

(b) Mode convergence for various excitation magnitudes (chaotic, ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑥 = 0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 4mm, 𝜔 = 0.805𝜔𝑜, 16
acoustic modes).

Excitation magnitude, 𝜅 = 1st symmetric mode 1st antisymmetric mode 2nd symmetric mode 2nd antisymmetric mode
5 70.90 22.43 6.67 0.00
10 76.66 16.88 6.46 0.00
20 82.64 13.23 4.13 0.00

(c) Mode convergence for various numbers of acoustic modes used (chaotic, ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑥 = 0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 4mm,
𝜔 = 0.805𝜔𝑜, 𝜅 = 4).

Number of acoustic
modes = 1st symmetric mode 1st antisymmetric mode 2nd symmetric mode 2nd antisymmetric mode

3 82.62 14.06 3.32 0.00
8 82.66 13.21 4.13 0.00
16 82.64 13.23 4.13 0.00

− 𝜌𝑜( 𝐽∑
𝐽=1

(𝛾1𝐽)2[(𝑘)2 − (𝑘𝐽)2] 𝛼𝐽𝐽)𝜅𝑔 sin (𝜔𝑡) ,
(14a)

𝜌𝛽0022 𝑑2𝐴2𝑑𝑡2 + 𝜌𝜉𝜔2𝛽0022 𝑑𝐴2𝑑𝑡 + 𝐸𝐼𝛽4022𝐴2
− 𝐸𝐵ℎ𝐿𝑥 [𝛽1111𝛽2022𝐴𝑜𝐴1𝐴2 + 12𝛽1111𝛽2022 (𝐴1)2 𝐴2
+ 12𝛽1122𝛽2022 (𝐴2)3 + 12𝛽1133𝛽2022 (𝐴3)2 𝐴2]
= 𝜌𝑜( 𝐽∑

𝐽=1

(𝛾2𝐽)2[(𝑘)2 − (𝑘𝐽)2] 𝛼𝐽𝐽)
𝜕2𝐴1𝜕𝑡2

− 𝜌𝑜( 𝐽∑
𝐽=1

𝛾1𝐽𝛾2𝐽[(𝑘)2 − (𝑘𝐽)2] 𝛼𝐽𝐽)𝜅𝑔 sin (𝜔𝑡) ,

(14b)

𝜌𝛽0033 𝑑2𝐴3𝑑𝑡2 + 𝜌𝜉𝜔3𝛽0033 𝑑𝐴3𝑑𝑡 + 𝐸𝐼𝛽4033𝐴3
− 𝐸𝐵ℎ𝐿𝑥 [𝛽1111𝛽2033𝐴𝑜𝐴1𝐴3 + 12𝛽1111𝛽2033 (𝐴1)2 𝐴3
+ 12𝛽1122𝛽2033 (𝐴2)2 𝐴3 + 12𝛽1133𝛽2033 (𝐴3)3]
= 𝜌𝑜( 𝐽∑

𝐽=1

(𝛾3𝐽)2[(𝑘)2 − (𝑘𝐽)2] 𝛼𝐽𝐽)
𝜕2𝐴3𝜕𝑡2

− 𝜌𝑜( 𝐽∑
𝐽=1

𝛾1𝐽𝛾3𝐽[(𝑘)2 − (𝑘𝐽)2] 𝛼𝐽𝐽)𝜅𝑔 sin (𝜔𝑡) ,

(14c)

where 𝛽00𝑖𝑚 = ∫𝐿𝑥
0

𝜙𝑖𝜙𝑚 𝑑𝑥; 𝛽20𝑖𝑚 = ∫𝐿𝑥
0
(𝑑2𝜙𝑖/𝑑𝑥2)𝜙𝑚 𝑑𝑥; 𝛽40𝑖𝑚 =∫𝐿𝑥

0
(𝑑4𝜙𝑖/𝑑𝑥4)𝜙𝑚 𝑑𝑥; 𝛽11𝑖𝑚 = ∫𝐿𝑥

0
(𝑑𝜙𝑖/𝑑𝑥)(𝑑𝜙𝑚/𝑑𝑥)𝑑𝑥; 𝜉 =

modal damping coefficient; 𝜔1, 𝜔2, and 𝜔3 are the resonant
frequencies of the 1st to 3rd modes; 𝑖 and𝑚 are the structural
mode numbers. According to [11, 26, 27], the acceleration
terms on the right sides of (14a)–(14c) can be rewritten as𝜕2𝐴𝑄/𝜕𝑡2 = −𝜔2𝐴𝑄, 𝑄 = 1, 2, 3.

The above coupled modal mode differential equations
can be solved using the Runge-Kutta time domain numerical
integration [11–13]. The overall root-mean square amplitude,
positive amplitude, and negative amplitude of the displace-
ment responses at the steady state are defined by

𝐴 rms = √∑𝑁𝑖 󵄨󵄨󵄨󵄨𝐴1,𝑖 + 𝐴2,𝑖 + 𝐴3,𝑖󵄨󵄨󵄨󵄨2𝑁 , (15a)

𝐴𝑄,+ = {𝐴𝑄,}max , (15b)

𝐴𝑄,− = {𝐴𝑄,}min , (15c)

where 𝐴1,𝑖, 𝐴2,𝑖, and 𝐴3,𝑖 are the modal displacement
responses at the steady state at 𝑖th time step;𝑁 is the number
of time steps used; {⋅}max and {⋅}min are the maximum and
minimum values within the steady state, respectively.

3. Results and Discussion

In this section, the material properties in the numerical cases
considered are as follows: Young’smodulus = 7.1×1010N/m2,
Poisson’s ratio = 0.3, and mass density = 2,700 kg/m3. The
panel dimensions are 0.5m × 0.4m × 2mm. The air density
is 1.2 kg/m3. The sound speed is 340m/s. In Tables 1(a)–1(c),
the case is the nonlinear forced vibrations of a curved panel
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(b) Comparison of the backbone curve results from the proposed and
classical harmonic balance methods [25] (2nd symmetric mode, ℎ =
2mm, 𝐿𝑥 = 0.5m, 𝐵 = 0.4m, 𝑤𝑐 = 0mm, no cavity)
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(c) Comparison of the time history free vibration results from the
proposed and classical harmonic balance methods [25] (1st mode, ℎ =
2mm, 𝐿𝑥 = 0.5m, 𝐵 = 0.4m, 𝑤𝑐 = 0mm, no cavity, initial amplitude
= ℎ)
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(d) Comparison of the time history free vibration results from the
proposed and classical harmonic balance methods [25] (1st mode, ℎ =
2mm, 𝐿𝑥 = 0.5m, 𝐵 = 0.4m, 𝑤𝑐 = 0mm, no cavity, initial amplitude
= 1.4ℎ)

Figure 2

backed by a cavity. The first two symmetrical and antisym-
metrical structural modes are used. The damping ratio 𝜉 =0.02. The excitation pressure is evenly distributed over the
panel surface. In Table 1(a), the nonlinear vibration responses
are nonchaotic. The initial centre deflection 𝑤𝑐 is 2mm. The
modal convergence study shows that the contributions of the
two antisymmetrical modes are zero for various excitation
frequencies. The approach of two symmetric modes is good
enough. In Table 1(b), the nonlinear vibration responses
are chaotic for all 𝜅 values. The excitation frequency is
0.805𝜔𝑜. The contribution of the first antisymmetrical mode
is higher than that of the 2nd symmetric mode and cannot
be neglected. It is noted that, for chaotic cases, the approach
of two symmetric modes and one antisymmetric mode is
necessary. In Table 1(c), the nonlinear vibration responses are
also chaotic.Themodal contributions are not very sensitive to

the number of acousticmodes in the chaotic case. It is because
the excitation frequency is far from the first nonzero cavity
resonant frequency. Figures 2(a)–2(d) present the compar-
isons between the backbone curves and time histories of the
nonlinear free panel vibrations obtained from the numerical
integration method and classical harmonic balance method
[25]. Figures 2(a)-2(b) show the 1st and 2nd symmetrical
mode backbone curves, where in each of which the amplitude
is plotted against the corresponding resonant frequency. The
1st four structural modes and 1st sixteen acoustic modes
are used. 𝜔𝑜 and 𝜔𝑛 are the 1st mode linear and nonlinear
resonant frequencies, respectively. 𝑤𝑐 is the initial centre
deflection. Figures 2(c)-2(d) show the time histories for
the vibration amplitude set as ℎ and 1.4ℎ. In the solution
procedures of the classical harmonic balancemethod, the two
harmonic terms (i.e., sin(𝜔𝑡) and sin(3𝜔𝑡)) are considered.
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(c) Vibration amplitude versus excitation frequency for various cavity
depths (ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 1mm,
𝜅 = 4)

Figure 3

The backbone curve and time history results obtained from
the two methods are generally in good agreement.

Figure 3(a) shows the RMS vibration amplitude plotted
against the excitation frequency for various excitationmagni-
tudes. The vibration responses in these cases are nonchaotic
as the excitation magnitude is not large enough and the
curvature is not deep enough. The peak frequency and RMS
vibration amplitude increase with the excitation magnitude.
Due to the zero frequency cavity mode, the RMS vibration
amplitude is higherwhen the excitation frequency is set closer
to zero.

In the case of small excitation (i.e., 𝜅 = 0.5), the peak
frequency is around 2.8𝜔𝑜 and looks more linear than the
other two. The peak frequency is higher than one because
of the cavity stiffness. When the excitation magnitude is set
higher (e.g., 𝜅 = 1.5 and 4), the peaks are inclined to the right
side. It is called “hardening effect,” which implies that the
structural stiffness is stronger due to the nonlinearity. In the
case of small excitation, the solution line at the low frequency
range is smoother than those in the two other cases, which
contain some other peaks due to the nonlinearity. For an

example, in the case of large excitation (i.e., 𝜅 = 4), there is
an obvious peak around 1.5𝜔𝑜 which does not appear in the
case of small excitation. The simple harmonic solution line is
found in each of the three cases for the excitation frequency
higher than 3𝜔𝑜. Figures 4(a)-4(b) show the steady-state time
histories of the superharmonic and simple harmonic cases.
Note that as only the vibration response at the steady state
is shown, the time does not start at zero in each of these
figures. In Figure 4(a), there are many peaks as the higher
harmonic components are very significant. In Figure 4(b), the
time history shows a set of simple sine waves. The numbers
of sine waves and harmonic cycles are equal. That is why it is
considered as “simple harmonic.”

Figure 3(b) shows the RMS vibration amplitude plotted
against the excitation frequency for various curvatures. In
the case of 2.5mm curvature, the “softening effect” is seen
(i.e., the peaks are inclined to the left side). It is implied
that the structural stiffness is weaker due to the nonlinearity.
The “jump down” phenomena are observed for the excitation
frequency decreasing from 4𝜔𝑜 to 3.5𝜔𝑜 and from 2.8𝜔𝑜 to
1.5𝜔𝑜, respectively.The peak value around 3𝜔𝑜 is smaller than
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(c) Time history for the chaotic case (ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑧 = 0.6m,
𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 2.5mm, 𝜅 = 4, 𝜔 = 0.87𝜔𝑜)

Figure 4

the one in the case of 1mm curvature; and the peak value
around 1.5𝜔𝑜 is higher.There is an abrupt jump down around𝜔/𝜔𝑜 = 1. At the very low frequency range (𝜔/𝜔𝑜 < 1),
the chaotic responses are observed in the case of 2.5mm
curvature (see Figure 4(c)); and the solution line is not
smooth. In the time history, the equilibrium position, vibra-
tion amplitude, and vibration period are varying abruptly.
That is why it is considered as “chaotic.” The deeper the
panel curvature, the less smooth the solution line. It is
because the curved panel would chaotically vibrate at the low
frequency. Figure 3(c) shows the RMS vibration amplitude
plotted against the excitation frequency for various cavity
depths. The first peaks and second peaks on the solution
lines are observed at the excitation frequencies around 1.35𝜔𝑜,
1.45𝜔𝑜, 1.65𝜔𝑜, 3𝜔𝑜, 3.5𝜔𝑜, and 4𝜔𝑜, respectively. The longer
the cavity depth, the lower the 1st and 2nd peak frequencies,
lower 2nd peak amplitude, and higher 1st peak amplitude.
At the very low frequency range (< 𝜔𝑜), the three solution
lines almost overlap with each other. If the cavity depth is
set longer, the simple harmonic and superharmonic solution
lines are shifted to the left side.

Figure 5(a) shows the positive and negative vibration
amplitudes plotted against the dimensionless excitation

magnitude for various panel curvatures. Note that the
positive and negative vibration amplitudes are not equal
for curved panel. Generally, the vibration amplitudes are
monotonically increasing with the excitation magnitude. In
the cases of 2.5mm and 4mm curvatures, the vibration
amplitudes abruptly increase around the critical values (i.e.,𝜅 = 3 and 5). It is implied that the vibration response changes
from nonchaotic to chaotic at this excitation magnitude.
The solution lines are not smooth because the amplitudes
of the chaotic vibrations are so sensitive. If the excitation
magnitude parameter is smaller than critical value, the
vibration response is nonchaotic. In this situation, the curved
panel vibrates without “snap-through motion.” Figures 6(a)-
6(b) and 7(a)-7(b) show the time histories and phase plots
for the various dimensionless excitation magnitudes. From
these time histories and phase plots, the simple harmonic
and quasi-chaotic vibration responses can be seen. In Figures
6(a) and 7(a), the excitationmagnitude is far from the critical
value. The vibration response is purely simple harmonic. In
Figure 6(b), it is close to the critical value. The vibration
response starts to change from nonchaotic to chaotic. That
is why the phase plot in Figure 7(b) shows both chaotic and
periodic properties. If the excitationmagnitude is higher than



8 Complexity

5 10 15 20 25 30 35 400
Dimensionless excitation, �휅

−10
−8
−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de
/th

ic
kn

es
s

wc = 0mm
=2.5 mm

=4 mm

(a) Vibration amplitude versus excitation magnitude for various curva-
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(b) Vibration amplitude versus excitation magnitude for various excita-
tion frequencies (ℎ = 2mm,𝐿𝑥 = 0.5m,𝐿𝑧 = 0.3m,𝐵 = 0.4m, 𝜉 = 0.02,
𝑤𝑐 = 2.5mm)

−10
−8
−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de
/th

ic
kn

es
s

5 10 15 20 25 30 35 400
Dimensionless excitation, �휅

�휉 = 0.04
=0.02

=0.005

(c) Vibration amplitude versus excitationmagnitude for various damping
ratios (ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑧 = 0.3m, 𝐵 = 0.4m, 𝑤𝑐 = 2.5mm,
𝜔 = 0.805𝜔𝑜)

Figure 5

and close to the critical value, the vibration response is some-
times “snap-through” and sometimes is not. It means that
the vibration equilibriumposition is varying (see Figures 6(c)
and 7(c)).The phase plot looks like several ellipses of different
sizes and centres overlapping with each other.The ellipses are
filled with the solution lines. If the excitation magnitude is
much higher than the critical value, the vibration response
is clearly considered as “chaotic” and “snap-through” (see
Figures 6(d) and 7(d)). The phase plot looks like two equal
sized ellipses touching each other. The two ellipses are filled
with the solution lines.

Figure 8(a) shows the modal contributions plotted
against the dimensionless excitation magnitude for𝑤𝑐 = 2.5mm. It is seen that, for the excitation magnitude
parameter much higher than the critical value, the
contributions of the 1st symmetric, 1st antisymmetric,
and 2nd symmetric modes are quite constant (i.e., ≈81%,
13%, and 6%); for the excitation magnitude parameter much
lower than the critical value, the modal contributions are≈89%, 0%, and 11%, respectively (it is implied that the
contribution of the 1st antisymmetric mode is zero in the

simple harmonic case); and for the excitation magnitude
parameter around the critical value, the contribution of
the 1st antisymmetric mode abruptly jumps up to ≈38%.
Figure 8(b) shows the modal contributions plotted against
the dimensionless excitation magnitude for 0mm curvature
(i.e., flat panel). It is seen that the contribution of the 1st
antisymmetric mode is always zero. The contribution of the
1st symmetric mode ranges from ≈94.5% to 97.5%.

Figure 5(b) shows the positive and negative vibration
amplitudes plotted against the dimensionless excitationmag-
nitude for various excitation frequencies. If the excitation
frequency is set higher, the vibration amplitudes are generally
smaller. In each of these cases, the vibration amplitudes
abruptly increase around the corresponding critical value. It
is observed that, in the case of high excitation frequency, 𝜔 =3.22𝜔𝑜, the solution lines are very smooth because there is
no chaotic response. Figures 6(e)-6(f) and 7(e)-7(f) show the
time histories and phase plots for the various dimensionless
excitation magnitudes (𝜔 = 3.22𝜔𝑜). Similar to those in
Figures 6(a) and 7(a), the vibration response in Figure 6(e)
(the case of small excitation) is simple harmonic and the
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(b) Time history for the transition case (ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑧 =
0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 4mm, 𝜅 = 3, 𝜔 = 0.805𝜔𝑜)
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(c) Time history for the chaotic case (ℎ = 2mm,𝐿𝑥 = 0.5m,𝐿𝑧 = 0.3m,
𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 4mm, 𝜅 = 4.5, 𝜔 = 0.805𝜔𝑜)
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(d) Time history for the snap-through case (ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑧 =
0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 4mm, 𝜅 = 30, 𝜔 = 0.805𝜔𝑜)
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(e) Time history for the simple harmonic case (ℎ = 2mm, 𝐿𝑥 = 0.5m,
𝐿𝑧 = 0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 2.5mm, 𝜅 = 1, 𝜔 = 3.22𝜔𝑜)
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(f) Time history for the superharmonic case (ℎ = 2mm, 𝐿𝑥 = 0.5m,
𝐿𝑧 = 0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 2.5mm, 𝜅 = 30, 𝜔 = 3.22𝜔𝑜)

Figure 6

phase plot in Figure 7(e) looks like an ellipse. The vibration
response in Figure 6(f) (the excitationmagnitude higher than
the critical value) containsmore superharmonic components.
According to the phase plot in Figure 7(f), it looks like two
deformed ellipseswith different radii and centres. It is implied
that the vibration response contains two main harmonic
components whose magnitudes and vibration equilibrium
positions are different.

Figure 8(c) shows the corresponding modal contribu-
tions plotted against the dimensionless excitationmagnitude.
It is found that although there is no chaotic response is
found for the case of 𝜔 = 3.22𝜔𝑜, the modal contribution
of the 1st antisymmetric mode is detectable and significant
when the excitation magnitude is higher than the critical
value. The modal contribution of the 1st antisymmetric
mode is zero, when the excitation magnitude is lower
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(a) Phase plot for the simple harmonic case (ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑧 =
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(b) Phase plot for the transition case (ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑧 = 0.3m,
𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 4mm, 𝜅 = 3, 𝜔 = 0.805𝜔𝑜)
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(c) Phase plot for the chaotic case (ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑧 = 0.3m,
𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 4mm, 𝜅 = 4.5, 𝜔 = 0.805𝜔𝑜)
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(d) Phase plot for the snap-through case (ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑧 =
0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 4mm, 𝜅 = 30, 𝜔 = 0.805𝜔𝑜)
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(e) Phase plot for the simple harmonic case (ℎ = 2mm, 𝐿𝑥 = 0.5m, 𝐿𝑧 =
0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 2.5mm, 𝜅 = 1, 𝜔 = 3.22𝜔𝑜)
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(f) Phase plot for the superharmonic case (ℎ = 2mm, 𝐿𝑥 = 0.5m,
𝐿𝑧 = 0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 2.5mm, 𝜅 = 30, 𝜔 = 3.22𝜔𝑜)

Figure 7

than the critical value. Figure 5(c) shows the positive and
negative vibration amplitudes plotted against the dimen-
sionless excitation magnitude for various damping ratios.
The solution lines are almost overlapping with each other.
From the previous results, the chaotic responses occur at
the low frequency range or nonresonant range. Thus, the
damping does not play a role for low frequency excita-
tion.

4. Conclusions

This study addresses the chaotic and nonlinear responses in
the vibroacoustic system. The multimode formulation devel-
oped from the acoustic governing equation and nonlinear
structural governing equation has been presented.The results
obtained from the proposed method and classical harmonic
balance method are generally consistent. From the results,
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(a) Modal contribution versus excitation magnitude (ℎ = 2mm, 𝐿𝑥 =
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(b) Modal contribution versus excitation magnitude (ℎ = 2mm, 𝐿𝑥 =
0.5m, 𝐿𝑧 = 0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 0mm, 𝜔 = 0.805𝜔𝑜)
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(c) Modal contribution versus excitation magnitude (ℎ = 2mm, 𝐿𝑥 =
0.5m, 𝐿𝑧 = 0.3m, 𝐵 = 0.4m, 𝜉 = 0.02, 𝑤𝑐 = 2.5mm, 𝜔 = 3.22𝜔𝑜)

Figure 8

it is known that there is a critical excitation magnitude
to abruptly trigger the chaotic response in a vibroacoustic
system. The critical force depends on various parameters.
When the chaotic responses occur in a vibroacoustic system,
the modal contribution of the 1st antisymmetric structural
mode cannot be neglected, even though the system and
the excitation are symmetric. Generally, at a low frequency
range, if the excitation is large enough and the curvature is
deep enough, the chaotic responses occur; if the excitation
is not large enough, the superharmonic responses occur. The
simple harmonic responses also occur in a medium-to-high
frequency range but their existence does not depend on the
excitation magnitude.
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