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Choosing the suitable demand distribution during lead-time is an important issue in inventorymodels.Much research has explored
the advantage of following a distributional assumption different from the normality. The Birnbaum-Saunders (BS) distribution is a
probabilistic model that has its genesis in engineering but is also being widely applied to other fields including business, industry,
and management. We conduct numeric experiments using the R statistical software to assess the adequacy of the BS distribution
against the normal and gamma distributions in light of the traditional lot size-reorder point inventory model, known as (𝑄, 𝑟). The
BS distribution is well-known to be robust to extreme values; indeed, results indicate that it is a more adequate assumption under
higher values of the lead-time demand coefficient of variation, thus outperforming the gamma and the normal assumptions.

1. Introduction and Bibliographical Review

Inventory management permeates decision-making in
countless firms. The topic has been extensively studied in
academic and corporate spheres, for example, Braglia et al.
[1] and Cai et al. [2]. The key questions which the inventory
management seeks to answer, usually influenced by a variety
of circumstances, are as follows: when to order, determining
an economic order quantity (EOQ) or lot size, and how
much safety stock (SS) to keep, establishing a reorder point
(ROP); see Namit and Chen [3] and Porras and Dekker [4].

According toWanke [5], inventory management involves
a set of decisionswhose objective is tomatch existing demand
with the supply of products and materials over space and
time. This objective allows us to achieve specified costs and
service levels, considering product, operation, and demand
characteristics. It is known that the inventory total cost (TC)
is a function of ordering, holding, and shortage costs; see
Hillier and Lieberman [6].

The importance attached by firms to inventory manage-
ment can be attributed to the following: first and foremost,
it is the need to ensure that products, given the competitive

pressure exercised by markets, are always supplied to cus-
tomers at the least possible cost; see Eaves [7]. Second, some
other factors contribute to a high concern with inventory
management, such as product diversity or behavior; seeHuis-
konen [8]. High opportunity costs also contribute to this con-
cern, thus affecting the financial indicators on which assess-
ments of firm performance are based; see Wanke [5].

The inventory management models are frequently classi-
fied in two types: pull and push. On the one hand, according
to Ballou and Burnetas [9], pull-type planning models range
from those that set inventory levels based on the EOQ to
those fixed in proportion to forecasted demand. The EOQ
model is the simplest and most fundamental of all inventory
models because it describes important trade-offs between
fixed ordering and holding costs; see Nahmias [10]. Despite
its shortcomings, the basic EOQ model is the cornerstone of
several software packages for inventory control; see Lee and
Nahmias [11]. Interested readers can refer to Yan and Wang
[12] andMin et al. [13] formore details about the EOQmodel.
Today EOQ is used in conjunction with ROP in inventory
control models to determine cycle and SS under demand
per unit of time (DPUT) and lead-time (LT) uncertainty.
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These models are well described in most logistics and oper-
ations textbooks, as are their underlying assumptions; see
Nahmias [10]. Models that set inventory levels in proportion
to forecasted demand constitute a particular form of the
periodic review model, except that replenishment quantities
are not based on the EOQ model; see Ballou [14]. On the
other hand, push-type planning models take place when
inventory decisions are based on the demand or its forecast
at multiple downstream stocking locations, similar to the
resource planning system of logistics.

According to Silver et al. [15], Eaves and Kingsman [16],
Syntetos et al. [17], and Boylan et al. [18], demand is one
of the main factors in inventory management models. In
general, demand may be classified from two settings. First,
it can be deterministic or random; if random, the demand
follows a statistical distribution (also known as probabilistic
model); otherwise, the demand is constant, which implies a
degenerate statistical distribution; that is, its variance is equal
to zero. Second, demandmight be independent or dependent.
Formore details, see Disney et al. [19], Porras andDekker [4],
Wanke [5], and Rojas et al. [20].

Demand uncertainties directly affect the operation of the
physical system of logistics. Moreover, to be closer to reality,
single or multiple period inventory models must take into
account that demand is occurring in a random fashion, which
is explained by several factors. Thus, DPUT is taken to be a
random variable (RV). Furthermore, during LT, due to the
mentioned randomness, the corresponding demand (LTD) is
also a RV; therefore, the behavior of DPUT and LTD must
be described by statistical distributions; see Johnson et al. [21,
22]. The Gaussian (or normal) distribution is often used for
describing the data of these two RVs (DPUT, LTD) involved
in inventory models. However, it is well-known that the
normal distribution is validly used for RVs that take negative
and positive values with a symmetrical behavior. Hence, first,
quantities less than zero could be admitted when the model-
ing is carried out under the normal distribution, which is not
possible in real-world situations for DPUT and LTD, because
they only admit values greater than zero; see Nahmias [10].
Second, another drawback using the normal model is that
DPUT and LTD data often follow asymmetric distributions;
see Moors and Strijbosch [23]. Mentzer and Krishnan [24]
studied the nonnormality effect on inventory models and
found that the normal distribution is appropriate in few
practical cases; see also Eppen and Martin [25]. A recent
case study with DPUT data of 89 food products supports
such nonnormality; see Leiva et al. [26] and Rojas et al. [20].
In any case, the normality assumption must be checked by
goodness-of-fit methods; see Barros et al. [27]. Thus, the use
of the normal distribution tomodel DPUT and LTD and then
to determine theROP and SS can lead towrong results, result-
ing in shortages or excess inventories. Nonnormal distribu-
tions with positive support that have been used for describing
DPUT in inventory management include models such as
gamma or Erlang, inverse Gaussian, log-normal, Pearson,
Poisson, uniform, and Weibull; see Burgin [28], Tadikamalla
[29], Lau [30],Wanke [31], Cobb et al. [32], and Pan et al. [33].

A unimodal, two-parameter probability model with pos-
itive support and asymmetry to the right that is receiving

considerable attention is the Birnbaum-Saunders (BS) distri-
bution; see Birnbaum and Saunders [34] and Johnson et al.
[22, pages 651–663]. The BS distribution has good properties
and is related to the normal distribution and implemented
in the R statistical software (http://www.r-project.org) via
a package called gbs; see R Team [35]. Although the BS
distribution has its genesis from engineering, its applications
range across diverse fields as business, industry, and man-
agement, which have been conducted by an international,
transdisciplinary group of researchers; see, for example, Jin
and Kawczak [36], Podlaski [37], Bhatti [38], Lio et al. [39],
Paula et al. [40], Marchant et al. [41], and Leiva et al. [42, 43].
In addition, although originally conceived as a count model,
the BS distribution includes the duration of the counting
period (daily or weekly), which obviates having to collect
additional data, among other properties; see Fox et al. [44].
In sum, the BS distribution is a good candidate for describing
demand data in inventory models; see Leiva et al. [26] and
Rojas et al. [20].

Our main objective is to explore the use of the BS distri-
bution in inventory management. Differently from previous
studies that exclusively considered the effects of one given
distribution on inventory decision-making, we also analyze
its adequacy in light of different operating characteristics
and costs. Specifically, we assess how the BS, gamma, and
normal LTD distributions interact with relevant product
characteristics and affect the optimal EOQ and SS inventory
indicators in terms of the optimization of the TC function.
We minimize this function using stochastic programming,
a technique where constraints and/or objective function of
the problem to be optimized contain RVs that can follow
any distribution; see Shapiro et al. [45] and Thangaraj et al.
[46]. We solve the problem of stochastic programming with
a search heuristic called differential evolution (DE), which is
a global numerical optimization approach based on genetic
algorithm concepts; see Storn and Price [47] and Price et al.
[48]. We implement our results in R code, which is available
upon request from the authors.

Section 2 reviews general aspects of inventory manage-
ment models and the statistical distributions used in this
study. Section 3 explores the effect of different LTD distribu-
tions in inventory management, introducing the simulation
scenario, formulating the stochastic programming model,
discussing the DE algorithm, and providing a numerical
study. Section 4 concludes the study making some consid-
erations on the management of our findings and on future
research.

2. Background

In this section, we discuss general aspects of inventory man-
agementmodels and demand statistical distributions used for
the methodology presented in Section 3.

2.1. InventoryManagementModels. The (𝑄, 𝑟)model is based
on the ROP (𝑟) and the EOQ model given by

𝑄 = (
2𝜆𝑃

𝐻
)

1/2

, (1)
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where 𝜆 is the DPUT rate in units of the product and 𝑃, 𝐻
are the ordering and holding costs, respectively; see Yan and
Wang [12] andMin et al. [13]. However, as mentioned, DPUT
is a RV. Then, 𝜆 given in (1) must be calculated as the mean
(expected value) of the DPUT distribution that adequately
fits the data. Specifically, let 𝐷

𝑡
be a RV corresponding to

the DPUT at time 𝑡, forming a sequence of independent
and identically distributed RVs with mean E(𝐷

𝑡
) = 𝜆

and variance Var(𝐷
𝑡
) = 𝜎

2

𝐷
. In addition, let 𝐿 be a RV

corresponding to the LT between the ordering of a product
and its delivery (expressed in time units) with mean E(𝐿) =
𝜇
𝐿
and variance Var(𝐿) = 𝜎2

𝐿
. Then, the LTD is given by

𝑋 =

𝐿

∑
𝑡=1

𝐷
𝑡
, (2)

with probability density function (PDF) 𝑓
𝑋
(⋅) and whose

expectation and variance are, respectively, defined as

𝜇 = E (𝑋) = 𝜇
𝐿
𝜆,

𝜎
2
= Var (𝑋) = 𝜎2

𝐿
𝜆
2
+ 𝜇
𝐿
𝜎
2

𝐷
.

(3)

The ROP can be computed from 𝜇 expressed in (3). However,
to be protected from randomness of the LTD, it is necessary
to include a SS, which allows the ROP to become

𝑟 = 𝜇 + 𝑘𝜎, (4)

where 𝜇, 𝜎 are defined in (3) and 𝑘 is the safety factor (SF) or
number of standard deviations (SDs) 𝜎 of the LTD. Note that
although the (𝑄, 𝑟)model is based on (1) and (4), it is possible
to see that 𝑟 is obtained by 𝑘.Thus, we refer to the (𝑄, 𝑟)model
as (𝑄, 𝑘) thereafter.

The expected TC of the inventory is given by

𝐶 (𝑄, 𝑘) = 𝐻(
𝑄

2
+ 𝑘𝜎)

+
𝜆

𝑄
(𝑃 + 𝑆∫

∞

𝜇+𝑘𝜎

𝑓
𝑋
(𝑢) 𝑑𝑢) ,

(5)

where 𝑄 (in units of the product) is given in (1) and 𝜇, 𝑘, and
𝜎 are given in (4); 𝐻 is the holding cost (in $ per $ per unit
of time); 𝑃 is the ordering cost (in $ per each replenishment
order placed); 𝑆 is the shortage cost (in $ incurred whenever
a stock-out occurs); and 𝑓

𝑋
(⋅) is the PDF of the LTD given in

(2). In order to minimize the expected TC defined in (5), we
optimize the indicator 𝑄 given in (1) altogether with 𝑘 given
in (4).

2.2. Demand Distributions. Notice that it is necessary to
specify the LTD distribution to determine the SS given in (4),
which allows the SF to be established; see Porras and Dekker
[4]. In order to facilitate the calculation of the SF, the LTD has
been traditionally modeled with the normal distribution; see
Silver and Peterson [49]. Thus, the SF 𝑘 for a specific service
level can be obtained fromapercentile of the standard normal
distribution, denoted by N(0, 1). However, as mentioned,
various studies criticize the normality assumption.Therefore,

the use of the normal distribution to determine ROP and SS
given in (4) is questionable, leading to possible stock shortage
or excess.

Silver [50] pointed out that in most models leading
to inventory management decisions some assumptions are
made, often in an implicit way. The effects of these assump-
tions on costs and service levels should be taken into account.
Themost common ones are (i) to assume a demand distribu-
tion (e.g., normal) and (ii) to suppose that the distribution
parameters are known (e.g., the mean and SD) or estimated
from the demand data. Lau [30] presented a model for com-
puting EOQs and SSs given in (1) and (4), respectively, using
the first four moments, that is, mean, variance, third moment
reflecting skewness, and fourthmoment reflecting kurtosis of
any given LTD distribution. Lau [30] also pointed out the risk
of misleading decisions regarding ROP and customer service
level when one considers a normally distributed LTD. The
95th percentile of the distribution is often used to set service
levels. Next, we present some mathematical features for the
three LDT distributions to be considered in this study, that is,
the BS, gamma, and normal models.

The Normal Distribution. A RV 𝑋 following a normal distri-
bution with mean E(𝑋) = 𝜇 ∈ R and variance Var(𝑋) = 𝜎2 >
0 is denoted by 𝑋 ∼ N(𝜇, 𝜎2), where “∼” means “distributed
as”. In this case, PDF, cumulative distribution function
(CDF), and (QF) quantile function of𝑋 are, respectively,

𝑓
𝑋
(𝑥) =

1

(2𝜋𝜎2)
1/2

exp(−1
2

(𝑥 − 𝜇)
2

𝜎2
) , 𝑥 ∈ R,

𝐹
𝑋
(𝑥) = Φ(

𝑥 − 𝜇

𝜎
) , 𝑥 ∈ R,

𝑥 (𝑞) = 𝑧 (𝑞) 𝜎 + 𝜇, 0 < 𝑞 < 1,

(6)

where Φ(𝑧) = ∫𝑧
−∞
𝜙(𝑢)𝑑𝑢 and 𝑧(𝑞) = Φ−1(𝑞), for 0 < 𝑞 < 1,

with

𝜙 (𝑧) =
1

(2𝜋)
1/2

exp(−1
2
𝑧
2
) , 𝑧 ∈ R, (7)

and Φ−1(⋅) being the N(0, 1) inverse CDF or QF. In addition,
the coefficients of variation (CV), skewness or asymmetry
(CS), and kurtosis (CK) of 𝑋 ∼ N(𝜇, 𝜎2) are, respectively,

CV (𝑋) = 𝜎
𝜇
,

CS (𝑋) = 0,

CK (𝑋) = 3.

(8)

The BS Distribution. A RV𝑋 following a BS distribution with
shape 𝛼 > 0 and scale 𝛽 > 0 parameters is denoted by
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𝑋 ∼ BS(𝛼, 𝛽). In this case, the PDF, CDF, and QF of 𝑋 are,
respectively,

𝑓
𝑋
(𝑥) =

1

(2𝜋)
1/2

exp(− 1

2𝛼2
𝜉
2
(
𝑥

𝛽
))

(𝑥 + 𝛽)

2𝛼𝛽1/2𝑥3/2
,

𝑥 > 0,

𝐹
𝑋
(𝑥) = Φ(

1

𝛼
𝜉(
𝑥

𝛽
)) , 𝑥 > 0,

𝑥 (𝑞) = 𝐹
−1
(𝑞)

= 𝛽(
𝛼𝑧 (𝑞)

2
+ ((

𝛼𝑧 (𝑞)

2
)

2

+ 1)

1/2

)

2

,

0 < 𝑞 < 1,

(9)

where 𝜉(𝑦) = 𝑦
1/2
− 𝑦
−1/2

= 2 sinh(log(𝑦1/2)), for 𝑦 > 0,
Φ(⋅) is the N(0, 1) CDF, 𝑧(𝑞) is the N(0, 1) QF, and 𝐹−1(⋅) is
the inverse CDF of 𝑋. Note that 𝑥(0.5) = 𝛽; that is, 𝛽 is also
the median or 50th percentile of the distribution. The mean,
variance, CV, CS, and CK of𝑋 ∼ BS(𝛼, 𝛽) are, respectively,

E (𝑋) = 𝛽(1 + 𝛼
2

2
) ,

Var (𝑋) = 𝛽2𝛼2 (1 + 5𝛼
2

4
) ,

CV (𝑋) =
𝛼 (4 + 5𝛼

2
)
1/2

(2 + 𝛼2)
,

CS (𝑋) =
4𝛼 (6 + 11𝛼

2
)

(4 + 5𝛼2)
3/2

,

CK (𝑋) = 3 +
6𝛼
2
(40 + 93𝛼

2
)

(4 + 5𝛼2)
2

.

(10)

In addition, the RVs𝑋 ∼ BS(𝛼, 𝛽) and𝑍 ∼ N(0, 1) are related
by

𝑋 = 𝛽(
𝛼𝑍

2
+ ((

𝛼𝑍

2
)

2

+ 1)

1/2

)

2

,

𝑍 =
1

𝛼
𝜉(
𝑋

𝛽
) .

(11)

Also, note that 𝑊 = 𝑍
2 follows a chi-squared distribution

with one degree of freedom. The BS distribution holds the
scale and reciprocation properties; that is, (i) 𝑐𝑋 ∼ BS(𝛼, 𝑐𝛽),
with 𝑐 > 0, and (ii) 1/𝑋 ∼ BS(𝛼, 1/𝛽), respectively.

The Gamma Distribution. A RV 𝑋 following a gamma dis-
tribution with shape 𝛼 > 0 and scale 𝛽 > 0 parameters is

denoted by𝑋 ∼ Gamma(𝛼, 𝛽). In this case, the PDF andCDF
of𝑋 are, respectively,

𝑓
𝑋
(𝑥) =

𝛽
𝛼

Γ (𝛼)
𝑥
𝛼−1 exp (−𝛽𝑥) , 𝑥 > 0,

𝐹
𝑋
(𝑥) =

𝛾 (𝛼, 𝛽𝑥)

Γ (𝛼)
, 𝑥 > 0,

(12)

where Γ(⋅) and 𝛾(⋅) stand for the usual and incomplete
gamma functions, respectively. The corresponding QF given
by 𝑥(𝑞) = 𝐹−1(𝑞), for 0 < 𝑞 < 1, must be obtained by solving
this equation with an iterative numerical method. The mean,
variance, CV, CS, and CK of𝑋 are, respectively,

E (𝑋) = 𝛼
𝛽
,

Var (𝑋) = 𝛼

𝛽2
,

CV (𝑋) = 1

𝛼1/2
,

CS (𝑋) = 2

𝛼1/2
,

CK (𝑋) = 3 + 6
𝛼
.

(13)

The gamma distribution also shares the scale property; that
is, 𝑐𝑋 ∼ Gamma(𝛼, 𝑐𝛽), with 𝑐 > 0.

3. Assessing the Impact of
Different Distributions

In this section, we introduce our simulation scenario and
formulate the stochastic programming used to optimize the
expected TC associated with the (𝑄, 𝑘) model. Then, we
discuss the DE algorithm, which allows us to solve the
problemof stochastic programming, and provide a numerical
study performed with the R software. We evaluate how
different LTDdistributions (BS, gamma, andnormal) interact
with different inventory indicators (demand, cost, and LT)
and their underlying EOQs and SSs. We assess under what
circumstances a distributional assumption is preferable to the
other one in terms of the expected TC.

3.1. Scenario of the Simulation Study. Assume BS, gamma,
and normal distributions for the LTD. Then, fix values for
the parameters of these distributions by considering values
for means and SDs of DPUT and LT generated from uniform
distributions. Now, generate holding, ordering, and shortage
costs also from uniform distributions. This allows us to
establish the expected TC to be minimized. Ten thousand
(10000) different simulated scenarios of means and SDs for
DPUT and LT as well as holding, ordering, and shortage
costs are generated using an R package called stats. The
values of these uniformly distributed inventory indicators
used to build the scenarios are presented in Table 1. They
were chosen based on values proposed in selected papers
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Table 1: Range of thementioned uniformly distributed indicator for
simulations.

Indicator Minimum Maximum
DPUT mean (units/day) 80 120
DPUT SD (units/day) 3 30
LT mean (in days) 1 5
LT SD (in days) 0.50 2.00
Holding cost
($/unit/day) 0.00 0.68

Ordering cost ($/order) 17 60
Shortage cost
($/shortage) 0 100

focused on managerial and industrial applications compiled
by Wanke [5]; see Table 2 in this reference for more details
about values that are frequently used to generate simulation
scenarios in inventory management problems. A discussion
about this can be found in Wanke [51].

3.2. Stochastic Programming. Once the values for the inven-
tory indicators are defined and the distributional assumptions
(BS, gamma, and normal) for the LTD established, stochastic
programming is performed on the expected TC function
given in (5); see Namit and Chen [3]. According to the values
provided in Table 1, we assume values for means and SDs of
the DPUT and LT, as well as for the holding, ordering, and
shortage costs, to be uniformly distributed in the objective
function corresponding to the expected TC given in (5). The
decision variables of the programming are 𝑄 and 𝑘 given in
(1) and (4), respectively, whereas 𝜆, 𝜎

𝐷
, 𝜇
𝐿
, 𝜎
𝐿
, 𝐻, 𝑃, and 𝑆

are given from (5). Therefore, our optimization problem of
the expected TC can be visualized like a model of stochastic
programming formulated as

Minimize 𝑍 = 𝐶 (𝑄, 𝑘)

Subject to: 𝑄 > 0, 𝑘 > 0,

𝜆 ∼ U (80, 120) ,

𝜎
𝐷
∼ U (3, 30) ,

𝜇
𝐿
∼ U (1, 5) ,

𝜎
𝐿
∼ U (0.50, 20) ,

𝐻 ∼ U (0.00, 0.68) ,

𝑃 ∼ U (17, 60) ,

𝑆 ∼ U (0, 100) .

(14)

The problem of stochastic programming formulated in
(14) is aimed (i) at identifying the most adequate inventory
policy for each of the distributional assumptions and (ii) at
minimizing the expected TC. The optimized problem can
provide useful information for academics and practitioners
on how these assumptions interact with product, operation,

and demand characteristics. To solve the problem of stochas-
tic programming formulated in (14), we use the DE algorithm
detailed in the next section.

3.3. Differential Evolution. DE is a member of the family
of genetic algorithms, which mimic the process of natural
selection in an evolutionary manner; see Holland [52]. A
genetic algorithm solves optimization problemswith biology-
inspired operators of crossover, mutation, and selection,
generating successive populations of individuals (solutions
or generations). Then, the DE algorithm optimizes problems
by evolving a population of candidate solutions employing
the mentioned operators. The DE algorithm uses floating-
point techniques for obtaining the solutions and arithmetic
operations in their mutation, in contrast to classic genetic
algorithms. In addition, the DE algorithm finds the global
optimum of the objective function, which is not required to
be either continuous or differentiable; seeThangaraj et al. [46]
and Mullen et al. [53].

The DE algorithm has also been used to optimize prob-
lems that arise in inventory management, such as joint
replenishment, replenishment coordination, and inventory
location-allocation; see Qu et al. [54, 55] andWang et al. [56].
In the present study, the problem of stochastic programming
formulated in (14) is solved with the DE algorithm, which
allows us to find the optimal values of𝑄 and 𝑘 that minimize
the expected TC function 𝐶(⋅) given in (5), for 10000
simulated scenarios.

In what follows, we first discuss the DE algorithm used
in our research work; see Storn and Price [47] and Price et al.
[48] formore details about the algorithm.Then, we sketch the
content of an R package called DEoptim, which implements
the DE algorithm and was first published on CRAN in 2005.
Since becoming publicly available, it has been used by several
authors to solve optimization problems arising in diverse
domains. We refer interested readers to Ardia et al. [57] and
Mullen et al. [53] for a detailed description of the package.

Let 𝑁 be the number of members y ∈ R𝑑 (tuning
parameter vector) in the population, where 𝑑 denotes the
dimension of the vector y, in our case given by y = (𝑄, 𝑘)⊤ ∈
R2. The DE algorithm needs a starting population, which
is obtained by sampling the objective function at multiple
randomly chosen initial points (generation or solution zero
(0)) for 𝑄 and 𝑘. Before the population is initialized, both
lower and upper bounds for each tuning parameter must
be specified. Parameter bounds establish the domain from
which the 𝑁 vectors at the generation 0 are chosen. To
establish the generation 0, 𝑁 guesses for the optimal value
of y must be provided, using either random values within a
range defined by the practitioner or values fixed by him/her.
Each generation creates a new population from the current
population members {y

𝑗,𝑔
, 𝑗 = 1, . . . , 𝑁, 𝑔 = 1, 2, . . .},

where 𝑗 indexes the tuning parameter vector thatmake up the
population and 𝑔 indexes the generation.The new generation
is obtained using differential mutation of the population
members. In our research, 𝑁 = 10000 denotes the number
of simulated scenarios and y denotes the tuning parameters
for the lot size and the number of demand SDs. An initial
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mutant parameter vector {k
𝑗,𝑔
, 𝑗 = 1, . . . , 𝑁, 𝑔 = 1, 2, . . .}

is created by choosing three members of the population 𝑦
𝑗
1
,𝑔
,

𝑦
𝑗
2
,𝑔
, and 𝑦

𝑗
3
,𝑔
, at random. Then, the elements of the initial

mutant parameter vector k
𝑗,𝑔
= (V
𝑗
𝑖
,𝑔
) are generated by

V
𝑗
𝑖
,𝑔
= 𝑦
𝑗
1
,𝑔
+ 𝜁 (𝑦

𝑗
2
,𝑔
− 𝑦
𝑗
3
,𝑔
) , 𝑖 = 1, . . . , 𝑑, (15)

where 𝑑 = 2 in our case and 𝜁 is a positive scale factor
whose effective value is usually less than one (usual default:
𝜁 = 0.8). After the first mutation operation, it continues
until 𝑘 mutations have been made or until certain crossover
probability (CP) in [0, 1] is less than 𝑢, where 𝑢 is a random
number from the uniform distribution in [0, 1]. CP controls
the fraction of the tuning parameter values that are copied
from the mutant and approximates the probability that a
parameter value is inherited from the mutant, since at least
one mutation always occurs. Mutation is applied in this way
to each member of the population.

Calculations in our simulation study were performed
with the aid of the DEoptim package, which consists of the
core function DEoptim()whose arguments are as follows:

(i) fn is the function to be minimized, which must have
as its first argument the vector of real-valued param-
eters to optimize and return a scalar real result.

(ii) lower, upper correspond to two vectors establishing
scalar real lower and upper bounds on each tun-
ing parameter to be optimized; the 𝑖th element of
the lower and upper vectors corresponds to the 𝑖th
parameter; the implementation searches the global
optimum of fn between lower and upper.

(iii) . . . allows the user to pass additional arguments to the
function fn.

(iv) control is a list whose default value is the return
value of DEoptim.control() but whose main ele-
ments are interpreted as follows:

(a) VTR specifies the global minimum of fn if it is
known or if you wish to cease optimization after
having reached a certain value (default = -Inf).

(b) strategy defines the differential evolution
strategy used in the optimization procedure,
described in detail by Mullen et al. [53].

(c) NP is the number of population members
(default = 10 × 𝑑 or 50), in our case denoted
by𝑁.

(d) bs: if bs is FALSE, then every mutant is tested
against a member in the previous generation,
and the best value survives into the next gen-
eration; if bs is TRUE, then the old generation
and NP mutants are sorted by their associated
objective function values, and the best NP vec-
tor proceeds into the next generation (default
= FALSE).

(e) itermax is the maximum number of itera-
tions (i.e., population generations) to be allowed
(default = 200).

Table 2: Summary of the simulations for thementioned distribution
and management indicator.

Indicator Distribution
Gamma Normal BS

Sum of TCs (in $) 205097.63 209175.49 202134.31
Sum of EOQs 767449.00 764816.00 762843.00
Sum of SSs 41166.66 53425.51 38103.58
Sum of average
inventory level 424891.16 435833.51 419525.08

Table 3: Number and percentage of times that the indicated dis-
tribution yielded minimal TC for the simulations.

Distribution Number % Average CV of the LTD
BS 8160 81.60 0.56
Normal 1780 17.80 0.34
Gamma∗ 60 0.60 0.44
∗Number of cases where numeric integral for computing the BS CDF
diverged.

(f) CR is the CP from the interval [0, 1] (default =
0.9).

(g) F is the stepsize from interval [0, 2], in our case
denoted by 𝜁 (default = 0.8).

(h) trace, initialpop, storepopfrom,
storepopfreq, checkWinner,
and avWinner are other elements of the
list control, which are described in detail by
Mullen et al. [53]; see also Price et al. [48].

The return value of the function DEoptim() is a member
of the S3 class DEoptim. Members of this class have a plot
and a summary that allow us to analyze the optimizer’s
output. In our application of the DEoptim package, decision
variables 𝑄 and 𝑘 were lower-bounded at zero. As regards
the list of tuning parameters used in our research, the default
values for the DEoptim package were considered.

3.4. Numerical Results and Discussion. The underlying idea
of performing a sensitivity analysis on the testing variables
related to product, demand, and operational characteristics
is to discriminate between groups where the three distribu-
tional assumptions led to minimal TCs. Table 2 summarizes
the numerical experiments conductedwith the R software for
10000 simulated scenarios using the DE algorithm. Note that
the BS distribution yields, on average, smaller TCs, EOQs,
SSs, and, therefore, smaller inventory levels, in comparison
to the normal and gamma assumptions.

Table 3 depicts the adequacy of the distributional
assumption built upon the empirical evidence presented in
Silver et al. [15]. We conclude that the BS assumption for the
LTD was more adequate in 81.60% of cases in terms of TCs
and inventory levels; moreover, it prevails in circumstances
of a higher LTD CV in comparison to gamma and normal
assumptions, that is, a CV of 0.56 for the BS distribution
against CVs of 0.44 and 0.34 for the gamma and normal
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distributions, respectively. It is worth mentioning that, due
to the numeric integral for computing the BS CDF, which
diverged in less than 1% of cases, the gamma distribution was
a preferable assumption in terms of TCs and inventory levels
in such cases.

4. Conclusions

This paper has assessed how different demand distributions
during lead-time interact with relevant characteristics of the
product.We have considered the choice of the optimal inven-
tory policy in terms of total costs of the inventory manage-
ment. Differently frommost previous studies on the topic that
exclusively explored the effects of one single distributional
assumption, this paper also analyzed its adequacy in light
of some inventory management key elements for decision-
making, such as cost, demand, and lead-time. It was shown
that the Birnbaum-Saunders distribution outperformed the
normal and gamma assumptions with respect to demand
uncertainty during the lead-time. The contributions of this
paper are on both the academic and the practical sides.
Departing from what was found in previous studies, the
obtained results provide a guidance on the selection of the
most appropriate distributional assumption for the demand
during the lead-time. Specifically, while the Birnbaum-
Saunders distribution is more adequate to handle demand
during lead-time with high coefficients of variation, the
gamma and the normal assumptions should be restricted to
well-behaved patterns.This paper also can present a practical
contribution by means of numerical analyses conducted with
the aid of a computational code developed for such purposes
in the R statistical software.

With respect to future research endeavors, one possible
extension of this work could be to analyze the results pre-
sented here in terms of inventory management in decentral-
ized systems.The basic idea would be to assess, via numerical
studies, the extent to which the decision to pool inventories is
affected by different distributional assumptions and by their
levels of skewness and kurtosis. In addition, in practical case
studies, the usage of diagnostic statistical methods to detect
influential data of demand or LT can be studied for this type
of inventory models. In that case, demand distributions that
provide parameter estimators to be robust to atypical data
of demand must be considered; see, for example, Paula et al.
[40].
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