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While the disks are initially rotating eccentrically, the unsteady flow caused by their oscillations in
their own planes and in the opposite directions is studied. The analytical solutions to the problem
are obtained for both small and large times, and thus the velocity field is determined for every
value of time. The variations of all the parameters on the flow are scrutinized by means of the
graphical representations. In particular, the effect of the ratio of the frequency of oscillation to
the angular velocity of the disks is analyzed. The dependence of the oscillations in both x- and
y-directions on the flow is examined. The influence of the Reynolds number is also investigated.

1. Introduction

The instrument called the orthogonal rheometer consisting of two parallel disks rotating
with the same angular velocity about noncoincident axes was originally developed by
Maxwell and Chartoff [1]. Abbott and Walters [2] obtained an exact solution for the flow
of a Newtonian fluid. They also found a solution by means of a perturbation analysis
for a viscoelastic fluid. Later, Berker [3] proved that there is the existence of an infinite
number of nontrivial solutions to the Navier-Stokes equations between eccentric rotating
disks. Rajagopal [4] showed that this motion is one with constant stretch history. We refer
the reader to the papers by Rajagopal [5] and Ersoy [6, 7] for a detailed list of references
related to the flows between eccentric rotating disks.

Time-dependent flows between eccentric rotating disks have also attracted the
attention of researchers [8–13]. In these studies, the unsteady flows are generated by the
sudden motion of the disks rotating with the same angular velocity and the disks are not
exposed to oscillation. Erdoğan [14, 15] was the first to study the unsteady motion induced
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by oscillations. He [14] studied the flow that the disks start to rotate eccentrically and the
lower disk executes oscillations while the disks are initially rotating about a common axis.
He [15] studied the flow that the disks start to rotate eccentrically and both the disks execute
oscillations in the same direction while the disks are initially rotating about a common axis.
It is clear that these flows are not symmetrical as indicated by Erdoğan [14, 15].

In addition, the reader may consult the references [16–24] for the analytical solutions
about the unsteady flows induced by eccentric rotations of an oscillating disk and a fluid at
infinity under various effects.

In this paper, the disks are initially rotating about noncoincident axes. For this reason,
the initial condition is the solution obtained by Abbott and Walters [2]. The disks start to
execute oscillations in their own planes and in the opposite directions, and thus the symmetri-
cal condition is satisfied at all times. In order to obtain a more general solution, the oscillating
disk velocity has two components. The problem is solved for both small and large times, and
the two solutions are matched at a specific value of time. In other words, the velocity field
is obtained for all times. The influences of the parameters acting on the flow are elucidated
with the help of the figures.

2. Basic Equations

The flow field of the problem is bounded by two disks located at z = h and z = −h. Initially,
the top and bottom disks are rotating about the z′- and z′′-axes with the same angular velocity
Ω, respectively. The distance between the axes of rotation is shown in the y-direction by 2�
and the region between the disks is occupied by an incompressible Newtonian fluid. The
motion of the fluid is examined after the disks start to execute oscillations in their own planes
and in the opposite directions. The upper and lower disks oscillate in their own planes with
the velocitiesU and −U, respectively, whereU = (Ux sinnt,Uy sinnt, 0) and n is the frequency
of the oscillation. It should be emphasized that the distance between the axes of rotation
is fixed during the motion. Furthermore, a physical reality of the oscillations of the disks
requires that the sine oscillation is more reasonable than the cosine oscillation in this paper.
The geometry of the problem is shown in Figure 1.

Therefore, the initial and boundary conditions can be written in the following form:

u = − Ωy + ̂f(z), ν = Ωx + ĝ(z) at t = 0 for − h ≤ z ≤ h, (2.1a)

u = − Ω
(

y − �
)

+Ux sinnt, ν = Ωx +Uy sinnt at z = h for t ≥ 0, (2.1b)

u = − Ωy, ν = Ωx at z = 0 for t ≥ 0, (2.1c)

u = − Ω
(

y + �
) −Ux sinnt, ν = Ωx −Uy sinnt at z = −h for t ≥ 0, (2.1d)

where u and ν denote the velocity components in the x- and y-directions, respectively. The
functions ̂f(z) and ĝ(z) obtained by Abbott and Walters [2] represent the eccentric symmet-
rical rotation for a Newtonian fluid and are given by

̂f(z) + iĝ(z) = Ω�
sinhKz

sinhKh
, (2.2)
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Figure 1: Flow geometry.

where i =
√−1, K =

√

Ω/(2ν)(1 + i), and ν denotes the kinematic viscosity of the fluid.
Equation (2.1c) reflects the symmetrical condition.

The velocity field for the flow under consideration is given by

u = −Ωy + f(z, t), ν = Ωx + g(z, t). (2.3)

We should note that this flow does not bring out a velocity component in the z-direction.
Substituting (2.3) into the Navier-Stokes equations, one obtains

ν
∂2f

∂z2
− ∂f

∂t
+ Ωg = C1(t),

ν
∂2g

∂z2
− ∂g

∂t
−Ωf = C2(t).

(2.4)

Using (2.1a)–(2.1d) and (2.3), we get

f(z, 0) = ̂f(z), g(z, 0) = ĝ(z), (2.5a)

f(±h, t) = ±(Ω� +Ux sinnt), g(±h, t) = ±Uy sinnt, (2.5b)

f(0, t) = 0, g(0, t) = 0. (2.5c)

Introducing F(z, t) = f(z, t) + ig(z, t) and using (2.4), we have

ν
∂2F

∂z2
− ∂F

∂t
−ΩiF = C(t). (2.6)
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The symmetrical condition gives C(t) = 0, which implies the absence of the Poiseuille-type
pressure gradient. The conditions for (2.6) become

F(z, 0) = ̂f(z) + iĝ(z),

F(±h, t) = ±(Ω� +Ux sinnt) ± iUy sinnt,

F(0, t) = 0.

(2.7)

3. Solution for Small Times

Putting F(z, t) = H(z, t)e−iΩt, (2.6) takes the form

ν
∂2H

∂z2
=

∂H

∂t
, (3.1)

with the conditions

H(z, 0) = Ω�
sinhKz

sinhKh
,

H(±h, t) = ±[Ω� +
(

Ux + iUy

)

sinnt
]

eiΩt,

H(0, t) = 0.

(3.2)

The Laplace transform of H(z, t) is defined by the equation

H(z, s) =
∫∞

0
H(z, t)e−stdt. (3.3)

Taking the Laplace transform of (3.1) with the conditions (3.2), we have

H
′′ − s

ν
H = − Ω�

ν sinhKh
sinhKz, (3.4)

H(±h) = ± Ω�

s − iΩ
±

(

Ux + iUy

)

n

n2 + (s − iΩ)2
, H(0) = 0, (3.5)

where a prime denotes differentiation with respect to z. Applying the conditions (3.5), the
solution of (3.4) is

H =
Ω�

s − iΩ
sinhKz

sinhKh
+

(

Ux + iUy

)

n

n2 + (s − iΩ)2
sinh

√

s/νz

sinh
√

s/νh
. (3.6)
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Letting ϕ =
√

s/ν, (3.6) can be written as follows:

H =
1
s

Ω�

1 − iΩ/s

sinhKz

sinhKh
−
(

Uy − iUx

)

2s

[

1
1 + i(n −Ω)/s

− 1
1 − i(n + Ω)/s

]

e−ϕ(h−z) − e−ϕ(h+z)

1 − e−2ϕh
.

(3.7)

It is well known that the series
∑∞

q=0 X
q converges to (1−X)−1 for |X| < 1. Using this binomial

series, it is possible to obtain the solution for small times. Equation (3.7) can be written in the
following form:

H = Ω�
sinhKz

sinhKh

∞
∑

q=0

(iΩ)q

sq+1
−
(

Uy − iUx

)

2

×
∞
∑

p=0

∞
∑

m=0

{

(

[i(Ω − n)]p − [i(n + Ω)]p
)e−ϕ(h−z+2hm) − e−ϕ(h+z+2hm)

sp+1

}

.

(3.8)

The inverse Laplace transform of (3.8) gives

F

Ω�
=

sinh
√

R/2(1 + i)ζ

sinh
√

R/2(1 + i)
−
(

Vy − iVx

)

2
(cos τ − i sin τ)

×
∞
∑

p=0

ip(4τ)p
[

(1 − k)p − (1 + k)p
]

∞
∑

m=0

[

i2p erfc
1 − ζ + 2m

2
√

τ/R
− i2p erfc

1 + ζ + 2m

2
√

τ/R

]

,

(3.9)

or

f =
P(1)P(ζ) +Q(1)Q(ζ)

Δ
+
Vx sin τ − Vy cos τ

2
(−α2T4 + α4T8 − α6T12 + α8T16 − · · · )

− Vx cos τ + Vy sin τ
2

(α1T2 − α3T6 + α5T10 − α7T14 + · · · ),

g =
P(1)Q(ζ) −Q(1)P(ζ)

Δ
+
Vx sin τ − Vy cos τ

2
(α1T2 − α3T6 + α5T10 − α7T14 + · · · )

+
Vx cos τ + Vy sin τ

2
(−α2T4 + α4T8 − α6T12 + α8T16 − · · · ),

(3.10)
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where

f =
f

Ω�
, g =

g

Ω�
, R =

Ωh2

ν
, ζ =

z

h
, τ = Ωt, Vx =

Ux

Ω�
,

Vy =
Uy

Ω�
, k =

n

Ω
, P(ζ) = sinh

√

R

2
ζ cos

√

R

2
ζ,

Q(ζ) = cosh

√

R

2
ζ sin

√

R

2
ζ, Δ = [P(1)]2 + [Q(1)]2,

αr = (4τ)r
[

(1 − k)r − (1 + k)r
]

,

Tr =
∞
∑

m=0

[

ir erfc
1 − ζ + 2m

2
√

τ/R
− ir erfc

1 + ζ + 2m

2
√

τ/R

]

.

(3.11)

The properties of a function that characterizes the functions Tr defined here are given by
Ersoy [25]. The series solutions shown by (3.10) converge rapidly for small times but con-
verge slowly when τ increases. These solutions cannot be used for very large times. For this
reason, it is necessary to introduce a different method for large times.

4. Solution for Large Times

For large times, we suggest a solution of the form

F(z, t) = F0(z) + F1(z) cosnt + F2(z) sinnt, (4.1)

where F0(z) corresponds to the case of n = 0. Substituting (4.1) into (2.6), we get

νF ′′
0 −ΩiF0 = 0, (4.2a)

νF ′′
1 − nF2 −ΩiF1 = 0, (4.2b)

νF ′′
2 + nF1 −ΩiF2 = 0. (4.2c)

The boundary conditions for (4.2a)–(4.2c) are

F0(±h) = ±Ω�, F1(±h) = 0, F2(±h) = ±(Ux + iUy

)

,

F0(0) = 0, F1(0) = 0, F2(0) = 0.
(4.3)
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Figure 2: Variations of f and g with τ for k = 0.5 (R = 10, Vx = 1, Vy = 1).

From the solutions of (4.2a)–(4.2c) by the conditions (4.3), we have

F

Ω�
=

sinh
√

R/2(1 + i)ζ

sinh
√

R/2(1 + i)

−
(

Vy − iVx

)

2

[

sin
√

(k − 1)R/2(1 + i)ζ

sin
√

(k − 1)R/2(1 + i)
− sinh

√

(k + 1)R/2(1 + i)ζ

sinh
√

(k + 1)R/2(1 + i)

]

cos kτ

+

(

Vx + iVy

)

2

[

sin
√

(k − 1)R/2(1 + i)ζ

sin
√

(k − 1)R/2(1 + i)
+
sinh

√

(k + 1)R/2(1 + i)ζ

sinh
√

(k + 1)R/2(1 + i)

]

sin kτ,

(4.4)
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or

f =
P(1)P(ζ) +Q(1)Q(ζ)

Δ

+
{

Vx

[

J(1)K(ζ) −K(1)J(ζ)
2L

− A(1)B(ζ) − B(1)A(ζ)
2D

]

+Vy

[

J(1)J(ζ) +K(1)K(ζ)
2L

− A(1)A(ζ) + B(1)B(ζ)
2D

]}

cos kτ

+
{

Vx

[

A(1)A(ζ) + B(1)B(ζ)
2D

+
J(1)J(ζ) +K(1)K(ζ)

2L

]

−Vy

[

A(1)B(ζ) − B(1)A(ζ)
2D

+
J(1)K(ζ) −K(1)J(ζ)

2L

]}

sin kτ,

g =
P(1)Q(ζ) −Q(1)P(ζ)

Δ

+
{

Vx

[

A(1)A(ζ) + B(1)B(ζ)
2D

− J(1)J(ζ) +K(1)K(ζ)
2L

]

+Vy

[

J(1)K(ζ) −K(1)J(ζ)
2L

− A(1)B(ζ) − B(1)A(ζ)
2D

]}

cos kτ

+
{

Vx

[

A(1)B(ζ) − B(1)A(ζ)
2D

+
J(1)K(ζ) −K(1)J(ζ)

2L

]

+Vy

[

A(1)A(ζ) + B(1)B(ζ)
2D

+
J(1)J(ζ) +K(1)K(ζ)

2L

]}

sin kτ,

(4.5)

where

A(ζ) = cosh

√

(k − 1)R
2

ζ sin

√

(k − 1)R
2

ζ,

B(ζ) = sinh

√

(k − 1)R
2

ζ cos

√

(k − 1)R
2

ζ,

J(ζ) = sinh

√

(k + 1)R
2

ζ cos

√

(k + 1)R
2

ζ,

K(ζ) = cosh

√

(k + 1)R
2

ζ sin

√

(k + 1)R
2

ζ,

D = [A(1)]2 + [B(1)]2, L = [J(1)]2 + [K(1)]2.

(4.6)
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Table 1: Comparison of the two solutions of f when τ increases (ζ = 0.5, R = 10, Vx = 1, Vy = 1, k = 0.5).

Small-time solution (f) Large-time solution (f)
τ = 0.1 0.1799927555 0.0407381339
τ = 0.5 0.1913381458 0.1385613370
τ = 0.8 0.2231963485 0.2132298660
τ = 1 0.2542444915 0.2626974023
τ = 1.5 0.3528926478 0.3816911322
τ = 2 0.4604354856 0.4881440727
τ = 3 0.6281582038 0.6381439189
τ = 4 0.6757990334 0.6759717470
τ = 5 0.5936835522 0.5923659856
τ = 6 0.4083508823 0.4077962408
τ = 7 0.1674919804 0.1674516233

The solution for k = 1 is

f =
P(1)P(ζ) +Q(1)Q(ζ)

Δ

+

[

−Vyζ

2
+ Vx

M(1)N(ζ) −N(1)M(ζ)
2E

+ Vy
M(1)M(ζ) +N(1)N(ζ)

2E

]

cos τ

+
[

Vxζ

2
+ Vx

M(1)M(ζ) +N(1)N(ζ)
2E

− Vy
M(1)N(ζ) −N(1)M(ζ)

2E

]

sin τ,

g =
P(1)Q(ζ) −Q(1)P(ζ)

Δ

+
[

Vxζ

2
− Vx

M(1)M(ζ) +N(1)N(ζ)
2E

+ Vy
M(1)N(ζ) −N(1)M(ζ)

2E

]

cos τ

+

[

Vyζ

2
+ Vx

M(1)N(ζ) −N(1)M(ζ)
2E

+ Vy
M(1)M(ζ) +N(1)N(ζ)

2E

]

sin τ,

(4.7)

where

M(ζ) = sinh
√
Rζ cos

√
Rζ,

N(ζ) = cosh
√
Rζ sin

√
Rζ,

E = [M(1)]2 + [N(1)]2.

(4.8)

The solutions shown by (4.5) and (4.7) are not valid for small times. Table 1 compares the
two different solutions of f for the given specific values when the time varies.
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Figure 3: Variations of f and g with τ for k = 1 (R = 10, Vx = 1, Vy = 1).

5. Results and Discussion

In this paper, the motion of the fluid between the disks executing oscillations in their own
planes and in the opposite directions is studied while they are initially rotating noncoaxially.
There is no flow perpendicular to the disks due to the fact that they are rotating with the
same angular velocity at all times. The fluid layer in the plane z = 0 rotates as if a rigid
body about z-axis, which implies that the symmetrical condition is satisfied, since the disks
oscillate in the opposite directions. The effects of all the parameters acting on the flow are
revealed by means of Figures 2, 3, 4, 5, 6, and 7. Figures 2–4 display the effect of the frequency
of oscillation. The influence of the oscillating direction of the disks on the flow is illustrated
in Figures 5 and 6. Figure 7 shows how the flow depends on the Reynolds number. The main
findings of the present analysis are pointed out below.
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Figure 4: Variations of f and g with τ for k = 1.25 (R = 10, Vx = 1, Vy = 1).

(i) The solution of the problem is obtained for both small and large times. At some
specific time, it is shown that the solutions for small times are in good agreement
with those for large times. Thus, the velocity field is determined at all times.

(ii) It is shown that the velocity increases for the same small times when the frequency
of oscillation increases. With the decrease of the frequency, the periodic motion
takes place later.

(iii) When the oscillation takes place along the eccentricity direction, the y-component
of the translational velocity is considerably affected, but the change in the x-
component is almost imperceptible. On the other hand, a reverse effect is observed
when the disks are forced to oscillate in the x-direction. In this case, the change in
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Figure 5: Variations of f and g with Vx for Vy = 0 (R = 10, k = 0.5, τ = 0.5).
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Figure 6: Variations of f and g with Vy for Vx = 0 (R = 10, k = 0.5, τ = 0.5).

the x-component of the translational velocity is noticed clearly but the change in
the y-component is insignificant.

(iv) Increasing the Reynolds number has the effect of decreasing the thickness of the
boundary layer.

(v) It is observed that the periodic motion presupposed in the solution for large times
occurs.

(vi) As it is expected, there exists a phase lag between the flow velocity and the disk
oscillation when the periodic motion occurs.
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Figure 7: Variations of f and g with R (k = 0.5, τ = 0.5, Vx = 2, Vy = 2).

(vii) It is shown that a solution can be obtained even when the angular velocity of the
disk is equal to the frequency of oscillation.
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[17] M. E. Erdoǧan, “Flow induced by non-coaxial rotation of a disk executing non-torsional oscillations
and a fluid rotating at infinity,” International Journal of Engineering Science, vol. 38, no. 2, pp. 175–196,
2000.

[18] T. Hayat, M. Zamurad, S. Asghar, and A. M. Siddiqui, “Magnetohydrodynamic flow due to non-
coaxial rotations of a porous oscillating disk and a fluid at infinity,” International Journal of Engineering
Science, vol. 41, no. 11, pp. 1177–1196, 2003.

[19] T. Hayat, S. Mumtaz, and R. Ellahi, “MHD unsteady flows due to non-coaxial rotations of a disk and
a fluid at infinity,” Acta Mechanica Sinica, vol. 19, no. 3, pp. 235–240, 2003.

[20] T. Hayat, R. Ellahi, S. Asghar, and A. M. Siddiqui, “Flow induced by non-coaxial rotation of a
porous disk executing non-torsional oscillations and a second grade fluid rotating at infinity,” Applied
Mathematical Modelling, vol. 28, no. 6, pp. 591–605, 2004.

[21] T. Hayat, R. Ellahi, and S. Asghar, “Unsteady periodic flows of a magnetohydrodynamic fluid due
to noncoaxial rotations of a porous disk and a fluid at infinity,” Mathematical and Computer Modelling,
vol. 40, no. 1-2, pp. 173–179, 2004.

[22] T. Hayat, R. Ellahi, and S. Asghar, “Unsteady magnetohydrodynamic non-Newtonian flow due to
non-coaxial rotations of disk and a fluid at infinity,” Chemical Engineering Communications, vol. 194,
no. 1, pp. 37–49, 2007.

[23] M. Guria, B. K. Das, and R. N. Jana, “Oscillatory flow due to eccentrically rotating porous disk and a
fluid at infinity,”Meccanica, vol. 42, no. 5, pp. 487–493, 2007.

[24] T. Hayat, R. Ellahi, and S. Asghar, “Hall effects on unsteady flow due to non-coaxially rotating disk
and a fluid at infinity,” Chemical Engineering Communications, vol. 195, no. 8, pp. 958–976, 2008.

[25] H. V. Ersoy, “Examination of a special function defined by an integral,” American Journal of
Computational Mathematics, vol. 2, no. 1, pp. 61–64, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


