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Online tracking time-varying number of targets is a challenging issue due to measurement noise, target birth or death, and
association uncertainty, especially when target number is large. In this paper, we propose an efficient approximation of the
Labeled Multi-Bernoulli (LMB) filter to perform online multitarget state estimation and track maintenance efficiently. On the
basis of the original LMB filer, we propose a target posterior approximation technique to use a weighted single Gaussian
component representing each individual target. Moreover, we present the Gaussian mixture implementation of the proposed
efficient approximation of the LMBfilter under linear, Gaussian assumptions on the target dynamicmodel andmeasurementmodel.
Numerical results verify that our proposed efficient approximation of the LMB filer achieves accurate tracking performance and
runs several times faster than the original LMB filer.

1. Introduction

Online tracking of time-varying number of targets is a chal-
lenging issue in the presence of measurement noise, target
birth or death, and association uncertainty [1]. Recently,
the random finite set (RFS) based Bayesian framework has
been proved to be unified elegant approach for multisensor
multiobject estimation [2], other than the traditional Joint
Probabilistic Data Association (JPDA) [3] and Multiple
Hypothesis Tracking (MHT) [4] methods in the tracking
area [5].The Probability Hypothesis Density (PHD) filter [6],
Cardinalized PHD (CPHD) filter [7], and multi-Bernoulli
filter [8] were established for multitarget state estimation
by avoiding data association, which are incapable of track
maintenance.

With the help of the labeled RFS, the 𝛿-Generalized
Labeled Multi-Bernoulli (𝛿-GLMB) filter has been proposed
lately in order to handlemultitarget state estimation and track
maintenance simultaneously [9, 10]. Then, the Marginalized
𝛿-Generalized LabeledMulti-Bernoulli (M𝛿-GLMB) [11] and
the Labeled Multi-Bernoulli (LMB) filter [12] were proposed
to performmultitarget tracking more efficiently, respectively,
under different approximations and update paradigms. How-
ever, the efficiency issue of multitarget tracking method still

remains challenging for online applications, especially for
multisensor scenarios [13, 14]. Recently, [15] has proposed
an efficient implementation of the GLMB filter via Gibbs
sampling to solve the ranked assignment problem stochasti-
cally, which has solution complexity quadratic in the number
of hypothesized labels and linear in the number of mea-
surements. Nevertheless, this efficient implementation of the
GLMB filter cannot enjoy the benefit of the parallelizability
of the LMB filter, which makes the number of hypothesized
labels and the number of measurements very large when
tracking large number of targets.

In this paper, we further study the efficiency issue
of multitarget tracking problem. We propose an efficient
approximation of the LMB filter for online multitarget
tracking, in which a single weighted Gaussian component is
used to approximate the posterior state of each target. We
present the Gaussian mixture implementation of proposed
filter for the linear and Gaussian target dynamic model
and observation model. The paper is organised as follows.
Section 2 presents a short review of the basic knowledge
about the RFS based Bayesian filtering, the labeled RFS,
and the 𝛿-GLMB filter. Section 3 illustrates the target pos-
terior approximation approach and explains its efficiency.
Section 4 provides the Gaussian mixture implementation of
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the approximation of the LMB filter in detail. Section 5 shows
numerical results that verify the effectiveness and efficiency of
proposed approximation.

2. Background

This section presents the basic knowledge of the following
content in this paper. We first give the RFS based Bayesian
filtering in Section 2.1. Then, we present typical types of the
labeled RFS in Section 2.2. Section 2.3 provides the LMB
filter which lays out the fundamentals for our proposed
approximation.

2.1. Random Finite Sets Based Bayesian Filtering. TheRFS is a
random variable in which the number of its elements and the
value of each element are both random process. With regard
to multitarget tracking problem, the RFS has been shown to
be a more natural and powerful description for multitarget
state compared to the conventional vector representation
[16]. Let 𝑋𝑘 and 𝑍𝑘 denote the state set and observation set
with time-varying cardinalities𝑁(𝑘) and𝑀(𝑘), respectively:

𝑋𝑘 = {x𝑘,1, . . . , x𝑘,𝑁(𝑘)} . (1)

𝑍𝑘 = {z𝑘,1, . . . , z𝑘,𝑀(𝑘)} (2)

In a typical target tracking scenario, at every time step, the
multitarget state RFS𝑋𝑘 is composed of two parts: an RFS for
existing targets 𝑆𝑘 and an RFS for spontaneous birth targets
Γ𝑘. Hence, at time step 𝑘, the multitarget state RFS𝑋𝑘 = 𝑆𝑘 ∪Γ𝑘. The observation RFS 𝑍𝑘 is composed of two parts as well:
target-orientedmeasurementsΘ𝑘 and clutter𝐾𝑘, which gives𝑍𝑘 = Θ𝑘 ∪𝐾𝑘. By modeling the multitarget state RFS𝑋𝑘 and
the observation RFS 𝑍𝑘 using different types of probability
distributions such as Binomial, Poisson, andmulti-Bernoulli,
the RFS based Bayesian framework for optimal estimation is
given as follows:

𝑓𝑘|𝑘−1 (𝑋 | 𝑍1:𝑘−1)

= ∫𝑓𝑘|𝑘−1 (𝑋 | 𝑋󸀠) 𝑓𝑘−1 (𝑋󸀠 | 𝑍1:𝑘−1) 𝛿𝑋󸀠
(3)

𝑓𝑘 (𝑋 | 𝑍1:𝑘) = 𝑓𝑘 (𝑍𝑘 | 𝑋) 𝑓𝑘|𝑘−1 (𝑋 | 𝑍1:𝑘−1)
∫𝑓𝑘 (𝑍𝑘 | 𝑋) 𝑓𝑘|𝑘−1 (𝑋 | 𝑍1:𝑘−1) 𝛿𝑋

, (4)

which represent the prediction and update process of
Bayesian recursion, respectively. Notice that the key to solve
the RFS based Bayesian filtering is the set integrals in (3)
and (4), which can be found in the finite set statistics [2].
Under different assumptions of the RFS type, the PHD filter
[6], CPHD filter [7], and multi-Bernoulli filter [8] have
been derived from (3) and (4) to perform multitarget state
estimation without data association.

2.2. Labeled Random Finite Set. With respect to the labeled
RFS, a unique label is assigned to each element in the multi-
target state RFS𝑋𝑘 in order to perform track maintenance in
a multitarget tracking scenario. Assume that L is a countable

label space; then target state vector x is augmented with label
𝑙 ∈ L. Hence, the labeled target state x̃ = (x, 𝑙) for each x̃ ∈ 𝑋𝑘.

There are several types of the labeled RFS whose density
is conjugate with standard multiobject likelihood function
and is closed under the multiobject Chapman-Kolmogorov
equation using the standard multiobject dynamic model,
such as the GLMB family and the LMB family. In other
words, the Bayesian recursion can be derived using these
labeled RFSs. Here, we first introduce some useful symbols
for illustration and provide the GLMB family and the LMB
family as two types of the labeled RFSs in the following. Let
L : X × L → L represent the projection L((x, 𝑙)) = 𝑙
and Δ(𝑋) = 𝛿|𝑋̃|(|L(𝑋)|) denote the distinct label indicator
function.

A GLMB is a labeled RFS on X × L with the following
distribution:

𝜋 (𝑋) = Δ (𝑋) ⋅ ∑
𝑐∈C

𝑤(𝑐) (L (𝑋))∏
x̃∈𝑋̃
𝑝(𝑐) (x̃) (5)

in which C is a discrete index set, and 𝑤(𝑐)(𝐿) and 𝑝(𝑐)(x̃)
satisfy

∑
𝐿⫅L

∑
𝑐∈C

𝑤(𝑐) (𝐿) = 1

∫𝑝(𝑐) (x, 𝑙) 𝑑x = 1.
(6)

A GLMB RFS comprising a single component for each
unique label can be simplified into a LMB RFS. So, the index
set C is singleton and the index 𝑐 is omitted, and a LMB is a
labeled RFS onX × L with the following distribution:

𝜋 (𝑋) = Δ (𝑋) ⋅ 𝑤 (L (𝑋))∏
x̃∈𝑋̃
𝑝 (x̃) (7)

and 𝑤(𝐿) and 𝑝(x̃) satisfy

𝑤 (𝐿) = ∏
𝑖∈L

(1 − 𝑟(𝑖))∏
𝑙∈𝐿

1L (𝑙) 𝑟(𝑙)
1 − 𝑟(𝑙)

𝑝 (x̃) = 𝑝(𝑙) (x)
(8)

in which {(𝑟(𝑙), 𝑝(𝑙))}𝑙∈L is a given finite parameter set, with
𝑟(𝑙) representing the existence probability of target 𝑙 and 𝑝(𝑙)
denoting the probability density of the kinematic state of
target 𝑙 given its existence [12]. Remark that the LMB family
is a special case of the GLMB family with only one term for
each target.

2.3. The LMB Filter. The LMB filter is derived from the
Bayesian filtering by assumingmultitarget state to be the LMB
family RFS. In the following, we briefly recall the prediction
and update process for the LMB filter which was proposed in
[12].

Prediction. Suppose that the multitarget posterior density is
an LMB RFS on space X × L, and the parameter set 𝜋̃ =
{(𝑟(𝑙), 𝑝(𝑙))}𝑙∈L. Besides, the multitarget birth model is also an
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Figure 1: Single target posterior approximation.

LMB RFS on spaceX ×B (L ∩B = 0), and the parameter set
𝜋̃𝐵 = {(𝑟(𝑙)𝐵 , 𝑝(𝑙)𝐵 )}𝑙∈B. Then, the predicted multitarget density
is also an LMB RFS on spaceX×L+, and the parameter set is
given as follows:

𝜋̃+ = {(𝑟(𝑙)+,𝑆, 𝑝(𝑙)+,𝑆)}𝑙∈L ∪ {(𝑟(𝑙)𝐵 , 𝑝(𝑙)𝐵 )}𝑙∈B , (9)

where
L+ = L ∪ B
𝜂𝑆 (𝑙) = ⟨𝑝𝑆 (x, 𝑙) , 𝑝 (x, 𝑙)⟩
𝑟(𝑙)+,𝑆 = 𝜂𝑆 (𝑙) 𝑟(𝑙)

𝑝(𝑙)+,𝑆 =
⟨𝑝𝑆 (x, 𝑙) 𝑓 (x+ | x, 𝑙) , 𝑝 (x, 𝑙)⟩

𝜂𝑆 (𝑙) .

(10)

𝑝𝑆(x, 𝑙) is target state dependent survival probability
function. ⟨⋅, ⋅⟩ is the integral of two real-valued function, that
is, ⟨𝑎(𝑥), 𝑏(𝑥)⟩ = ∫ 𝑎(𝑥) ⋅ 𝑏(𝑥)𝑑𝑥. Then, 𝜂𝑆(𝑙) is the survival
probability of target 𝑙. 𝑓(x+ | x, 𝑙) is the state transitionmodel
for single target.

Update. Suppose that the multitarget predicted density is an
LMB RFS on space X × L+, and the parameter set 𝜋̃+ =
{(𝑟(𝑙)+ , 𝑝(𝑙)+ )}𝑙∈L+ . Then, the posterior multitarget density is also
an LMB RFS on spaceX × L+, and the parameter set is given
as follows:

𝜋̃ (⋅ | 𝑍) = {(𝑟(𝑙), 𝑝(𝑙))}
𝑙∈L+
, (11)

where

𝑟(𝑙) = ∑
(𝐼+ ,𝜃)∈F(L+)×Θ𝐼+

𝑤(𝐼+ ,𝜃) (𝑍) 1𝐼+ (𝑙)

𝑝(𝑙) (x)
= 1𝑟(𝑙) ⋅ ∑

(𝐼+ ,𝜃)∈F(L+)×Θ𝐼+

𝑤(𝐼+ ,𝜃) (𝑍) 1𝐼+ (𝑙) 𝑝(𝜃) (x, 𝑙)

𝑤(𝐼+ ,𝜃) (𝑍) ∝ 𝑤+ (𝐼+)∏
𝑙∈𝐼+

𝜂(𝜃)𝑍 (𝑙)

𝑝(𝜃) ((x, 𝑙) | 𝑍) = 𝑝
(𝑙)
+ (x) 𝜓𝑍 (x, 𝑙; 𝜃)
𝜂(𝜃)𝑍 (𝑙)

𝜂(𝜃)𝑍 (𝑙) = ⟨𝑝𝑙+ (x) , 𝜓𝑍 (x, 𝑙; 𝜃)⟩
𝜓𝑍 (x, 𝑙; 𝜃)
= 𝛿0 (𝜃 (𝑙)) (1 − 𝑝𝐷 (x, 𝑙))
+ (1 − 𝛿0 (𝜃 (𝑙))) 𝑝𝐷 (x, 𝑙) 𝑔 (z𝜃(𝑙) | x, 𝑙)𝜅 (z𝜃(𝑙)) .

(12)

Here,F(L) is the subsets union drawn from space L.Θ𝐼+
is the space of mappings 𝜃 : 𝐼+ → {0, 1, . . . , |𝑍|} such that

𝜃(𝑖) = 𝜃(𝑗) > 0 only exists if 𝑖 = 𝑗. 𝑝𝐷(x, 𝑙) is target state
dependent detection probability function. 𝑔(z | x, 𝑙) is the
likelihood function for single target, and 𝜅(⋅) is the intensity
of Poisson clutter. 𝛿 is the Dirac delta function.
3. Target Posterior Approximation

3.1. Gaussian Approximation. The LMB filter recursion
described in Section 2.3 is an approximation of the Bayes
multitarget tracking filter by only preserving the unlabeled
intensity of the multitarget posterior density [15]. Due to its
simplification, the LMB filter can be parallelized by grouping
and gating [12] and runs much faster than the 𝛿-GLMB filter,
especially for tracking large number of targets. However,
in every update step, the component number to represent
target posterior state, that is, Gaussian component number
or particle number, would increase linearly with the number
of measurements caused by the association mapping Θ𝐼+ .
As a result, the computation of the LMB filter would grow
exponentially over time if no component pruning techniques
were applied for each target. Therefore, we propose to
use a single weighted Gaussian component to approximate
the posterior state of each target in order to perform the
recursionmore efficiently with small sacrifice on the tracking
performance.

Let 𝑝(⋅) denote the posterior distribution of single target
state; we assume that at every time step 𝑝(⋅) can be approxi-
mated by a single Gaussian distribution N(⋅), that is, 𝑝(⋅) ≈
N(⋅). Figure 1 shows the procedure of using a single Gaussian
distribution N(⋅) to approximate an arbitrary distribution
𝑝(⋅). The Expectation Maximization (EM) algorithm is a
classical approach to fit a discrete distribution into aGaussian
Mixture Model (GMM), and there are other more advanced
alternatives [17, 18].

The approximation shown in Figure 1 considers the
general case of single target posterior distribution 𝑝(⋅). When
single target posterior distribution is already a GMM given
as 𝑝(⋅) = ∑𝐽𝑗=1 𝑤(𝑗)N(⋅; 𝑥(𝑗), 𝑃(𝑗)) with ∑𝐽𝑗=1 𝑤(𝑗) = 1, we can
directly adopt Gaussian components reduction to acquire the
final approximated Gaussian distribution.

3.2. Gaussian Components Reduction. The aim of Gaussian
components reduction is to maintain the statistical moments
of the GMMusing less number of Gaussian distributions.We
adopt the method described in [19], which iteratively merges
two chosen Gaussian components by Kullback-Leibler Dis-
crimination (KLD) based selection.The KLD between the 𝑖th
and 𝑗th Gaussian component is given as follows:

𝐷(𝑗, 𝑖) = 0.5 ∗ [(𝑤𝑗 + 𝑤𝑖) log det (𝑃𝑗,𝑖)
− 𝑤𝑗 log det (𝑃𝑗) − 𝑤𝑖 log det (𝑃𝑖)] ,

(13)
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Input: 𝑝(⋅) = ∑𝐽𝑗=1 𝑤(𝑗)N(⋅; 𝑥(𝑗), 𝑃(𝑗))
(1) sort Gaussian components in decreasing order of weight to make the 1st component is with biggest weight;
(2) while 𝐽 > 1 do
(3) for 𝑗 = 2, . . . , 𝐽 do
(4) compute the KLD𝐷(1, 𝑗) between the 1st and the 𝑗th Gaussian component;
(5) end for
(6) find index 𝑗min that minimize𝐷(1, 𝑗);
(7) merge the 1st and 𝑗minth component into {𝑤new,N(⋅; 𝑥new, 𝑃new)}, and make the merged Gaussian term

to be the 1st component;
(8) 𝐽 ← 𝐽 − 1;
(9) end while

Output: {𝑤new,N(⋅; 𝑥new, 𝑃new)}

Algorithm 1: KLD based Gaussian components reduction.

where

𝑃𝑗,𝑖 =
𝑤𝑗
𝑤𝑗 + 𝑤𝑖𝑃𝑗 +

𝑤𝑖
𝑤𝑗 + 𝑤𝑖𝑃𝑖

+ 𝑤𝑗𝑤𝑖
(𝑤𝑗 + 𝑤𝑖)2

(𝑥𝑗 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑖)𝑇 .
(14)

If two Gaussian components have the minimum KLDmean-
ing, they are close to each other; then it is reasonable tomerge
them into one new Gaussian term {𝑤new,N(⋅; 𝑥new, 𝑃new)}.
The merging of the 𝑖th and 𝑗th Gaussian component is given
as follows:

𝑤new = 𝑤𝑗 + 𝑤𝑖
𝑥new = 𝑤𝑗

𝑤𝑡 + 𝑤𝑖 𝑥𝑗 +
𝑤𝑖
𝑤𝑗 + 𝑤𝑖 𝑥𝑖

𝑃new = 𝑤𝑗
𝑤𝑡 + 𝑤𝑖𝑃𝑗 +

𝑤𝑖
𝑤𝑗 + 𝑤𝑖𝑃𝑖

+ 𝑤𝑗𝑤𝑖
(𝑤𝑗 + 𝑤𝑖)2

(𝑥𝑗 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑖)𝑇

(15)

in which 𝑤new, 𝑥new, and 𝑃new, respectively, represent the
weight, mean, and covariance of the merged Gaussian term.
The procedure of the KLD based Gaussian components
reduction is shown in Algorithm 1. Specifically, 𝑤new = 1
when ∑𝐽𝑗=1 𝑤(𝑗) = 1.

The underlying rationale of our assumption is that target
posterior state at a certain time should not contain fur-
cation meanings; thus, the unimodal Gaussian distribution
is enough to represent single target posterior state instead
of using the multimodal GMM. In this case, the predicted
multitarget density is a union composed of weighted Gaus-
sian components with each one representing an individual
target. Therefore, the update of the LMB filter can be highly
boosted since the computation of each association hypothesis
𝜃 is cheap. Moreover, the computation of the LMB filter
using target posterior approximation will no longer grow
exponentially over time without pruning the component
number of each track. In this paper, we name the LMB filter

with target posterior approximation as the Efficient LMB
filter, referred to as the ELMB filter for short.

Notice that our contribution is the efficiency approxima-
tion approach described in Section 3, and this approximation
approach can also be applied in other RFS based Bayesian
filters. In the following paper, we just use phrase “the ELMB
filter” to represent the original LMB filter with our proposed
efficient approximation approach for brevity.

4. Gaussian Mixture Implementation

In this section, we present the ELMB filter with its Gaussian
mixture implementation in detail. Assume that each target
posterior state is a weighted Gaussian component; target 𝑙
follows a linear Gaussian dynamical model; and the sensor
has a linear Gaussianmeasurementmodel, respectively, given
as

𝑓 (x+ | x, 𝑙) =N (x+ | 𝐹(𝑙)x, 𝑄(𝑙)) (16)

𝑔 (z | x, 𝑙) =N (z; 𝐻(𝑙)x, 𝑅(𝑙)) . (17)

We also assume that the survival and detection probabilities
are state independent (we drop the subscript 𝑘 in the
following), that is,

𝑝𝐷,𝑘 (x, 𝑙) = 𝑝𝐷,𝑘
𝑝𝑆,𝑘 (x, 𝑙) = 𝑝𝑆,𝑘.

(18)

The ELMB filter exactly follows the paradigm of the original
LMB filter, which is composed of four phases: prediction,
grouping, parallel update, and state estimation. Here, we refer
the readers to Section IV of [12] for detailed description and
equations and present the ELMB filter in the following.

4.1. Prediction. Suppose that themultitarget posterior density
is an LMB RFS on space X × L, and the parameter set 𝜋̃ =
{(𝑟(𝑙),N(𝑙))}𝑙∈L. Besides, the multitarget birth model is also an
LMB RFS on spaceX × B (L ∩ B = 0), and the parameter set
𝜋̃𝐵 = {(𝑟(𝑙)𝐵 ,N(𝑙)

𝐵 )}𝑙∈B. Then, the predicted multitarget density
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is also an LMB RFS on spaceX×L+, and the parameter set is
given as follows:

𝜋̃+ = {(𝑟(𝑙)+,𝑆,N(𝑙)
+,𝑆)}𝑙∈L ∪ {(𝑟(𝑙)𝐵 ,N(𝑙)

𝐵 )}𝑙∈B , (19)

where

L+ = L ∪ B
𝑟(𝑙)+,𝑆 = 𝑝𝑆𝑟(𝑙)

N
(𝑙)
+,𝑆 =N(𝑙)

+ (⋅ : 𝐹(𝑙)x(𝑙), 𝐹(𝑙)𝑃(𝑙) (𝐹(𝑙))𝑇 + 𝑄(𝑙)) .
(20)

4.2. Grouping. Partition the predicted LMB parameters into
mutually exclusive subsets, and then assign measurements to
these subsets bymeasuring theMahalanobis distance (MHD)
between the predicted measurement ẑ𝑙 = 𝐻(𝑙)x(𝑙) for target
𝑙 and the received measurement z ∈ 𝑍. The detection
probability of ẑ𝑙 falling in the view of any measurement z
that is uniquely determined by the Mahalanobis distance 𝑑
is computed as follows:

𝑑MHD (ẑ𝑙, z) = (z − 𝐻(𝑙)x(𝑙))

⋅ [𝐻(𝑙)𝑃(𝑙)+ (𝐻(𝑙))𝑇 + 𝑅(𝑙)]−1

⋅ (z − 𝐻(𝑙)x(𝑙)) .

(21)

For any 𝑑MHD(ẑ𝑙, z) ≤ √𝛾, target 𝑙 and measurement z
should be grouped together. 𝛾 is the gating distance threshold
calculated using the inverse Chi-squared cumulative distri-
bution corresponding to the desired 𝜎-gate size for gating of
measurements from tracks. Let L+ = ⋃𝑁𝑛=1 L(𝑛)+ be a valid
partition in the label space which is associated with target
state space X, with L(𝑛)+ ∩ L(𝑚)+ = 0 for any 𝑛 ̸= 𝑚. 𝑍 =
𝑍(0)⋃𝑁𝑛=1 𝑍(𝑛) is the according partition for measurements,
where𝑍(0) is themeasurement subset that not associatedwith
any targets and𝑍(𝑛) is associated with L(𝑛)+ . LetG = ⋃𝑁𝑛=1G(𝑛)

denote the grouped partition andG(𝑛) = (L(𝑛)+ , 𝑍(𝑛)) is the 𝑛th
group.

The aforementioned grouping problem is in essence to
find the disjoint set unions, which can be solved by union-
find set via Find and Union two basic operations [20]. Given
𝑚 Finds and 𝑛Unions, the computational complexity of using
union-find set is O(𝑚𝛼(𝑛)), where 𝛼 is the inverse Ackerman
function and 𝛼(𝑛) is less than 5 for practical values of 𝑛.

Remark that the grouping and gating approach is critical
for upcoming parallel update scheme, which is the merit of
the LMB filter over the 𝛿-GLMB filter (also the implementa-
tion [15]) when tracking enormous number of targets. This is
because the number of association hypotheses in each group
ismuch smaller than that when targets andmeasurements are
considered as one group.

4.3. Parallel Update. The parallel update of the ELMB filter
has three steps: generating hypotheses as the 𝛿-GLMB RFS,
then updating each hypothesis with measurement set, and

then merging the posterior distribution with the same labels
using the proposed target posterior approximation described
in Section 3. For the 𝑛th group of targets and measurements
G(𝑛) = (L(𝑛)+ , 𝑍(𝑛)), suppose that each target is a weighted
Gaussian component and the multiobject prior 𝜋̃(𝑛) =
{(𝑟(𝑙,𝑛)+ ,N(𝑙,𝑛)

+ (⋅; x(𝑙,𝑛), 𝑃(𝑙,𝑛)))}𝑙∈L(𝑛)+ ; then the multitarget prior
in 𝛿-GLMB form is given as

𝜋(𝑛)+ (𝑋(𝑛)+ )
= Δ (𝑋(𝑛)+ )
⋅ ∑
𝐼+∈F(L(𝑛)+ )

𝑤(𝐼+)+,𝑛 𝛿𝐼+ (L (𝑋(𝑛)+ )) ∏
x̃∈𝑋̃(𝑛)+

N+ (x̃) ,

𝑤(𝐼+)+,𝑛 = ∏
𝑖∈L(𝑛)+

(1 − 𝑟(𝑙)+ ) ∏
𝑙󸀠∈𝐼+

1
L
(𝑛)
+
(𝑙󸀠) 𝑟(𝑙󸀠)+

1 − 𝑟(𝑙󸀠)+

.

(22)

The generated label hypothesis 𝐼+ represents one of
the possible combinations for the label set L(𝑛)+ , and the
overall number of possible combinations is 2|L(𝑛)+ |. The 𝑘-
shortest paths algorithm is necessary to only generate the 𝑘
most significant hypotheses when L(𝑛)+ is big [10]. For each
hypothesis 𝐼+ in groupG(𝑛), themultitarget updated posterior
given measurement set 𝑍(𝑛) is given in the 𝛿-GLMB form as
follows:

𝜋(𝑛) (𝑋(𝑛)) = Δ (𝑋(𝑛))
⋅ ∑
(𝐼+ ,𝜃)∈F(L(𝑛)+ )×Θ𝐼+

𝑤(𝐼+ ,𝜃)𝑛 𝛿𝐼+ (L (𝑋(𝑛)))

⋅ ∏
x̃∈𝑋̃(𝑛)
𝑝(𝜃) (x̃ | 𝑍(𝑛)) ,

(23)

where 𝑋(𝑛) is the multitarget posterior state for the 𝑛th
group, Θ𝐼+ represents the association mapping 𝜃 : 𝐼+ →
{0, 1, . . . , |𝑍(𝑛)|}, such that 𝜃(𝑙) = 𝜃(𝑙󸀠) > 0 implies 𝑙 = 𝑙󸀠,
and

𝑤(𝐼+ ,𝜃) (𝑍(𝑛)) ∝ 𝑤+,𝑛 (𝐼+)∏
𝑙∈𝐼+

𝜂(𝜃)
𝑍(𝑛)
(𝑙) (24)

𝑝(𝜃) ((x, 𝑙) | 𝑍(𝑛)) = 𝑝
(𝑙)
+,𝑛 (x) 𝜓𝑍(𝑛) (x, 𝑙; 𝜃)
𝜂(𝜃)
𝑍(𝑛)
(𝑙) (25)

𝜂(𝜃)
𝑍(𝑛)
(𝑙) = ⟨𝑝𝑙+,𝑛 (x) , 𝜓𝑍(𝑛) (x, 𝑙; 𝜃)⟩ (26)

𝜓𝑍(𝑛) (x, 𝑙; 𝜃)
= 𝛿0 (𝜃 (𝑙)) (1 − 𝑝𝐷𝑝𝐺)

+ (1 − 𝛿0 (𝜃 (𝑙))) 𝑝𝐷𝑝𝐺𝑔 (z𝜃(𝑙) | x, 𝑙)𝜅 (z𝜃(𝑙)) .
(27)
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𝑝𝐺 is the gating probability involved by grouping. Substi-
tute (17) and (27) into (26) and (25), and use Lemma 2 in [1];
then

𝑝(𝜃) ((x, 𝑙) | 𝑍(𝑛))
= 𝛿0 (𝜃 (𝑙))N(𝑙,𝑛)

+ (⋅; x(𝑙,𝑛), 𝑃(𝑙,𝑛))
+ (1 − 𝛿0 (𝜃 (𝑙)))N(𝑙,𝑛)

𝜃 (⋅; x(𝑙,𝑛)𝜃 , 𝑃(𝑙,𝑛)𝜃 )
𝜂(𝜃)
𝑍(𝑛)
(𝑙)
= 𝛿0 (𝜃 (𝑙)) (1 − 𝑝𝐷𝑝𝐺)

+ (1 − 𝛿0 (𝜃 (𝑙))) 𝑝𝐷𝑝𝐺𝑞
(𝑙,𝑛) (𝜃)

𝜅 (z𝜃(𝑙))

(28)

with

x(𝑙,𝑛)𝜃 = x(𝑙,𝑛)+ + 𝐾(𝑙,𝑛)𝜃 (z𝜃(𝑙) − 𝐻x(𝑙,𝑛)+ )
𝑃(𝑙,𝑛)𝜃 = (𝐼 − 𝐾(𝑙,𝑛)𝜃 𝐻)𝑃(𝑙,𝑛)+

𝐾(𝑙,𝑛)𝜃 = 𝑃(𝑙,𝑛)+ 𝐻𝑇 (𝐻𝑃(𝑙,𝑛)+ 𝐻𝑇 + 𝑅)−1

𝑞(𝑙,𝑛) (𝜃) =N (z𝜃(𝑙); 𝐻x(𝑙,𝑛)+ , 𝐻𝑃(𝑙,𝑛)+ 𝐻𝑇 + 𝑅) .

(29)

𝛿0(𝜃(𝑙)) = 0 represents that target 𝑙 is not associated
with any measurement z ∈ 𝑍(𝑛) which indicates that
target 𝑙 is misdetected, and 𝛿0(𝜃(𝑙)) = 𝑗 > 0 represents
that target 𝑙 is associated with the 𝑗th measurement z𝑗.
The update process generates lots of hypotheses due to the
combinatorial nature of association mapping 𝜃. Thus, the
ranked assignment algorithm is necessary for larger L(𝑛)+ in
order to only update the 𝑀 most significant hypotheses
[10]. Remark that the Gibbs sampler proposed in [15] (see
Section 3.C in [15] for reference) can be applied here to solve
the ranked assignment problem in order to further boost
the efficiency. At last, the multitarget posterior in the 𝛿-
GLMB form can be approximated into the LMB form given
as follows:

𝜋 (𝑋(𝑛)) = {(𝑟(𝑙,𝑛), 𝑝(𝑙,𝑛))}
𝑙∈L(𝑛)+

(30)

with

𝑟(𝑙,𝑛) = ∑
(𝐼+ ,𝜃)∈F(L(𝑛)+ )×Θ𝐼+

𝑤(𝐼+ ,𝜃) (𝑍(𝑛)) 1𝐼+ (𝑙)

𝑝(𝑙,𝑛) (x) = 1𝑟(𝑙,𝑛) ⋅ ∑
(𝐼+ ,𝜃)∈F(L(𝑛)+ )×Θ𝐼+

𝑤(𝐼+ ,𝜃) (𝑍(𝑛)) 1𝐼+ (𝑙)

⋅ 𝑝(𝜃) ((x, 𝑙) | 𝑍(𝑛)) .

(31)

It is clear that the posterior distribution 𝑝(𝑙,𝑛)(x) of each
target (for any 𝑙 ∈ L(𝑛)+ ) in the 𝑛th group is a GMM
distributionwith eachGaussian component representing part
of the target state. Then, we adopt the proposed target pos-
terior approximation approach to approximate the 𝑝(𝑙,𝑛)(x)

of each target into a single Gaussian component via KLD
based Gaussian components reduction given in Algorithm 1.
The target posterior approximation is the main difference
between the ELMB filter and the original LMB filter.

4.4. State Extraction. In the ELMB filter, target state extrac-
tion is performed exactly in the sameway as in the LMB filter.
Suppose that the multitarget posterior distribution is 𝜋𝑘 =
{(𝑟(𝑙)

𝑘
,N(𝑙)

𝑘
(⋅; x(𝑙)

𝑘
, 𝑃(𝑙)

𝑘
))}𝑙∈L𝑘 at time 𝑘; the history existence

probability of track 𝑙 is 𝑟(𝑙)
0:𝑘
; then the estimated multitarget

state is to evaluate the existence probability of track 𝑙 for
𝑙 ∈ L𝑘; given an upper threshold 𝜏𝐵 and a lower threshold
𝜏𝐷 (𝜏𝐷 < 𝜏𝐵), the multitarget state estimation at time 𝑘 is
given as follows:

𝑋𝑘 = {(𝑥𝑘, 𝑙) : max (𝑟(𝑙)0:𝑘) > 𝜏𝐵, 𝑟(𝑙)𝑘 > 𝜏𝐷} . (32)

Besides, the tracks with existence probability smaller than
𝜏𝐸 (𝜏𝐸 ≪ 𝜏𝐷) are eliminated to prune tracks already stopped.

4.5. Discussion. Remark that the ELMB filter can remarkably
accelerate the update process in twofold: firstly, the update of
every hypothesis 𝜃 only evaluates a single weighted Gaussian
component with measurement z ∈ 𝑍(𝑛); secondly, the target
posterior approximation approach can guarantee that each
target posterior state is always a weighted Gaussian; thus the
overall number of multitarget posterior hypotheses is always
equal to target number which is different from that growing
exponentially over time in the original LMB filter. However,
the pruning for tracks is still necessary to eliminate tracks
with very low existence probability which are already dead
tracks.

Another intriguing fact is that the JPDA filter [3] when
there is no target death and no new births is a special case
of our proposed ELMB filter in Gaussian implementation.
In the JPDA filter, the association from labeled target to
measurement set is called an event, which is equivalent to
the 𝜃 ∈ Θ𝐼+ in the ELMB filter. Then, each association
hypothesis is assigning proper weights by enumerating these
events in both the JPDA and ELMB filter. Finally, in the JPDA
filter each target updated state is extracted by summing up
all possible association hypothesis, which is the same as the
ELMBfilter by approximating themultitarget posterior in the
𝛿-GLMB into the LMB form.Here,we donot present the filter
equations for the tedious repetition. The readers can omit
the new birth term in prediction and substitute 𝑝𝑆 = 1 into
the given ELMB filter equations and compare them with the
JPDA filter equations in Section 3 in [3].

5. Numerical Studies

In this section, we present numerical results for a two-
dimensional coordinate tracking scenario, in which there
are unknown and time-varying number of targets observed
with position measurements in cluttered environment. The
tracking area is [−1000m, 1000m] × [−1000m, 1000m], and
the filter runs for 100 steps with the sampling period 𝑇 = 1 s.
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Figure 2: Scene 1: ground truth target tracks versus ELMB filter
estimation.

Each target moves according to the nearly constant velocity
model given by

x𝑘 = 𝐹x𝑘−1 + 𝐺k𝑘, (33)

where x𝑘 = [𝑝𝑥,𝑘, V𝑥,𝑘, 𝑝𝑦,𝑘, V𝑦,𝑘]𝑇; 𝐹 = 𝐼2 ⊗ [ 1 𝑇0 1 ]; 𝐺 =
𝐼2⊗[ 𝑇2/2𝑇 ]. 𝐼2 is 2×2 identitymatrix and ⊗ denotes Kronecker
product. The process noise is zero mean Gaussian noise with
standard deviation 𝜎V = 5m/s for both V𝑥,𝑘 and V𝑦,𝑘. Targets
can appear or disappear in the scene at any time, and survival
probability 𝑝𝑆 = 0.99 for each existing target. Newborn
targets can appear spontaneously at predefined places as
known birth parameters. The birth rate for each candidate
location is 𝑟𝐵 = 0.05with zeromean velocity, and the variance
and 𝑄 = diag([10m, 10m/s, 10m, 10m/s]2), where diag()
denotes the diagonal matrix. The detection probability of the
sensor is 𝑝𝐷 = 0.98. Measurement noise is also zero mean
Gaussian with standard deviation 𝜎𝑝 = 10m. Clutter is
uniformly distributed over the tracking area and clutter rate
𝜆𝑐 per scan is known.

We set up two tracking scenarios to evaluate the per-
formance of the ELMB filter compared to the original LMB
filter. There are 12 predefined tracks in each scene, and we
run 1000 times Monte Carlos of the simulation to gain a
stable performance of the ELMB and LMB filter. Scene 1
(no target crossings and 𝜆𝑐 = 20): predefined target born
places are (0m, 0m), (400m, −600m), (−800m, −200m),
and (−200m, 800m). Scene 2 (target crossings and 𝜆𝑐 = 100):
predefined target born places are (−800m, 0m), (0, −800m),
(800m, 800m), and (800m, −800m). At frame 80, three
targets go across position (0m, 0m) simultaneously in Scene
2.

Figures 2 and 3, respectively, show one of the simulation
results of the ELMB filter in each scene, in which the
solid line represents ground truth trajectory and the colored
dots are estimation from the ELMB filter. It is shown that
the ELMB filter is capable of multitarget tracking with
track maintenance. Some tracking videos of each scene
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Figure 3: Scene 2: ground truth target tracks versus ELMB filter
estimation.
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Figure 4: Scene 1: OSPA distance comparison.

are provided as Supplementary Material available online at
https://doi.org/10.1155/2017/8742897 for visualization.

In order to compare the performance of the ELMB filter
and the LMB filter, the Optimal Subpattern Assignment
(OSPA) metric composed of location error and cardinality
error is adopted for the tracking performance evaluation [21].
Here, we use the 𝐿2 norm and the cut-off value as 300. Figures
4 and 5, respectively, for Scene 1 and Scene 2, show the OSPA
distance from 1000 Monte Carlo runs for both the ELMB
filter and the LMB filter. It is evident that the ELMB filter
almost achieves the same the performance as the LMB filter
does with only very slight error in the two tracking scenarios.
Moreover, in Scene 2 at frame 80, the proposed ELMB
filter can alleviate the mislabeling issue of the original LMB
filter when 3 targets are close to each other. This is because
the single Gaussian component approximation in ELMB
filter starts at the “most probable” Gaussian component and
then other components add some innovations to this “most
probable” component. As a result, the ELMB filter only
maintains the “most probable” Gaussian component cross-
validated over time and leaves out the negligible components
that would cause false association and mislabeling in target
crossings. This characteristic is critical in handling target
crossings for multitarget tracking. Thus, the ELMB filter can

https://doi.org/10.1155/2017/8742897
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Figure 5: Scene 2: OSPA distance comparison.
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Figure 6: Scene 1: time comparison.
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Figure 7: Scene 2: time comparison.

be treated as a greedy associationmethod over time with only
small sacrifices in tracking performance.

To illustrate the efficiency of the ELMB filter over the
LMB filter, Figures 6 and 7, respectively, for Scene 1 and Scene
2, show the mean value of time consumption for the ELMB
filter and the LMBfilter from 1000MonteCarlo runs. It can be
easily seen that the ELMB filter generally runs much (about
3 times) faster than the LMB filter both in Scene 1 and in
Scene 2. Even in a tracking scenario with dense clutter, the
computational cost of the ELMB filter would be acceptable
for online tracking of multiple targets. To summarize, the
ELMB filter can perform almost as well as the LMB filter
for multitarget tracking, and is much more efficient than
the LMB filter. Besides, the ELMB filter can also alleviate

the mislabeling issue caused by target crossings in a greedy
association manner.

6. Conclusion

In this paper, we propose an efficient approximation of
the Labeled Multi-Bernoulli filter in order to boost the
efficiency of multitarget tracking by reducing the number of
target posterior components.We propose the target posterior
approximation approach to represent each individual target
with a single weighted Gaussian, so that the number of
posterior hypotheses can be remarkably reduced. Given the
performance comparison with the original LMB filter in the
numerical simulation, it is shown that our proposed approxi-
mation achieves good tracking performance and runs several
times faster than the LMB filter. Our future work would
concern about using the Gibbs sampler in [15] to further
speed up the efficiency of the proposed filter to track very
large number of targets due to the linear complexity of the
Gibbs sampler and the parallelizability of our approximation.
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