Hindawi Publishing Corporation

International Journal of Reconfigurable Computing
Volume 2011, Article ID 648483, 21 pages
doi:10.1155/2011/648483

Research Article

PCIU: Hardware Implementations of an Efficient Packet
Classification Algorithm with an Incremental Update Capability

0. Ahmed, S. Areibi, K. Chattha, and B. Kelly

School of Engineering, University of Guelph, Guelph, ON, Canada N1G 2W1

Correspondence should be addressed to S. Areibi, sareibi@uoguelph.ca

Received 6 May 2011; Accepted 14 July 2011

Academic Editor: Patrick R. Schaumont

Copyright © 2011 O. Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Packet classification plays a crucial role for a number of network services such as policy-based routing, firewalls, and traffic billing,
to name a few. However, classification can be a bottleneck in the above-mentioned applications if not implemented properly and
efficiently. In this paper, we propose PCIU, a novel classification algorithm, which improves upon previously published work. PCIU
provides lower preprocessing time, lower memory consumption, ease of incremental rule update, and reasonable classification time
compared to state-of-the-art algorithms. The proposed algorithm was evaluated and compared to RFC and HiCut using several
benchmarks. Results obtained indicate that PCIU outperforms these algorithms in terms of speed, memory usage, incremental
update capability, and preprocessing time. The algorithm, furthermore, was improved and made more accessible for a variety
of applications through implementation in hardware. Two such implementations are detailed and discussed in this paper. The
results indicate that a hardware/software codesign approach results in a slower, but easier to optimize and improve within time
constraints, PCIU solution. A hardware accelerator based on an ESL approach using Handel-C, on the other hand, resulted in a

31x speed-up over a pure software implementation running on a state of the art Xeon processor.

1. Introduction

Packet classification is the process of matching an incoming
packet to rules in the classifier, and accordingly identifying
the type of action to be performed on the packet. The classi-
fier, also known as a policy database, is a collection of rules
or policies. Each rule specifies a class (flow) that the arriving
packet may belong to based on some criteria in its header. An
action is associated with each rule in the rule set. The packet
header has F fields, which can be used in the classification
process. Each rule has F components which identifies all pos-
sible combination of packet header that match the rule. Ac-
cordingly, a packet will belong to the rule if and only if all the
fields in that packet belong to the corresponding field in the
rule. Figure 1 depicts the general packet classification system.

There are a number of network services that require
packet classification, such as routing, policy-based routing,
rate limiting, access control in firewalls, virtual bandwidth
location, load balancing, provision of differentiated qualities
of service, and traffic billing. In each case, it is necessary to
determine which flow an arriving packet belongs to, for

example, whether to forward or filter (firewall), where to
forward the packet (router), and the class of service it should
receive (QoS), or how much should be charged for trans-
porting it (traffic billing). The main bottleneck of the above
applications is the classification stage. Therefore, packet clas-
sification is one of the most important issues to deal with in
the design of network devices.

Most popular classifiers deal with a certain field in the
packet header to define the flow. For example, it could de-
pend on the values of source and destination IP addresses
or particular transport port numbers. Otherwise, it could
be simply defined by a destination prefix and range of port
values. Sometimes, even the protocol type could be used to
define a flow. Our work focuses mainly on the problem of
identifying the class to which a packet belongs.

The main contribution of this paper can be summarized
in introducing a novel and efficient algorithm [1] which has
high scalability, hardware/software implementation capa-
bility [2], incremental update, reasonable memory usage,
and supports a high-speed wire link. The main difference
between [1] and this publication is introducing detailed



Rule set

Input Search

packet engine

International Journal of Reconfigurable Computing

Flow ID
or
Class ID

If match

exists

F1Gurk 1: The general packet classification system.

explanation of the proposed technique, fine tuning of param-
eters, and hardware implementations of the packet classifi-
cation algorithm. Two novel hardware accelerators are pre-
sented in this paper. The first is based on a hardware/software
codesign approach while the second is based on a pure RTL
implementation using Handel-C. In the hardware/software
codesign approach an optimized hardware accelerator was
designed and attached to a soft core.

To the best of our knowledge, the PCIU is the first pro-
posed algorithm that can accommodate efficient incremental
update for the rule set. Another contribution is introducing
a hardware/software codesign and using an ESL approach
coprocessor of the PCIU algorithm which achieves a speed-
up of 22x over a state-of-the-art general purpose processor.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the packet classification
problem. Section 3 briefly lists the most important work
published in the field of packet classification. In Section 4,
the algorithm and the main constraints in implementing it
will be presented. All stages from preprocessing, classifica-
tion, and updating are also described in detail. Comparisons
with other published algorithms are presented in Section 5.
A hardware/software codesign implementation of PCIU
along with a coprocessor implementation using Handel
C are described in Section 6. Section 7 briefly compares
various implementations of the PCIU algorithm with pure
software implementation running on a general purpose
processor. The paper concludes in Section 8 along with
future directions.

2. Background

An example of a five-rule classifier is shown in Table 1. Each
rule contains five fields. The first two fields represent the
network layer address (source IP and destination IP), and
the size of each is 32 bits. The next two fields of size 16 bits
are the transport layer address (source and destination port).
The last field is the packet protocol field. The IP address and
the protocol are present in either prefix or exact format for
matching, yet the port is in range format. The IP address
parts of the rule are represented in the following format
IP/mask.

An IP address such as 0.83.4.0/22 can be converted to its
range equivalent by using the mask of 22 bit or 255.255.252.0

to produce the low part of the range (0.83.4.0). The high part
of the range can be generated using the following formula:
High = Low OR 23 Mask Thuys, the IP 0.83.4.0/22 can be
converted to 0.83.4.0 as a low part, and 0.83.7.255 as the high
part. When the mask equals 32, the IP is represented in exact
format, which translates to a match of the IP. All fields which
are in prefix or exact format in Table 1 can be easily converted
to a range of high and low fields using the above formula.

Table 2 shows the result of converting the five-rule clas-
sifier from different representation to the range format. An
incoming packet belongs to a certain flow when all the fields
of the packet are in the range of the flow’s rule(s). In other
words, each rule has F components (five in our example).
The ith component of rule R, referred to as R[i], is a regular
expression on the ith field of the packet header. A packet P is
said to match a particular rule R if and only if for every ith
field of the header P field is in the range of R[].

A trivial software classification algorithm implementa-
tion can be described as accepting a packet, evaluating each
rule sequentially, until a rule is found that matches all the
fields in a packet’s header. However, the search need not
be terminated, since the arriving packet might match more
than one rule, and the best match [3] has to be found. It is
important to note that the best match implies the rule with
the shortest range among all matched rules. In the case of
multiple matches, the best match rule will be chosen. There-
fore, the classification time is constant for all different com-
bination of the arriving packets and depends on the number
of rules. This method has the most efficient memory usage,
because it needs simple preprocessing. Moreover, all different
types of classifier updating are straightforward without the
need to reboot the device. However, the main disadvan-
tage is the poor scalability. On the other hand, a hard-
ware implementation could employ a ternary CAM (con-
tent addressable memory) [4]. Ternary CAMs store words
with three-valued digits: 0, 1 or X (wildcard). The rules
are stored in the CAM array in the order of decreasing
priority. Given a packet header to classify, the CAM performs
a comparison against all of its entries in parallel, and a
priority encoder selects the best matching rule [4]. While
CAMs are efficient and flexible, they are currently suitable
only for small-size classifiers, since they are too expensive
and consume too much power for large classifiers. Further-
more, some operators are not directly supported and need



International Journal of Reconfigurable Computing

TaBLE 1: A five-rule classifier.

No. IP (64 bits) Port (32 bits) Protocol (8 bits)
Source (32 bits) Destination (32 bits) Source (16 bits) Destination (16 bits)
1 0.0.0.0/0 0.0.0.0/0 0:65535 21:21 0/ff
2 0.83.1.0/24 0.0.4.6/32 0:65535 20:30 17/ff
3 0.83.4.0/22 0.0.0.0/0 0:65535 21:21 0/0
4 0.0.9.0/24 0.0.0.0/0 0:65535 0:65535 0/ff
5 0.83.0.77/32 0.0.4.6/32 0:65535 0:65535 17/ff
TaBLE 2: A five-rules classifier in range format.
1P (64 bits) Port (32 bits) Protocol (8 bits)
Source Destination Source Destination
No. L H L H L H L H L H
1 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255 0 65535 21 21 0 0
2 0.83.1.0 0.83.1.255 0.0.4.6 0.0.4.6 0 65535 20 30 17 17
3 0.83.4.0 0.83.7.255 0.0.0.0 255.255.255.255 0 65535 21 21 0 255
4 0.0.9.0 0.0.9.255 0.0.0.0 255.255.255.255 0 65535 0 65535 0 0
5 0.83.0.77 0.83.0.77 0.0.4.6 0.0.4.6 0 65535 0 65535 17 17

preprocessing, so the memory array may be used ineffi-
ciently.

3. Related Work

According to [5], packet classification algorithms can be clas-
sified into four categories: (a) exhaustive search, (b) decision
tree (c) decomposition and (d) tuple space, as shown in
Figure 2 with four quadrants. The position of an algorithm
within a quadrant is irrelevant. The performance of an
algorithm does not rely on its position within any quadrant.

The researchers in [3] proposed a very interesting decom-
position-based algorithm called recursive flow classification
(RFC), which takes advantage of the considerable redundan-
cy in real network filter sets. The RFC maps S bits in the
packet header to T bits of precomputed classID (T < )
based on real filter rules. However, the results will not hold
if the characteristics of the filter set change in the near
future. The authors assumed that the number of distinct
overlapping regions is way smaller than the worst case which
is O(nf), where n is the number of rules with dimension
F. In addition, since the scheme requires extensive precom-
putation even with the normal case, it is assumed the filter
changes infrequently. This is nonpractical with session-based
dynamic updates. The memory usage grows exponentially
with the number of rules, as they tend to have a high number
of distinct overlapping regions.

The original idea of using bit vector algorithm proposed
in [6] was improved in [7] by introducing the aggregated bit-
vector algorithm (ABV) using recursive bit aggregation and
rule set rearrangement to reduce memory access. It is based
on the assumption that the number of rules that a packet will
match in a real filter database is inherently small. The scheme
reduces the number of memory accesses by recursively

generating an aggregation bit for every X bit in the original
bit vector. The bit map values need to be examined only if
the aggregation bit is set. The number of memory accesses
can be further reduced by rearranging the filter rules such
that multiple filters which match a specific packet are placed
close to each other. As a result, multiple matching filters
can be placed in the same aggregation group. However, as
the wildcards in the filter rules increase, a further reduction
in memory accesses is achieved. Also, the use of Grid of
Tries has two drawbacks. Firstly, the worst case classification
might increase memory usage dramatically. Secondly, the
classification time can vary depending on the arriving packet
value which changes the path inside the Grid of Tries.

The authors of HiCut [8] and HyperCut [9] tend to
organize the rule of the classifier in a decision tree structure.
Classification is performed by traversing the tree until a leaf
node is identified, which stores a small number of rules. A
linear search is then performed among these rules to find
the match. HyperCut [9] minimizes the depth of the decision
tree by splitting it based on multiple fields as opposed to the
single field in HiCut [8]. Due to the amount of preprocessing
required, neither algorithm supports incremental updates. In
addition, both of these algorithms have a variable range of
classification time per arriving packet.

By combining a rules set statistical usage and multiple
decision trees based on ternary string representation, the
authors in [10] built a modular packet classification scheme.
The most frequently accessed rules are placed near the root
of the search tree. Similar to HiCut, it also requires a linear
search at the leaf nodes of the decision tree.

Several works on increasing the storage efficiency of rule
sets and reducing power consumption have been published
in [11]. Pure RTL hardware approaches have been proposed
by many researches including [12-16]. A Dual port IP



International Journal of Reconfigurable Computing

Exhaustive search

Decomposition

D9
EGT | Modular ¥ HiCuts fiyperCuty (_B-TCAM

Grid of Tries

Decision tree

Pruned
tuple spac
Tuple space
Rectangle
search

Conlflict-free
rectangle
search

Tuple space

F1GURrE 2: Classification of the PCIU algorithm.

Lookup (DuPI) SRAM-based architecture has been proposed
by the authors in [12]. By using a single Virtex-4, DuPI can
support a routing table of up to 228 K prefixes. Moreover,
it maintains packet input order, and supports inplace non-
blocking route updates. However, this architecture is suitable
for single dimension classification.

A five dimension memory-efficient packet classification
was proposed in [13]. It is based on a memory-efficient
decomposition-based packet classification algorithm, which
uses multilevel Bloom Filters to combine the search results
from all fields. The authors used ClassBench [14] to evaluate
their work with a small rule set less than 4 k. In [15], a scal-
able high throughput firewall using an FPGA was proposed.
The Distributed Crossproducing of Field Labels (DCFL) is
used on the firewall application and an improvement has
been added to DCFL to be Extended (DCFLE). A Xilinx
Virtex 2 Pro FPGA is used for the implementation, using a
memory intensive approach, as opposed to the logic intensive
one, so that on-the-fly update is feasible. A throughput of
50 MPPS was achieved for a rule set of 128 entries. They also
predict the throughput can be 24 Gbps when the design is
implemented on Virtex-5 FPGAs. Another interesting archi-
tecture has been proposed in [16]. The authors proposed
a memory-efficient FPGA-based classification engine called
dual stage bloom filter classification engine (2sBFCE). This
design can support 4 K rules in 178 K bytes memories. How-
ever, the design takes 26 clock cycles on average to classify a
packet, resulting in low throughput of 1.875 Gbps on average.

The authors in [17] discuss various packet classification
algorithms by grouping the algorithms into several categories
depending on their approaches and characteristics. Most
packet classification algorithms suffer from the following
short comings. First, they are generally slow because of the
number of memory accesses required. For example, the

“binary search on length” method proposed by [18] requires
on average 18 — 67 memory accesses for rule set of size
5000. Also, packet classification algorithms generally build
on certain features of a special kind of rules set, which allows
them to perform well on only that type of rule set. For
example, RFC [3] assumes that the number of distinct over-
lapping regions are slightly low even with high number of
rule set. Finally, almost all the proposed algorithms need
considerable amount of pre-processing. Therefore, none of
the above algorithms work well with incremental updates,
which is a key feature in our proposed algorithm to further
support session-based packet classification.

4. Proposed Algorithm

Despite the fact that the packet classification problem has
been studied intensively by many researchers [4, 7, 8, 18], we
believe that solutions offered are far from optimal. A near
optimal classifier should exhibit the following features.

(1) It has to consume memory equal to or less than the
original rule set size.

(2) It has to perform rule updating without the need of
resetting or powering down the network device.

(3) Its classification speed has to be higher than the wire
link speed.

(4) Its pre-processing time has to be reasonable and
should not require too much processing effort.

Based on the taxonomy of packet classification algorithms
introduced by [5], the PCIU is considered to be a decompo-
sition or divide and conquer approach as shown in Figure 2.



International Journal of Reconfigurable Computing

Rule no.

No. 5
No. 4
No. 3
No. 2

No. 1

GNO = {0-19, 30-255}, RL0{4, 5}, GN1 = {20, 22-30}, RL1{2, 4, 5}, GN2 = {21}, RL2{1, 2, 3, 4, 5}

F1GURE 3: An Example of processing chunk no. 10 in the rule set of Table 1.

4.1. Specifications and Features. The main features of our
proposed algorithm can be summarized as follows.

(i) The algorithm is fast enough to operate at 40 Gb/s or
even higher. Moreover, it allows matching on arbitra-
ry fields, including link layer, network layer, transport
layer and “in some exceptional cases” the application
layer headers without any effect on its performance.

(i) The algorithm is suitable for implementation in both
hardware and software.

(iii) The memory requirements of the algorithm are not
prohibitively expensive.

(iv) The algorithm scales well in terms of both memory
and speed with the size of the classifier.

(v) The algorithm is capable of updating the classifier
without the need to reboot the device.

(vi) The algorithm has minimum pre-processing time
that does not change dramatically by changing the
rule set.

4.2. The Preprocessing Phase. The basic idea is based on the
simple concept that there is a redundancy in the rule set in
case it is chopped to several chunks. We propose to have a
five-dimension packet classification problem similar to that
in Table 1. A hierarchical approach is used where we decom-
pose it into subproblems and then combine the result at the
end of the classification process.

The main idea of the algorithm [1] can be summarized
in the following steps.

Step 1. Convert the rule set from all the different representa-
tions to a range representation as shown in Table 2.

After completion of the first step, each of the five dimen-
sions (or fields) in the rule set has upper and lower ends of
its value.

Step 2. Divide each of the five dimensions to 8-bit chunks.
Since the rule size is 104 bits, the total number of chunks
is thirteen. The range value of each chunk; is filled in the

range (0 to 255). For each chunk, a lookup table of size 28
is assigned.

Step 3. Generate a group of equivalent rules. It can be stated
that point X in the lookup table belongs to group G if and
only if X belongs to all the rules in G. In other words, two in-
tervals are in the same group if exactly the same rules project
onto them. As an example, consider chunk no. 10 (Desti-
nation port low byte) of the classifier in Table 1. The end
points of the intervals (RLO - RL4) and the constructed group
sets (GNO-GN2) are shown in Figure 3. The lookuptable
10 for this chunk is filled with the corresponding group
number (GN). Thus, in this example, table;o(19) = 00y,
tablelo(ZO) = Olb, tablelo(Zl) = IOb.

Step 4. Convert the groups to a binary vector where the bit
location represents the rule ID, the value of which indicates
whether it belongs to the group or not. The pseudocode of
finding the groups of rules is shown in Figure 4. The pre-
processing algorithm complexity is @(N), where N is the
number of rules.

A bit vector (BV) of size equal to the rule set size, five
bits in our example, is required for each group. This BV has
one bit for each rule in the classifier. For example, GNj in
Figure 3 will have the BV 11000, indicating that the fourth
and the fifth rules of the classifier in Table 1 belong to GNg
in chunk no. 10. Note that the group table is physically stored
in a separate table with address equal to its number.

4.3. Classification Phase. Figure 5 shows an example of the
preprocessing and classification stages. Following the con-
struction of the thirteen lookup tables with their correspond-
ing BVs, the lookup tables are ready for the classification
phase. The incoming packet header chopped to thirteen
chunks of eight bits each is used as an address for its lookup
table. Each lookup table points to a specific BV. As a result,
thirteen BVs of size N will be obtained where N is the
number of rules in the rule set. A simple “ANDing” operation
of these vectors produces the winner rule for the arriving
packet as demonstrated by Figure 5.



6 International Journal of Reconfigurable Computing
/* The Pre-processing Phase™/
1. FOR each of the 13 Chunks do
2. GN:=0
3. FOR I:=0, I < 255, I++
4. VecPos:= 1
5. BitVec:=0
6. FOR ID:=0, ID < NumberRule-1, ID++
7. IF I > Rule[ID].LOW AND I < Rule[ID].HIGH THEN
8. BitVec:=BitVec OR VecPos
9. END IF
10. VecPos:= VecPos *2
11. ENDFOR
12. G:=0
13. WHILE G=GN AND BitVec # Group[G] DO
14. G++
15. ENDWHILE
16. IF G = GN THEN
17. Group[GN]:= BitVec
18. GN:=GN+1
19. ENDIF
20. ENDFOR
21. ENDFOR

FIGURE 4: PCIU preprocessing phase.

4.4. Incremental Update Phase

4.4.1. Adding New Rules. One of the main features of the
PCIU algorithm is that it can accommodate efficient incre-
mental updates for the rule set. However, one of the design
constraints is that the system has a certain capacity that
cannot be exceeded during updates. As long as the system
limit is not exceeded new rules can be added incrementally
with ease. A new rule can be added by the following steps. (i)
Find the first empty location in the rule set and save it in this
location. (ii) Chop it to 13 parts of 8 bits each and assign
a part for each lookup table. (iii) Each part will represent
a range inside the lookup table. (iv) From the high to the
low value of each part, perform bitwise “ORing” of all the
bit vector in this range with 284D where RuleID is the first
empty location of the rule in the rule set.

4.4.2. Deleting Rules. The deletion of any rule in the rule set
can be accomplished by the following steps. (i) Mark the rule
location in the rule set as empty. (ii) Chop the deleted rule to
13 parts, with high and low part for each. All the vectors in
each range of these parts (form low to high), will be Anded
with the complement of (284¢IP), where RulelD is the deleted
rule’s number.

4.5. Parameter Tuning. The PCIU algorithm can be reorga-
nized to accommodate alternative chunk sizes. The initial
PCIU [1] algorithm used 8-bit chunks. Varying the number
of bits in each chunk results in changes in terms of memory
usage, classification speed, and pre-processing speed. There
are two possible variable versions of the PCIU: Uniform
chunk size and nonuniform chunk size. The uniform chunk
size variation is a lot simpler to implement algorithmically
and ensures that all chunks are of the specified size and
only deal with the data for a single rule, as accomplished

with the standard 8-bit size. The nonuniform chunk size
variation is different in that it attempts to fit as much data
into the defined chunk size without wasting any space. This
implies that multiple rules can have their bits strung together
in separate chunks. Ultimately, this approach uses far less
memory but is difficult to predict with standard algorithmic
design techniques and therefore difficult to implement.
Accordingly, only uniform chunk size parameter tuning will
be discussed.

Figures 6 and 7 illustrate the effect of varying uniform
chunk size in terms of pre-processing speed, classification
speed, and memory usage. Of particular note is the data as
displayed in Figure 6, because it demonstrates the effects in a
complex-ruleset, high-volume environment.

It is apparent that in a uniform chunk size scheme,
there is no optimum chunk size that satisfies all test param-
eters. However, there is an effective range. Depending on
what a client wants, an optimum chunk size can be selected
from 7 to 11. Moving from 7 to 11, there is a decrease in
preprocessing and classification time and an increase in
memory usage. Most notably, at chunk size of 11 the classi-
fication time greatly dips and the memory usage greatly
spikes.

5. Experimental Results and Analysis

In this work, we used ClassBench [14] as the source for our
rule sets. Table 3 shows the sizes of the rule sets and their
corresponding trace files. The seeds and program used to
generate these rule sets are based on ClassBench [14].

The ClassBench [14] performed a battery of analyses
on 12 real filter sets provided by internet service providers
(ISPs), a network equipment vendor, and other researchers
working in the field. The filter sets utilize one of the following
formats.



International Journal of Reconfigurable Computing

Byte 0 of the source IP addressl:{) ;g
78

255

0

1

Byte 1 of the source IP address:{} 4

255
0
1

Byte 2 of the source IP addressl:(> 83

255
0
1
Byte 3 of the source IP address E(>255

0

1

Byte 0 of the destination IP addressE(> 6

255

0
1

Byte 1 of the destination IP address:{> 4
255

0
Byte 2 of the destination IP address.:{> 1

255
0
Byte 3 of the destination IP addressl:(} 1

255

0
Byte 0 of the source port addressl:(}
255

0
Byte 1 of the source port addressE(>

255
[0}

o 20

Byte 0 of the destination port addressl:{) %%
5

255

0
Byte 1 of the destination port addressl:(} 1

255

0

Protocol (8 bits) IZ(> 1
16
17
18

255

F1GURE 5: Example: PCIU flow using the rule set in Table 1.

(:) /6\1‘ Bit vector "\
5 (o[IJI[I 1[0
i [ 1]1]1]1
0
0
Chunk no. 0
(1) Bit vector
: 0[T[0 [0 01
5 11T [0 [0]0O
- 2[1]0 [1[0]0)
5 3[1]o o [1]0/
1
3
1
Chunk no, 1
i /6\1- Bit vector "\
: [Tol1ToJoJ1]o|
5 _1]1]0]o [ofo])
: 2[1]1 1o
Chunk no. 2
(1) 6\1 Bitvector\
: lolifi i i
i 2] t]o]o]o]o/
Chunk no. 3
0 @\I BltVCCtOl‘\
: (o]1 1]1]0
i NIEEEL
0
Chunk no. 4
8 @ Bltvector\
: (o1 110
i N
0
Chunk no. 5
1 6\1 Bitvector\
. CoJ1JrJiaJr}
i NJ[t]o ]t t]o
Chunk no. 6
1 @I— Bit vector
: ([l
1
Chuninoi \
( GN
] \0
Chunk no. 8
(GN
— O [ [V
Chunk no. 9
0
/GN  Bitvector ™\
i [o[oJoJoI[1
% (" I[O0[T[0[T1I[T])
: AREBERE
I
Ch 19 10
0 @ Bitvector\
I (onan
; 11 JoToTlo
Chunk no. 1T 210 0101

1

1

2

1
Chunk no. 12

[o[1ToT1 [n
(1Tofo[1]oTo])
2lof1 1 o

The list of matched rule



Preprocessing time for 5K

International Journal of Reconfigurable Computing

Classification time for 50 K
400

350 b

150 |

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Chunk size

(b)

Memory usage (M byte) for 5K

35000
30000 ]
— 25000
)
o 20000
E
H
15000 t
10000 +
5000 f
Py L
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Chunk size
(a)
5
45
4 L
35+

Memory (MB)
(3]
w

0 1 L L

—— ACL
—x- FW
<= IPC

(c)

4 5 6 7 8 9 10 11 12 13 14 15 16 17
Chunk size

F1GURe 6: Uniform chunk size variation for PCIU with 5 K rule sets.

(1) Access control list-(ACL-) standard format for secu-
rity, VPN, and NAT filters for firewalls and routers
(enterprise, edge, and backbone).

(2) Firewall-(FW-) proprietary format for specifying se-
curity filters for firewalls.

(3) IP chain-(IPC-) decision tree format for security,
VPN, and NAT filters for software-based systems.

The algorithms are evaluated using a desktop computer
running a 32-bit installation of Windows XP with an Intel
Xeon 3.4 GHz CPU. The results shown in Figure 8 are based
on a single processor core. The following can be concluded.

(1) The maximum usage of memory in a 10k rule set is
2.5 MB which is reasonable and could fit in any type
of embedded network processor.

(2) The pre-processing is quite simple yet effective and
could be performed by any RISC processor. The pre-
processing speed is 39.2 Krule/sec which could be
improved by using a hardware accelerator.

(3) The classification time is appropriate for most net-
work applications. The results shows that the classifi-
cation is 0.2 M packet/sec in the worst case

5.1. PCIU, RFC, and HiCut: A Comparison. A comparison
between PCIU, RFC, and HiCut is shown in Figure 9 based
on benchmarks introduced in Table 3. Based on [17], the
performance of RFC and HiCut compared to other state-
of-the-art algorithms is close and even better in terms of
classification time. It is obvious that the PCIU has the
lowest memory consumption and pre-processing time. We
only used the ACL benchmark in this comparison, since



International Journal of Reconfigurable Computing

Preprocessing time for ACL

60000
50000 [
40000 |-
g
L L
E 30000
H
20000 F
10000 F
_x ke %
0 - " " " " feiot R RERE:. MR
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Chunk size
—— ACL(10K)
-%- ACL (5K)
% ACL (1K)

Time (ms)

Classification time for ACL

1400
1200
1000 |
800 |
600
400
00f T e
P SERIT SRS NI SRS SN NI SINY TV TN ST SOSMNMRPRI
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Chunk size
—— ACL (100K)
-%- ACL (50K)
--%-- ACL (50 K)

Memory usage (M byte) for ACL

Memory (MB)

Chunk size

—— ACL (10K)
-=- ACL (5K)
~=-- ACL (1K)

(c)

FiGURE 7: Uniform chunk size variation for PCIU based on the ACL benchmark.

the number of distinct overlapping regions in both FW and
IPC are high. Therefore, the RFC’s pre-processing time could
easily consume several days for IPC and FW. The maximum
memory which can be supported by windows XP is 2 GB,
which is insufficient to support the BV algorithm [6] for
the 10k rule set. The PCIU algorithm outperforms all the
previous published work due to the following properties.

(1) The PCIU algorithm does not utilize a decision tree
that needs to be traversed. Accordingly, no compari-
son is required at each node when making a decision
regarding the next node address. The comparison
operations tend to increase classification time. In
addition, the total number of nodes and its associated
pointers tend to consume extra memory. Finally,

2

3)

when the rule set has too many overlapping regions,
the size of memory and the pre-processing time
increase sharply.

PCIU does not require intensive pre-processing time
like RFC. The RFC algorithm suffers from high pre-
processing time which can easily consume several
days even when a powerful processor is used. This
drawback magnifies when a rule set tends to have a
lot of region overlap.

PCIU’s main classification operation is the logical
“ANDing” which is assumed to be a simple and mini-
mally time consuming operation. Combining a look-
up table and the bit vector make the PCIU efficient



10

Preprocessing time
250

200 F

150 7,

Time (ms)

100 e

50 1 .

0.1 1 5
Rule set size (K)

(a)

10

International Journal of Reconfigurable Computing

Classification time

500
450
400
350
300
250
200
150
100
50 |

Time (ms)

100
The trace packets size (K)

(b)

Memory usage (M byte)

2571

15

Memory (MB)

Rule set size (K)

—— ACL
-x- FW
~x- IPC

(c)

Ficure 8: PCIU: Preprocessing, classification time, and memory usage.

for any kind of rule set. Moreover, the reduction in
bit vectors tends to reduce the memory size.

6. Techniques for Hardware Implementation

While a pure software approach can generate powerful results
on a server machine, an embedded solution may be more
desirable for some applications and clients. Embedded, spe-
cialized solutions are typically much more efficient in speed,
cost, and size than solutions on general purpose processor
systems. This paper covers two such translations for the
PCIU into the realm of embedded solutions using recon-
figurable technology. In the next few sections we discuss
a solution developed using a hardware/software codesign
methodology and another using a pure RTL approach with
an ESL design methodology based on Handel-C.

6.1. A Hardware/Software Codesign Approach. One of the key
advantages of an HW/SW implementation is the incredible
performance to development time ratio. While a pure RTL
implementation would be much more effective in terms of
satisfying constraints, it would generally take a long time to
develop. Software, on the other hand, is very flexible and easy
to develop and can be mapped onto any general purpose
processor. Therefore, as long as an embedded system has
a GPP, a software algorithm can be easily realized on the
system. Furthermore, designers can often effectively tackle
the bottlenecks of software by using dedicated coprocessors
that are simple by design and highly modular, that is,
reusable. For all of these reasons, and as the approach and
underlying tools mature with time and demand, the HW/SW
approach is one that is very feasible for most development
groups.



International Journal of Reconfigurable Computing 11
TaBLE 3: Benchmark rule sets and its traces.
Benchmark ACL FW 1PC
Size Rule Trace Rule Trace Rule Trace
0.1k 98 1000 92 920 99 990
1k 916 9380 791 8050 938 9380
5k 4415 45600 4653 46700 4460 44790
10k 9603 97000 9311 93250 9037 90640
Preprocessing time Classification time
100000 1000
k<
<X}
10000 ¢ 1 % :::::
] 3
KX K<
100 b0 o 1
— — 151 [
« 1000 | 1 T2 15} ods
E g K& (]
= = 19541 (]
v v (] bt
E R | i o
SR 1 F @ B
KX 10 | [5554] o E
% < K
8% 5o oo K
8% o oo <
op K - s B N
0% 14 19554} [
0% 1 1554} (]
% 3 5
. o . , R o0 K

0.1 1
Rule set size (K)

()

1 10 50 100

The trace packets size (K)

(b)

Memory usage (M byte)

1000

100 |

z 10}
0%
2 P54
= %3
=~ 033
2 1k ~ Sos
5 %% %%
£ %%
g KA 020
3] kXY (54
P<XY o%®
= 01t Sods 2%
oo %3
XY o%®
o 0%
ods K
001 f B o

KL
RS

XX
0o

XXX

355
%%
<

O

X3
2%

3]

R0
2

o % %%
TR
XX

"
QK

v
o,
Sotele

999 9.
KX,
o2620%

=

0.

%%
9.

S99

200

%%
00
LKL

O
%
0%

"

R

9 929 9 9.
KX

2%
XX,
Pa%e%s

.,.
%

So%
K5

‘.
2%

9.9,
XXX
5
...
X
K

%% %%
T

%
%

X
%
202!

RS
288

&L

"
de%s

RN
&
SRR

<

.,.
X

1

5 10

Rule set size (K)

=2 RFC
@z HiCut
= PCIU

(c)

FIGURE 9: A comparison between RFC, HiCut, and PCIU.

6.1.1. Tools and Equipment. The key development tools con-
sisted of Xilinx ISE v11.4, Xilinx EDK v11.4, and Xilinx SDK
v11.4. ISE was used to design and test dedicated coprocessors
written in VHDL. EDK and SDK together facilitated an
efficient and user-friendly co-design environment that inter-
faced both sides of the spectrum very well. EDK can generate
a full processor system (either using Xilinx’s Micro-Blaze
core, as in the case of this specific implementation, or an

integrated IBM PowerPC core) on a given FPGA using pre-
defined “IP cores” EDK also allows designers to integrate
custom cores and hardware accelerators into the aforemen-
tioned system.

In terms of the actual hardware, a Spartan3E XCS3S500E
was used. The XS3S500E utilizes 10476 logic cells, 1164
CLBs, 4656 slices, 73 Kb of distributed RAM, 360 Kb of Block
RAM, 20 dedicated multipliers, and 4 digital clock managers.



12 International Journal of Reconfigurable Computing
: |
1
! Block RAM |
! FPGA Port A (dual port) Port B |
! xc3s500e |
! |
! 1
! 1
! 1
! 1
| Instruction Data !
i memory memory |
I controller controller| |
! 1
| Data local memory bus (dlmb) 1 !
1
i Instruction local memory bus (ilmb) i
! 1
: |
! 1
! 1
! 1
Parallel NOR | Hardware MicroBlaze X
flash PROM i EMC accelerators (master) i
128 Mbit i !
1
: |
! 1
! 1
! PLB bus :
: |
! 1
! 1
! 1
DDR | RS232 o j
SDRAM : MPMC Timer controller Serial hr}k
512 Mbit ! (slave) (serial ! -
! communication) : E
| PC
(std/1O)

F1GURE 10: System configuration for Hw/Sw codesign implementation.

In addition to this, the implementation utilized 32 MB of
external DDR and 16 MB of external Flash memory.

6.1.2. Techniques and Strategies. Before any optimization
could be utilized, the C code of the PCIU algorithm was
slightly modified as described below. The application was
then executed on the MicroBlaze system that had been
instantiated by the EDK. Implementing the I/O for the PCIU
was performed by writing all of the necessary test bench
files to Flash memory, configuring the hardware to support a
Xilinx Memory File System, and modifying the software such
that it read from these files. File I/O is handled by very low-
level functions that resemble system calls in Unix. For output,
a Hyperlink terminal collected data sent over the board’s
UART. In addition, less intensive functions were designed to
replace standard C functions such as sscanf() and printf().
Figure 10 illustrates the MicroBlaze system with integration
of RTL co-processors.

6.1.3. Optimizations. By partitioning functions into sub-
functions and then further partitioning those subfunctions
into smaller subfunctions, it is possible to pinpoint bottle-
necks with some accuracy using the SDK’s profiler. Table 4
shows a summary of the profiling performed for the PCIU
algorithm.

One of the main problems found in both classification
and pre-processing was in the shift instruction. The MicroB-
laze performs a single bit shift per clock cycle. For example,

TaBLE 4: Profiling of the ACL10K rule set (running on Micro-
blaze).

Time Function name Functionality
27.40 match_list Preprocessing
20.05 shift_comparison_less Preprocessing
16.66 shift_comparison_outside Preprocessing
12.41 list_output Preprocessing
9.98 matching Classification
6.72 shift_comparison_inside Preprocessing
3.45 mfs_file_read EEPROM Reading
1.56 rsscanf RAM Reading
0.62 reader EEPROM Reading
0.47 element_num Preprocessing
0.21 preprocessing Preprocessing
0.13 loadrule Preprocessing
0.13 mapping Classification
0.03 classification Classification
Summary
84.05 Preprocessing
10.14 Classification
5.63 Others

shifting a value by 24 bits left requires about 24 clock cycles.
Because the nature of the program is divide and conquer,
the “shift” and “AND” have been used intensively. In this



International Journal of Reconfigurable Computing

13

if (rising-edge(CLK)) then

count:= conv_integer (shift);

if (actuall < actual2) then

else

end if;

storel:= (To_bitvector(inputl) srl count); -- srl (shift right operator)
store2:= (To_bitvector(input2) srl count);
actuall:=to_stdlogicvector(storel(24 to 31));
actual2:=to_stdlogicvector(store2(24 to 31));

if (((actuall <= point) and (actual2 >= point))=true) then
output <="00000000000000000000000000000001" ;

output <="00000000000000000000000000000000" ;

elsif (((actuall>= point) and (actual2<= point))=true) then
output <="00000000000000000000000000000001";

else
output <="00000000000000000000000000000000" ;
end if;
else
null;
end if;

ALGORITHM 1

work we attempted to use the processor local bus (PLB) due
to its efficiency in terms of cache fill, fixed/variable burst as
indicated by Xilinx [19].

Classification. The main bottleneck for the classification
phase of the algorithm was the ANDing of the calculated
bit vectors. In software, a 13-bit AND operation (thirteen
inputs, 1Dbit each) was used BV_LEN times, where BV_LEN
is the length of the bit vectors, for a single packet. A 13-
bit ANDing co-processor was actually less efficient in this
case because of the overheard required to write the input
values to the module using the MicroBlaze. ANDing itself is
an operation that the MicroBlaze performs well but all the
same the majority of improvement for classification hinged
on somehow improving this very task.

Implementing a priority AND module in hardware, how-
ever, leads back to the overhead of communication; sending
13 bits to the module would take more time than the ANDing
operation itself and cancel out any benefits of translating the
operation to hardware. The simpler solution was to exploit
the Micro-Blaze’s instruction set in such a way that it worked
in the design’s favor. The basic functionality of an AND
operation can be defined by the following: if even a single
0 exists on the inputs, the result is 0. When ANDing a large
number of bits together, one way to improve efficiency is to
search for a 0 within the inputs before actual computation of
the output takes place. This is normally not feasible because
the operation itself would be much faster than any search
routine, but at the same time, the complexity of the operation
increases with more inputs. At the worst-case, this method,
referred to as priority ANDing, takes much longer than blind
logic ANDing. When looking at the average case, however,
there stands to be a significant improvement if and only if the
provided ALU for the GPP is a bottleneck for the operation.
If one were to implement a software version of the priority

AND on any general processor, the timing results would be
the same or worse, because the general processor handles a
single 13-bit operation and 12 2-bit operations in the same
way. The MicroBlaze, on the other hand, seems to favor
multiple small operations as opposed to a single large one.
This is not only a side effect of the instruction set, but also of
the fact that the MicroBlaze only has a single ALU to work
with. The single ALU, then, serves to bottleneck complex
operations such as a 13-bit AND. By having several sequential
2-bit ANDing operations, one can implement a software
priority AND that outperforms the original implementation.

Essentially, by dividing a 13-bit AND into 12 2-bit
sequential ANDs, with a comparator that checks if the output
of any given stage is 0, a massive speed boost was achieved on
the MicroBlaze. This same translation failed to yield anything
on the PC, however.

Preprocessing. The key bottlenecks appear in the match_list
function, which is responsible for populating the bit vectors
in accordance to the set of all loaded rules and the currently
tested chunk (of 13, and therefore, this function is called
13 X 256 = 3328 times per execution). This is illustrated in
lines 7-13 of Figure 4. The first key area for improvement
in this section is the comparison in lines 8-9 of Figure 4.
Each set of comparisons is different for each chunk in that
the tested point must fall within the low and high ranges of
the relevant parameter of the tested rule. These low and high
ranges are given a shift in order to account for the disparity
between the chunk and the parameter. To simplify, recall that
each rule is broken down into 13 8-bit chunks, but is also
expressed in terms of parameters such as IP Source LOW
and IP Source HIGH. The shift accounts for the size and
positional differences between these two different schemes.
The VHDL equivalent of this comparison nest was designed
as in Algorithm 1.



14

The shift value

|

International Journal of Reconfigurable Computing

32bit
The low value of field i —~—|

Shift left register

(32bit)
[

4 8bit

L

8 bits
comparator

8 bits
comparator

Point
—

8 bits
comparator

T 8bit
[

The high value of field i 2221t

(32bit)

Shift left register

|

The shift value

Reset

:

5 bit

The rule number zbl_t)l—;—) 5to 32 .
0to 31 Oto4 32 bit

The result
32 bit

decoder

Shift left register
(32 bit)

FIGURE 11: Pre processing coprocessor, block diagram.

One thing to note is how this hardware module interfaces
with the software algorithm. The MicroBlaze is responsible
for sending the LOW and HIGH ranges of the tested
parameter, the shift value, and the point to be tested. This
takes four sequential instructions. However, since the entire
comparison function is taken care of inside the hardware
module, the MicroBlaze must only read back a single value
from the module. Figure 11 illustrates the RTL logic that
composes this module which we refer to as Coprocessor,.
First, a comparator is used to determine if the low value of
the tested field is actually less than the high value of the tested
field. If true, the point is expected to fall between the low and
high values when processed through a comparator. If false,
the point is expected to “fall outside the range”. That is, the
point must be less than the labeled high field and greater than
the labeled low field. The XNORs enforce this logic: they will
only both transmit high if the above conditions are met. The
output bits are then ANDed together and used to reset the
Shift Left Register. Note that all I/O connections are between
the MicroBlaze and the coprocessor.

The last area for improvement is the portion of
match_list() that actually populates the bit vector. When a
point satisfies the LOW and HIGH ranges of the tested rule’s
parameters, a value corresponding to the number of the rule
OR’d with the bit vector is produced. In software, this value
can easily be computed as 1 shifted to the left by the number
of the rule modulus 32. That is, 1 shift_left (1%32). A much
more efficient way in hardware is to use a 5-32 decoder.
Decoders are especially efficient using the FPGA’s resources
and so this is an optimal solution. With the number of the
rules fed into the module, the output is simply 1 shifted left

by the input number. The entire operation requires a single
write to the module and a single read from it, and the decoder
design makes for an impressively fast coprocess.

6.1.4. Device Utilization and Average Speed-Up. It is obvious
that the H/S implementation outperforms the pure software
implementation in both preprocessing and classification.
Results obtained indicate that the hardware co-processor
attached to the soft processor was able to speed up the per-
formance on average by 4.3x for preprocessing and 5.3x for
classification. The MicroBlaze along with other peripherals
occupied 3021 LUTs of the XC3S500E (32%). On the other
hand, the complete system that includes the MicroBlaze with
hardware accelerator occupied 6035 LUTs of the XC3S500E
(64%).

6.1.5. Results. The final results of the HW/SW codesign im-
plementation of the PCIU before and after adding of both co-
processors and MicroBlaze-specific optimization are shown
in our paper [2]. It is clear that, while the software on the
MicroBlaze exhibits a nonlinear relationship for classification
with respect to ruleset complexity and packet volume, the
optimized version of the software exhibits a linear relation-
ship for classification. Not only that, but, the classification
speed is faster by a factor of 5.3x. This performance boost
can be entirely attributed to the reorganization of the AND in
software in order to exploit the fact that the MicroBlaze only
has access to a single ALU. Again, while large and complex
operations (such as a 13-input AND) are bottle-necked by
the lack of additional ALUs, a priority AND thrives in such
an environment, because it only requires a 2-input operation



International Journal of Reconfigurable Computing

at a time and the overall operation will terminate early ifa 0
is computed.

It should also be noted that pre-processing received a
substantial speed boost, about 4.3x speed-up, after adding
the coprocessors. While the pre-processing time is still non-
linear with respect to ruleset complexity, the trends are not
nearly as extreme in terms of magnitude. Further optimiza-
tions may be able to make the pre-processing linear in the
future.

6.2. A Hardware Coprocessor Based on ESL. The design of
a pure RTL system using an electronic system level (ESL)
language is a different kind of partnership of hardware design
and software design philosophies. An ESL is typically a high-
level language with many similarities to software languages
such as C in terms of syntax, program structure, flow of
execution, and design methodology. The difference from
such software languages comes in the form of constructs
that are tailored to hardware development design such as the
ability to write code that is executed in parallel. This makes
it very easy to translate a software application into its RTL
equivalent without having to start the design from scratch.
The higher level of abstraction also allows designers to much
more easily and quickly develop an RTL solution than what
would be possible in pure VHDL or Verilog. Admittedly, the
efficiency of hardware generated by ESL is not as efficient as
a VHDL or Verilog design, but the time savings tend to more
than make up for this shortcoming.

6.2.1. Tools and Equipment. The PCIU algorithm was imple-
mented using Mentor Graphics Handel-C [20]. Handel-C is
a high-level programming language which specifically targets
low-level hardware and is commonly used in programming
FPGAs. The Handel-C development suite is a rich subset
of C with specific extensions that emphasize parallelism.
Handel-C is unique, since it can be compiled to a number of
design languages and then synthesized to the corresponding
hardware which frees developers to concentrate on the
design. The Mentor Graphics Development Kit Design Suite
v5.2.6266.11181 facilitates: a thorough debugging tool-set;
the creation and management of several output configura-
tions, the ability to build simulation executables, hardware-
mappable EDIFs, or VHDL/Verilog files from the Handel-
C source files, file I/O during simulation, and the ability to
include custom build scripts for specific target platforms.
When building an EDIF, Handel-C will also produce log files
that display timing, size, and resource-use information for
the design.

6.2.2. Techniques and Strategies. Handel-C provides a file I/O
interface during simulation, and so, testbench files were fed
in and a output file was created with no calls to doubt. In
this implementation, preprocessing of all test benches was
performed by a PC well in advance using a preprocessor
application written in C. This placed the focus of the
RTL design solely on classification. Handel-C also provides
unique memory structures in RAMs and ROMs. The access
times for these structures are much quicker than variables,

15

but the downside is that no single RAM can be accessed
concurrently by multiple branches.

Handel-C’s debugging mode allows one to calculate
the number of cycles required by each statement during
simulation. When coupled with the critical path delay of the
design this offers an excellent means of calculating precise
timing of the system. Both the critical path delay and the
cycle count also serve as metrics for improvement when it
comes to optimization in any Handel-C design.

6.2.3. Optimizations. Optimization in Handel-C is quite dif-
ferent from optimization in a co-design methodology. The
approach of extracting blocks of code to hardware serves no
purpose to the designer because a Handel-C implementation
is already pure RTL. Instead, the key method of optimization
is exploiting the fact that an RTL design has very different
properties from a software design: a single statement takes
a clock cycle, the most complicated statement dictates the
critical path delay and, therefore, the clock frequency, the
statements can be executed either sequentially or in parallel
branches, one can “thread” an algorithm in a way no general
processor system can, and special memory structures can be
used for fast memory access.

(1) Fine Grain Optimization (FGO). The first step taken to
improve on the original Handel-C implementation (base-
line) of the PCIU was to replace all for loops within the design
to do-while loops. For loops take a single cycle to initialize the
test counter variable, a cycle for each sequential statement
within the loop body and a cycle to increment the counter
variable. Do-while loops are much more efficient in terms
of cycles consumed because one can place the counter in-
crement within the loop body and run it concurrently with
the other statements. This effectively reduces the number
of cycles consumed by the loop by almost half. Figure 12,
illustrates the code conversion of the FOR to the Do-while
loops by using the Handel C par statement. The for-loop in
the code example of Figure 12 consumes 21 clock cycles, yet
the same code implemented by do-while consumes 11 clocks
cycles. The efficiency of this optimization method increases
dramatically when nested loops are used. The second exam-
ple in Figure 12 shows the code conversion for the nested
loop from the for-loop to nested do-while where both the
par & seq Handel C statements are used.

(2) Coarse Grain Optimization (CGO). One of the key meth-
ods of exploiting parallelism for the PCIU algorithm is to
divide the classification phase into several parallel chunks
and pipeline the trace packets through them. This is a rather
simple task so long as blocks that are required to be se-
quential, such as for loops, are kept intact. The key construct
required to build an efficient, effective pipeline scheme is
the channel. In Handel-C channels are utilized to transfer
data between parallel branches, and this is required to ensure
that data processed in one stage of a pipeline is ready for
use in the next stage. Channels also provide a unique kind
of synchronization: if a stage in the PCIU is waiting to
read a value from the end of a channel, it will block its



16

International Journal of Reconfigurable Computing

/* Do While Code*/

/* For Code*/ i=0;

for(i=0;1 < 10;i++) dof
{ par{
MyRam([i]=i; MyRam([i]=i;
} i++; }

} while(i < 10);

/* Nested Do While Code*/

i=0;
dof
/* Nested For Code*/ par{
for(i=0;i < 10;i++) seq{
=0;
for(j=0;j < 10;j++) do{
{ par{
MyRam[i][j]=i%); MyRam[i][j]=i%);
} jtt3}
} }while(j < 10);
}
i++;}

}while(i < 10);

FiGure 12: A FOR to Do-While conversion code.

Stage one Reading the packet from input port No. of cycles: 1
Generate the bit vectors index from the No. of cycles: 1
Stage two packet header values >L
Bit Sending the
Read the 8
Stage three | +. —>| vector(s) [?| ANDing result No. of cycles: 3 to 81
8 bit vectors . ..
ANDing and position
Cycle:1  Cycles: 1 to 78 I Cycle: 1 '
Receiving both the ANDing value and the
Stage four . No. of cycles: 2
vector position
Convert the bit position and the ANDing
Stage five No. of cycles: 9
value to the rule number
. Decrease the counter of the packets
Stage six No. of cycles: 1
by one

F1GUre 13: Flow of the coarse grain version of the Handel-C implementation.

execution until the data is received. This not only makes the
pipeline well synchronized and organized, but also improves
efficiency in terms of the number of cycles used to complete
classification. Figure 13 illustrates a timing diagram for the
pipelined implementation of the PCIU. Along the Y-axis,
there are parallel pipeline stages. Stage 3 in particular is also
divided into substages along the X-axis, because

(a) the complexity of the internals merits it,

(b) the substages needed to be executed sequentially in
succession to produce accurate results.

This optimization stage is a combination of the Fine grain
and pipe-lining technique described above.

(3) Parallel Coarse Grain Optimization (PCGO). The final
strategy taken to improve the PCIU was to divide the memo-
ry space of the PCIU and split the algorithm itself into a series
of parallel pipelines. Accordingly, the PCIU’s preprocessing
stage was altered to generate four input rule files instead of
one, and the utilized RAM was also segmented into four
sections. While one would expect this to maintain the same



International Journal of Reconfigurable Computing

17

Stage one

Reading the packet from input port

No. of cycles: 1

!

Stage two

Generate the bit vectors index from the
packet header values

No. of cycles: 1

Partial bit
vector(s)
ANDing

Partial bit
vector(s)
ANDing

Read the

Stage three

bit vectors Partial bit

vector(s)
ANDing

Sending the
ANDing results
and positions

No. of cycles: 3 to 22

Partial bit
vector(s)
ANDing

Cycle: 1

Cycles: 1 to 20 I

Cycle: 1

Stage four

Receiving both the ANDing values and the

vector positions

No. of cycles: 2

!

Stage five

Convert the bit position and the ANDing

No. of cycles: 9

value to the rule number i

!

Stage six

Decrease the counter of the packets

by one

No. of cycles: 1

FIGURE 14: Flow of the paralleled coarse grain version of the Handel-C implementation.

memory size as the normal pipelined model, additional
resources had to be used in order to account for additional
channels, counter variables, internal variables for each pipe-
line, and interconnecting signals for each pipeline. The de-
sign diverges into 4 pipelines once a trace packet has been
read in. Each pipeline runs the packet through and attempts
to classify it. The pipelines meet at a common stage, and at
each cycle, the algorithm checks if a match has been found in
any of the four memory spaces. There is, of course, a priority
scheme that dictates that only one pipeline is ever allowed
to write a result to the file at any given time. As one further
divides the memory, the total amount of resources must
be increased for accuracy but the speed gains far outweigh
the additional chip resource usage. In the next subsection, a
detailed explanation of the specific tradeoffs and trends will
be introduced.

6.2.4. Results. Figures 13 and 14 illustrate the execution
models for both the basic pipelined implementation “coarse
grain” of the PCIU and the pipelined implementation with a
divide memory space “parallel coarse grain”. It can be shown
that both models have a best-case time of 9 cycles per packet
(this is constant). The basic pipeline “coarse grain” has

a worst-case time of 81 cycles while the divided memory-
space approach “parallel coarse grain” has a worst-case time
of 22 cycles. Both designs are incapable of processing a packet
per cycle with large rule sets, but continued memory division
may be able to lower the worst-case time in future endeavors.
Figure 15 shows the result of all four implementations of
PCIU (i.e., baseline version along with optimized versions).
The resource usage in terms of equivalent NAND gates, flip-
flops, and memory are presented in Figure 16.

It is clear from Figure 16 that the “parallel coarse grain”
implementation with 4 classifiers consumes almost 3.9985
times more NAND gates than the “coarse grain”. The same
number of memory bits is used by the two designs and 1.93
times more flip-flops were required for the “parallel coarse
grain” approach.

Also of note is the fact that because the pipeline itself
has unbalanced loading on its stages, pipelining itself did
not generate a substantial boost in speed. The largest
contributors to speed-up were the fine grain and the parallel
coarse grain approach. Converting all for-loops into while
loops “Fine Grain” resulted in an average speed-up of 1.7x
for the 10K rule set. The coarse grain, on the other hand,
only introduces an additional 1.12x speed-up over the Fine



18

100
90
80
70
60
50
40
30
20
10

Time (ms)

Classification time ACL (ms)

International Journal of Reconfigurable Computing

Classification time FW (ms)

9999
pRelete!

KL

TXRZS
ote%e%%s

>

999
fo%e%e

2

o

%%

%% %%

X R

2% % %%

%%

100
The trace packets size (K)

(b)

90
&) 1T w0
6] .
% 70
o
i 1 60
%! 1 ~
4 v
g 50
£ 40
1 B
| 30
] 20
4 10
0 .
10 100 1 10
The trace packets size (K)
(a)
Classification time IPC (ms)
90
80 r R 1
1559
o1 5 ‘
&
60 i :
- <
E 5o j
s 153
& L 15 .
E 40 o
= B
30 0% J
5
20 1
10 | 1
0 L a3 e
1 10 100
The trace packets size (K)
x5 Base

=== Fine grained
=== (Coarse grained

=it Parallel coarse grained

(c)

FiGure 15: PCIU’s Handel C implementation: timing result.

grain version and overall a 1.92x speed-up from the baseline
Handel-C implementation. In contrast, the parallel coarse
grain approach achieves a 2.32x speed-up over the coarse
grain revision and overall a 4.44x speed-up over the baseline
Handel-C implementation.

7. Discussion and Comparison of Results

The key parameters of interest when examining the effective-
ness of any implementation of PCIU are classification time,
pre-processing time, and memory usage. Of the three, the
one of least concern is preprocessing time, because it is a one-
time operation for a larger, continuous process. However,
improvement of preprocessing is still desired, and especially
so in the case of the PCIU because of its incremental update
capability. A smaller pre-processing time means shorter
sdowntime for the system and overall a more versatile, re-
silient, and effective classification procedure.

Section 4.5 highlighted the effect of altering the chunk
size on classification speed, pre-processing speed, and mem-
ory usage. It is clear that the PCIU algorithm has an effective
range of 7 to 11. Depending on the resources available and
the speed required, a designer may select the desired degree
of tradeoff from this range. Chunk size 11 is of particular
interest, because instead of a gradual change as exhibited
along the rest of the range, there is a strong spike and a strong
dip in memory usage and classification time respectively. It
should be noted that all implementations mentioned in this
paper utilized a chunk size of 8 bits.

The pure software implementation on the PC has power-
ful results but also has a powerful general-purpose processor,
several dedicated ALUs, and incredible memory resources to
use. The hardware is generally not practical for anything but
a server implementation, and in that respect it is not directly
comparable to the embedded alternatives. However, the pure



International Journal of Reconfigurable Computing 19
TaBLE 5: The performance achieved by all implementations in terms of classification/preprocessing.
Benchmark Classification (Packet/sec) Preprocessing (Rule/sec)
MB soft Hw/Sw Desktop Handel C MB soft Hw/Sw Desktop
ACL (10K) 408.23 3,787.58 200,413.22 5,565,677.97 5.92 18.41 38,412.00
FW (10K) 453.67 4,127.66 207,264.96 6,403,975.82 5.68 18.40 40,863.83
IPC (10K) 458.87 4,055.18 214,128.04 6,556,710.84 5.66 19.24 38,412.00
Average 440.26 3,990.14 207,268.74 6,175,454.88 5.76 18.68 39,229.28
NANDs FFs
3e+008 1900
1800 | b
2.5e+008 1700 | ]
1600 b
2e+008 - 1500 | ]
1400 | b
1300 b
1.5¢+008 | 1200 1 ]
1100 b
1e+008 | 1000 1
900 b
56+007 B R R 800 I
Base Fine Coarse  Parallel coarse Base Fine Coarse  Parallel coarse
grained graine: grained grained graine grained
==z NANDs === FFs
(a) (b)
Memory bits
3.45e+007
3.44e+007 b
3.43e+007 | b
3.42e+007 b
3.41+007 | = .
SR
3.4e+007 | XX E
XK
3.39e+007 X858 ]
S5
3.38¢+007 s .
KL
3.37¢+007 —
Base Fine Coarse  Parallel coarse
grained grained grained

FiGUre 16: Device utilization of four implementations of PCIU based on Handel C.

software implementation is perhaps the easiest to debug and
modify of the three.

The two embedded implementations both have certain
advantages. The HW/SW codesign implementation utilizes
a general purpose softcore processor in the form of a
MicroBlaze, and this allows such a design to have some
degree of flexibility. Several software modules could work
in tandem in this structure using run-time configuration.
Perhaps a client would prefer flexibility, for example, to run
their PCIU algorithm as well as a firewall in quick succession
on the same system. This implementation, of course, is not
nearly as fast as the pure RTL version written in Handel-
C. Both systems require FPGAs but the Handel-C imple-
mentation would be the most cost effective to translate
into ASIC especially considering that it is a single module.

In addition, the Handel-C implementation is much more
simple to pipeline due to its lack of interaction with a soft-
ware component.

The key difference in design philosophy here is that
optimizations in Handel-C come from changing the way
in which one writes code as opposed to HW/SW codesign
where the designer finds hot spots in the form of bottlenecks.
Both are forms of hardware/software co-design in the long
run, but they each ultimately take different paths and have
different advantages.

Table 5 summarizes the performance obtained by differ-
ent implementations for classification in terms of packets/sec
and preprocessing in terms of rule/sec.

Figure 17 along with Table 6 present a comparison of the
PCIU algorithm running on different platforms.



20

International Journal of Reconfigurable Computing

TABLE 6: Speedup achieved using Handel-C.

Ti f the H 1
Benchmark ime (ms) Speed up of the Handel C (x)
Hw/Sw Desktop Handel C MB soft Hw/Sw Desktop
ACL (10K) 25610 484 17.42 13,633.62 1,469.45 27.77
FW (10K) 23500 468 14.56 14,683.48 1,613.87 32.14
IPC (10K) 23920 453 13.82 15,291.52 1,730.32 32.77
Average 24343 468 15.27 14,467.59 1,594.05 30.65
Classification time ACL Classification time FW
1e+006 1e+006
100000 1 100000 ] ]
i
e
10000 | 1 10000 F < 1
& o
% 2 KX
2 % g2 k)
g 1000 F o i £ 1000F k) 1
- (< Y 23 5
£ K = K k)
= 100 1o 1 & 100} o o .
K] 1 K<
o ] %
%% o e
10} & - ol B -
o K o
el 153 o8
e 159 %o
1} K ] 1B K ]
% [ X
e 19 e
K K
0.1 X 0.1 [ <>
10 50 100 1 10 50 100
The trace packets size (K) The trace packets size (K)
(a) (b)
Classification time IPC
1e+006
100000 ¢ = E
s
10000 f :::} ]
KX}
2 K
£ K
< 1000 ¢ %% K 1
Y o 5
E K K]
B 100k o & 1
o e
o e
K K
10 | o o .
o e
o e
e
1k % .
K
K
K
0.1 fa%

1 10 50 100
The trace packets size (K)

o3 MB software
@@z MB-HA
=== Desktop

(c)

FIGURE 17: A comparison of the classification time among “software on MB, H/S codesign, desktop, and pure RTL”

Results obtained indicate the following.

(1) PC. The vast resources and power of the PC allow it to
generate the second fastest classification results of the group.

(2) MicroBlaze. The MicroBlaze is tailored to embedded
system development and is itself a general purpose processor.

This results in such a system being very similar in architec-
ture to that of the PC but with far more limited resources.
This system easily has the worst classification speed of all of
the implementations.

(3) HW/SW Codesign. The hardware/software codesign sys-
tem results in a massive classification speed-up over the



International Journal of Reconfigurable Computing

original MicroBlaze system. While it still under-performs
with respect to the original PC implementation it is clear
that this version is the one with the most potential for further
optimization.

(4) Pure RTL Using Handel-C. The pure RTL nature of this
design makes it the absolute fastest in terms of classification
speed. In addition, it also has a good amount of room for
optimization and this has been thoroughly shown through
its various revisions. The pure RTL in terms of parallel coarse
grained achieved an average of 1594.05x speed up over the
MicroBlaze with hardware co-design. Moreover, it achieved
an average of 31x speed-up over the desktop approach.

8. Conclusion and Future Work

PCIU is a novel packet classification algorithm with a unique
incremental update capability. It has demonstrated powerful
results and shown to be scalable. The incremental update
capability allows it to change its rule set with minimal down-
time and, therefore, continue classification at a steady rate
while at the same time being very adaptive and versatile. The
PCIU is also an algorithm that greatly benefits from hardware
acceleration and RTL translation and achieves greater perfor-
mance boosts. Most performance shortcomings with respect
to other algorithms are nullified by incorporating dedicated
hardware. The complete HW/SW codesign implementation
was able to gain a 5.3x speed-up in classification and a 4.3x
speed-up in preprocessing over its MicroBlaze only counter-
part. The hardware implementation based on Handel-C was
able to achieve a 4.4x speed-up after all optimizations over
its original baseline counterpart. The Handel-C implemen-
tation also achieved on average a 31x speed-up over a pure
software implementation running on a powerful general
purpose processor. Our future work will target implementing
more efficient hardware accelerators using Impulse C and
comparing results with current Handel C implementation.
Moreover, we intend to implement a pure RTL design based
on VHDL and compare our current results in terms of the
area, power consumption, and maximum clock frequency.

References

[1] O. Ahmed, S. Areibi, and D. Fayek, “PCIU: an efficient packet
classification algorithm with an incremental update capabil-
ity in International Symposium on Performance Evaluation
of Computer and Telecommunication Systems (SPECTS ’10),
pp. 81-88, Ottawa, Canada, July 2010.

O. A. K. Chattah and S. Areibi, “A hardware/software co-
design architecture for packet classification,” in Proceedings of
the IEEE International Conference on Microelectronics, pp. 96—
99, Cairo, Egypt, December 2010.

P. Gupta and N. McKeown, “Packet classification on multiple
fields,” in Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM ’99), pp. 147-160, ACM, New York,
NY, USA, 1999.

Y. Chen and O. Oguntoyinbo, “Power efficient packet
classification using cascaded bloom filter and off-the-shelf

[15

[18

]

21

ternary CAM for WDM networks,” Computer Communica-
tions, vol. 32, no. 2, pp. 349-356, 2009.

D. E. Taylor, “Survey and taxonomy of packet classification
techniques,” ACM Computing Surveys, vol. 37, no. 3, pp. 238—
275, 2005.

T. V. Lakshman and D. Stiliadis, “High-speed policy-
based packet forwarding using efficient multi-dimensional
range matching,” ACM SIGCOMM—Computer Communica-
tion Review, vol. 28, no. 4, pp. 203-214, 1998.

E Baboescu and G. Varghese, “Scalable packet classification,”
IEEE/ACM Transactions on Networking, vol. 13, no. 1, pp. 2—
14, 2005.

P. Gupta and N. McKeown, “Classifying packets with hierar-
chical intelligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34—
41, 2000.

G. V. S. Singh, E. Baboescu, G. Varghese, and J. Wang, “Packet
classification using multidimensional cutting,” in Proceedings
of the Conference on Applications, Architectures and Protocols
for Computer Communications (SIGCOMM ’03), pp. 213224,
ACM, New York, NY, USA, 2003.

T. Y. C. Woo, “A modular approach to packet classification:
algorithms and results,” in Proceedings of the 19th IEEE Annual
Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM °00), vol. 3, pp. 1213-1222, Tel Aviv,
Israel, March 2000.

A. Kennedy, Z. Liu, X. Wang, and B. Liu, “New optimizer using
particle swarm theory,” in Proceedings of the 18th Interna-
tional Conference on Computer Communications and Networks
(ICCCN 09), August 2009.

H. Le, W. Jiang, and V. K. Prasanna, “Scalable high-through-
put sram-based architecture for ip-lookup using FPGA,”
in Proceedings of the International Conference on Field Pro-
grammable Logic and Applications (FPL °08), pp. 137-142,
Heidelberg, Germany, September 2008.

I. Papaefstathiou and V. Papaefstathiou, “Memory-efficient 5D
packet classification at 40 Gbps,” in Proceedings of the 26th
IEEE International Conference on Computer Communications
(INFOCOM °07), pp. 1370-1378, Anchorage, Alaska, USA,
May 2007.

D. E. Taylor and J. S. Turner, “Classbench: a packet classifica-
tion benchmark,” in Proceedings of the 24th Annual Joint Con-
ference of the IEEE Computer and Communications Societies
(INFOCOM °05), pp. 2068-2079, March 2005.

A. R. G. Jedhe, A. Ramamoorthy, and K. Varghese, “A scalable
high throughput firewall in FPGA,” in Proceedings of the 16th
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM *08), pp. 4352, Palo Alto, Calif, USA, April
2008.

A. Nikitakis and I. Papaefstathiou, “A memory-efficient
FPGA-based classification engine,” in Proceedings of the 16th
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM °08), pp. 5362, Palo Alto, Calif, USA, April
2008.

A. G. Priya and H. Lim, “Hierarchical packet classification
using a Bloom filter and rule-priority tries,” Journal of Com-
puter Communication, vol. 33, no. 10, pp. 1215-1226, 2010.
H. Lim and J. H. Mun, “High-speed packet classification using
binary search on length,” in Proceedings of the 3rd ACM/IEEE
Symposium on Architectures for Networking and Communica-
tions Systems (ANCS ’07), pp. 137-144, ACM, New York, NY,
USA, December 2007.

Xilinx, “Xilinx corporation,” 2010, http://www.xilinx.com/.
RG, “Handel-C language reference manual,” Tech. Rep.,
Celoxica, Europe, 2005.



- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



