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This paper proposes a hybrid factor strategy for cuckoo search algorithm by combining constant factor and varied factor. The
constant factor is used to the dimensions of each solution which are closer to the corresponding dimensions of the best solution,
while the varied factor using a random or a chaotic sequence is utilized to farer dimensions. For each solution, the dimension whose
distance to the corresponding one of the best solution is shorter thanmean distance of all dimensional distances will be regarded as
the closer one, otherwise as the farer one. A suit of 20 benchmark functions are employed to verify the performance of the proposed
strategy, and the results show the improvement in effectiveness and efficiency of the hybridization.

1. Introduction

Cuckoo search algorithm (CS), proposed by Yang and Deb
in 2009, is a new nature-inspired method for solving real-
valued numerical optimization problems [1, 2]. The method
utilizes Lévy flights randomwalk (LFRW) and biased random
walk to search for new solutions and achieves the promising
performance for many tough problems. This has attracted
a lot of researchers, and many studies have been proposed.
Some studies have focused on the combination CS with other
optimizationmethods [3–13]. Some attempts have beenmade
to improve search ability of LFRW and BSW [14–32]. Other
attentions have been played on CS for the combinational and
multiobject problems [33–41].

The above studies have made great contributions to
CS. Nevertheless, according to the implementation in the
literature [2], Lévy flights random walk (LFRW), one of
search components, is used iteratively to search for new
solutions. LFRW uses a mutation operator to generate new
solutions based on the best solution obtained so far. A factor
in LFRW is utilized to control Lévy flights not to be too
aggressive; thus, it is suggested to a constant value, typically
0.01 [2]. In this case, it is beneficial to the solutions which
are close to the best one, but it is a disadvantage to those

far away from the best one. To avoid the above, Wang et
al. [22] proposed a varied factor strategy for CS, named as
VCS, where the random sequence factor obeying uniformly
distribution is used to replace the constant one. Wang and
Zhong [23] used a chaotic sequence factor instead of the
constant one, called CCS. However, the above researches
make the scale of step size of all dimensions of one solution
not different due to the same factor. This may cause a part
of dimensions to be too aggressive when the large factor is
sampled or too inefficient in the case of the small factor.

In this paper, we aim at avoiding the above problem
by using the different factor for the dimensions of each
solution and then propose a hybrid factor based cuckoo
search algorithm, termed asHFCS.The hybrid factor strategy
(HF) combines the constant factor and the varied factor.
The constant factor, typically 0.01, is used to benefit the
dimensions which are closer to the corresponding ones
of the best solution. The varied factor using a random
sequence or a chaotic sequence is employed to drive the
farer dimensions to be near the corresponding ones of the
best one. HFCS selects the dimension of each solution by
using the dimensional distance that can be defined as the
distance between one dimension and the corresponding one
of the best solution. If the dimensional distance of one
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dimension is shorter than the average of all dimensional
distances, then this dimension is selected as the closer one,
else as the farer one. The experiments are carried out on 20
benchmark functions to test HFCS, and the results show the
improvement in effectiveness and efficiency of hybrid factor
strategy.

The remainder of this paper is organized as follows.
Section 2 describes the cuckoo search algorithm and the
variants. Section 3 presents the proposed algorithm. Section 4
reports the experimental results. Section 5 concludes this
paper.

2. Cuckoo Search Algorithm

2.1. CS. CS, a new nature-inspired algorithm based on the
obligate brood parasitic behavior of some cuckoo species
in combination with the Lévy flights behavior of some
birds and fruit flies [1, 2] is a simple yet very promising
population-based stochastic search technique. Generally, a
nest represents a candidate solution 𝑋 = (𝑥1, . . . , 𝑥𝐷), when
solving an objective function 𝑓(𝑥) with the solution space[𝑥𝑗,min, 𝑥𝑗,max], 𝑗 = 1, 2, . . . , 𝐷. Like evolutionary algorithms,
the iteration process of CS includes the initial phase and
evolutional phase.

In the initial phase, the whole population called solution
is randomly sampled from solution space by

𝑥𝑖,𝑗,0 = 𝑥𝑖,𝑗,min + 𝑟 (𝑥𝑖,𝑗,max − 𝑥𝑖,𝑗,min) , 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑟 represents a uniformly distributed random variable
on the range [0, 1] and𝑁 is the population size.

According to the implementation of CS shown in the
literature [2], CS iteratively uses two random walks: Lévy
flights randomwalk (LFRW) and biased randomwalk (BRW)
to search for new solutions.

LFRW is a random walk whose step size is drawn from
Lévy distribution. At generation 𝐺 (𝐺 > 0), LFRW can be
formulated as follows:

𝑋𝑖,𝐺+1 = 𝑋𝑖,𝐺 + 𝛼 ⊕ Lévy (𝛽) , (2)

where 𝛼 is a step size related to the scales of the problem.The⊕means entry-wise multiplications. Lévy(𝛽) is drawn from a
Lévy distribution for large steps:

Lévy (𝛽) ∼ 𝑢 = 𝑡−1−𝛽, 0 < 𝛽 ≤ 2. (3)

In CS, LFRW is employed to search for new solutions around
the best solution obtained so far and implemented according
to the following equation [2]:

𝑋𝑖,𝐺+1 = 𝑋𝑖,𝐺 + 𝛼0 × 𝜙 × 𝑢|V|1/𝛽 × (𝑋𝑖,𝐺 − 𝑋best) , (4)

where 𝛼0 is a factor (generally, 𝛼0 = 0.01) and𝑋best represents
the best solution obtained so far:

𝜙 = ( Γ (1 + 𝛽) × sin ((𝜋 × 𝛽) /2)Γ ((1 + 𝛽) /2) × 𝛽 × 2(𝛽−1)/2)
1/𝛽

, (5)

where 𝛽 is a constant and suggested to be 1.5, 𝑢 and V are
random numbers drawn from a normal distribution with
mean of 0 and standard deviation of 1, and Γ is a gamma
function.

BRW is used to discover new solutions far enough away
from the current best solution by far field randomization [1].
First, a trial solution is built with a mutation of the current
solution as base vector and two randomly selected solutions
as perturbed vectors. Second, a new solution is generated by
a crossover operator from the current and the trial solutions.
BSRW can be formulated as follows:

𝑥𝑖,𝑗,𝐺+1 = {{{
𝑥𝑖,𝑗,𝐺 + 𝑟 (𝑥𝑚,𝑗,𝐺 − 𝑥𝑛,𝑗,𝐺) , if 𝑟𝑎 > 𝑝𝑎,
𝑥𝑖,𝑗,𝐺, otherwise, (6)

where the random indexes𝑚 and 𝑛 are the𝑚th and 𝑛th solu-
tions in the population, respectively, 𝑗 is the 𝑗th dimension of
the solution, 𝑟 and 𝑟𝑎 are randomnumbers on the range [0, 1],
and 𝑝𝑎 is a fraction probability.

After each random walk, CS selects a better solution
according to the new generated and the current solutions
fitness using the greedy strategy. At the end of each iteration
process, the best solution is updated.

2.2. Variants of CS. CS is developed recently, but this algo-
rithm has been researched a lot.

Some studies are an attempt to combine CS with other
optimization techniques. Wang et al. [3] and Ghodrati and
Lotfi [4], respectively, proposed a hybrid CS with particle
swarm optimization. Wang et al. [5] applied differential
evolution to optimize the process of selecting cuckoo of
the CS model during the process of cuckoo in nest updat-
ing. Babukartik and Dhavachelvan [6] proposed the hybrid
algorithm combining ant colony optimization and CS. Sri-
vastava et al. [7] combined the CS algorithm's strength of
converging to the solution in minimal time along with the
tabu mechanism of backtracking from local optimal by Lévy
flight. Liu and Fu [8] applied the local search mechanism
of the frog leaping algorithm to enhance the local search
ability of cuckoo search. Other techniques, such as the
orthogonal learning strategy [9], cooperative coevolutionary
(CC) framework [10–12], and the teaching-learning-based
optimization [13], are also hybridized to enhance the search
ability of cuckoo search.

Some variants have paid attention to improve search abil-
ity of LFRW and BSW.Walton et al. [14] made a modification
to the step size of Lévy flights decreasing as the number of
generations increases in order to increase the convergence
rate. Ljouad et al. [15] modified Lévy flights model with
an adaptive step size based on the number of generations.
Valian et al. [16], Wang and Zhou [17], and Mohapatra et al.
[18] proposed adaptive step sizes of Lévy flights according
to different equations with maximal and minimal step sizes,
respectively. Wang et al. [19] and Huang et al. [20] used
the chaotic sequence to change the step size of Lévy flights,
respectively. Jia et al. [21] proposed the variable step length of
Lévy flights and amethod of discovering probability.Wang et
al. [22, 23], respectively, used random sequence and chaotic
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𝐺 ← 0;
Nest0 = (𝑋𝑖,0, . . . , 𝑋𝑁,0) ← Initialize solutions using Eq. (1);
Fitness← Evaluate the solution Nest0;
FES← 𝑁;
Best𝑋 ← Find the best solution according to the Fitness;
WHILE (FES < MaxFES)𝐺 ← 𝐺 + 1;
variedFactor← Get a rand or a chaotic factor from sequence
FOR (𝑖 from 1 to𝑁)

FOR (j from 1 to𝐷)
If the 𝑗th of the 𝑖th solution is closer to the 𝑗th of Best𝑋𝛼0,𝑗 ← 0.01
Else𝛼0,𝑗 ← variedFactor
Endif
new𝑋𝑖,𝑗,𝐺 ← Generate𝑗th of new solution with Eq. (4)

ENDFOR𝑋𝑖,𝐺 ← Evaluate and select from new𝑋𝑖,𝐺 and𝑋𝑖,𝐺;
FES← FES + 1;

ENDFOR
FOR (𝑖 from 1 to NP)

new𝑋𝑖,𝐺 ← Generate a new solution with Eq. (6)𝑋𝑖,𝐺 ← Evaluate and select from new𝑋𝑖,𝐺 and𝑋𝑖,𝐺;
FES← FES + 1;

ENDFOR
Best𝑋 ← Find and update the best solution;

ENDWHILE

Algorithm 1: HFCS.

sequence as the factor instead of the constant 0.01 in Lévy
flights. Coelho et al. [24] integrated the differential operator
into Lévy flights to search for new solutions. Mlakar et al.
[25] proposed the hybrid algorithm using explicit control of
exploration search strategies with the CS algorithm. Ding
et al. [26] proposed heterogeneous search strategies based
on the quantum mechanism. Wang et al. [27] employed a
probabilistic mutation to enhance the Lévy flights. Wang and
Zhong [28] added a crossover-like operator in search schema
of Lévy flights using one-position inheritance mechanism.
Inspired by the social learning and cognitive learning, Li and
Yin [29] added these two learning parts into Lévy flights and
into BSW. Wang et al. [30, 31] utilized orthogonal crossover
and dimension by dimension improvement to enhance the
search ability of BSW, respectively. Li and Yin [32] used
two new mutation operators based on the rand and best
individuals among the entire population to enhance the
search ability of BSW.

Other versions have focused on the combinational and
multiobject problems. Yang and Deb [33], Hanoun et al.
[34], and Chandrasekaran and Simon [35] modified the
cuckoo search to solvemultiobjective optimization problems.
Ouyang et al. [36] and Quaarab et al. [37] proposed the
improved CS to solve the travelling salesman problem. Zhou
et al. [38] applied an improved CS for solving planar graph
coloring problem. Marichelvam et al. [39] and Dasgupta and
Das [40] presented the discrete versions for the flow shop

scheduling problem. Teymourian et al. [41] applied CS for
solving the capacitated vehicle routing problem.

3. HFCS

According to the implementation of CS [2], the factor, for
example, 0.01, is used to control Lévy flights not to be too
aggressive and to try to make the solutions not jump outside
of the search space. In this case, a small step size will be got
due to this small factor. Obviously, this makes a contribution
to the solutions nearby the best one, but it is not more helpful
to the solutions far away from the best one, resulting in the
slow convergence. Wang et al. [22, 23] utilized the random
sequence and the chaotic sequence instead of the constant
one and proved the improvement on the convergence and
solution quality. However, the factor with constant or with
random sequence or chaotic sequencemakes the scale of each
dimension of each solution be the same. This perhaps results
in a problem that some dimensions near the corresponding
dimensions of the best one have larger scale when using
randomor chaotic sequence, while some dimensions far away
from the corresponding dimensions of the best one get the
smaller scale in the case of the constant factor. To remedy
the above problem, a hybrid factor based cuckoo search is
proposed, called HFCS, and presented in Algorithm 1.

It is worth pointing out that the key part of HFCS is to
select the dimension where the constant factor or the varied
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factor is used. Herein, the dimensional distance and themean
dimension distance, similarly done in [42], are used and
shown in (7) and (8)

DimDist𝑖,𝑗 = abs (Best𝑋𝑗 − 𝑋𝑖,𝑗) , 𝑗 = 1, . . . , 𝐷, (7)

where DimDist𝑖,𝑗 presents the 𝑗th dimensional distance from
the 𝑖th solution to the best one

MeanDist𝑖 = 1𝐷
𝐷∑
𝑗=1

DimDist𝑖,𝑗, (8)

where MeanDist𝑖 is the average dimensional distance of the𝑖th solution.
For each dimension of each solution, the 𝑗th dimension

is closer to the corresponding dimension of the best solution,
called the closer dimension, when the 𝑗th dimensional
distance is shorter than the mean dimensional distance; else
the 𝑗th dimension is called the farer one. For the closer
dimension, the constant factor 0.01 is used in (4), while the
random sequence or the chaotic sequence is employed in (4)
for the farer one.

4. Experiments and Results

In this section, HFCS is tested on 20 benchmark functions
[43]. These 20 benchmark functions include 2 unimodal
functions 𝐹sph and 𝐹ros; 8 multimodal functions 𝐹ack, 𝐹grw,𝐹ras, 𝐹sch, 𝐹sal, 𝐹wht, 𝐹pn1, and 𝐹pn2; and 10 rotated and/or
shifted functions 𝐹1–𝐹10. More detail about 20 functions can
be found in [43, 44].

HFCS has the same parameters as CS, and we use the
same setting for them, unless a change is mentioned. The
parameter 𝑝𝑎 is 0.25. Each algorithm is performed 25 times
for each function with the dimension 𝐷 = 10, 30, and
50, respectively. The population size of each algorithm 𝑁
is 𝐷 when 𝐷 = 30 and 𝐷 = 50, while it is 30 in the
case of 𝐷 = 10. The maximum function evaluations are10000 × 𝐷. Note that HFCS can hybridize the constant
factor and the random sequence or the chaotic sequence,
resulting in two algorithms: HFCS with the combination of
the constant factor and the random sequence similarly done
in [22], termed as rHFCS, andHFCS with the combination of
the constant factor and the chaotic sequence same generated
in [23], called cHFCS.

Error and the convergence speed are employed to analyze
HFCS. Error, which is the function fitness Error for the
solution 𝑋 obtained by the algorithms, is defined as 𝑓(𝑋) −𝑓(𝑋∗), where 𝑋∗ is the known global optimum of function.
Moreover, the average and standard deviation of the best
error values, presented as “AVGEr ± STDEr,” are used in the
different tables. Additionally, theWilcoxon signed-rank at the
5% significance level is used to show the differences of Error
between two algorithms. The “+” symbol shows that HFCS
outperforms the compared algorithm at the 5% significant
level, the “−” symbol shows that the compared algorithmdoes
better than HFCS, and the “=” symbol means that HFCS is
equal to the compared algorithm.We summarily give the total
number of statistical significant cases at the bottom of each
table.

The convergence speed is measured by using the function
evaluations (FES) which are spent till the algorithm reaches
the given Error which is 10−6 or 10−2 as suggested in [43]
within the maximum function evaluations. The average and
standard deviation of FES and successful runs (SR) to the
given Error during 25 runs, termed as “AVGFES ± STDFES
(SR),” are utilized in Table 3. Also, the convergence speed is
shown graphically by using the convergence graphswhere the
mean Error of the best solution at iteration process over the
total run is presented.

4.1. Performance of HFCS. To show the effect of the proposed
algorithm, Table 1 lists Error obtained by CS, rHFCS, and
cHFCS, and Table 2 lists the results of the multiple-problem
Wilcoxon’s test which was done similarly in [45, 46].

It can be seen from Table 1 that the hybrid factor strategy
can overall improve the solution quality in terms of Error.
As for 2 unimodal functions, rHFCS and cHFCS bring more
accurate solutions than CS. As for 8 multimodal functions,
rHFCS obtains the solutions with higher accuracy, while
cHFCS does the same. As for 10 rotated and/or shifted func-
tions, rHFCS and cHFCS both make the great improvement
on the accuracy of solutions except for 𝐹3 and 𝐹7. According
to the summary of “+,” “=,” and “−,” rHFCS wins CS on 16
out of 20 functions, ties CS on 2 out of 20 functions, and loses
CS on 2 out of functions. cHFCS is superior to CS on 16 out
of 20 functions, is equal to CS on 2 out of 20 functions, and is
inferior to CS on 2 out of 20 functions. In addition, in terms of
the results in Table 2, rHFCS and cHFCS both get apparently
higher 𝑅+ value than 𝑅− value. This suggests that rHFCS and
cHFCS outperform CS obviously.

Moreover, Table 3 lists the required function evaluations
(FES) to the given Error within the maximum function
evaluations. It can be observed from Table 2 that rHFCS and
cHFCS overall have a quicker convergence to the given Error
within the maximum function evaluations. For instance,
CS, rHFCS, and cHFCS share the same stable convergence
to the given Error in terms of SR on 𝐹sph, 𝐹pn2, and 𝐹1;
however, rHFCS and cHFCS converge quicker according to
FES. As for 𝐹ack, 𝐹grw, and 𝐹pn1, rHFCS and cHFCS show
the better stability and the quicker convergence. As for 𝐹ras,𝐹wht, and 𝐹6, rHFCS and cHFCS still converge quicker than
CS, although these two algorithms do not gain the stability
convergence with the help of SR. As for𝐹7, CS stably converge
to the given Error, but rHFCS and cHFCS obtain the quicker
convergence.

To further show the convergence performance, the con-
vergence curves obtained by CS, rHFCS, and cHFCS for parts
of functions are plotted in Figure 1.

It can be observed from Figure 1 that rHFCS and cHFCS
achieve overall the better convergence speed in terms of
curves. As for the functions solved better by rHFCS and
cHFCS, for example, 𝐹sph, 𝐹pn1, 𝐹pn2, 𝐹2, and 𝐹6, rHFCS and
cHFCS still converge quicker than CS; see Figures 1(a), 1(c),
1(d), 1(e), and 1(f). As for𝐹grw, cHFCS gains the same accurate
solution with CS, but cHFCS obtains a quicker convergence
than CS on the beginning of iteration. It is interesting that
CS does better than rHFCS and cHFCS when converging to
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Table 1: Error obtained by CS, rHFCS, and cHFCS for 30-dimensional functions.

CS rHFCS cHFCS
AVGEr ± STDEr 𝑝 value AVGEr ± STDEr 𝑝 value AVGEr ± STDEr𝐹sph 7.69𝐸 − 31 ± 1.33𝐸 − 30 + 0.000012 3.10𝐸 − 67 ± 3.87𝐸 − 67 + 0.000012 2.38𝐸 − 60 ± 2.95𝐸 − 60

𝐹ros 1.29𝐸 + 01 ± 1.23𝐸 + 01 + 0.000012 6.47𝐸 − 01 ± 1.27𝐸 + 00 + 0.000194 3.29𝐸 + 00 ± 1.41𝐸 + 01
𝐹ack 3.73𝐸 − 02 ± 1.86𝐸 − 01 + 0.000012 7.67𝐸 − 15 ± 1.97𝐸 − 15 + 0.000012 7.39𝐸 − 15 ± 1.42𝐸 − 15
𝐹grw 2.96𝐸 − 04 ± 1.48𝐸 − 03 = 0.500000 0.00𝐸 + 00 ± 0.00𝐸 + 00 = 0.500000 0.00𝐸 + 00 ± 0.00𝐸 + 00
𝐹ras 2.47𝐸 + 01 ± 5.28𝐸 + 00 + 0.000016 1.16𝐸 + 01 ± 5.98𝐸 + 00 + 0.000081 1.54𝐸 + 01 ± 5.67𝐸 + 00
𝐹sch 1.44𝐸 + 03 ± 2.95𝐸 + 02 + 0.000012 3.57𝐸 + 02 ± 3.08𝐸 + 02 + 0.000018 5.66𝐸 + 02 ± 3.97𝐸 + 02
𝐹sal 3.68𝐸 − 01 ± 6.90𝐸 − 02 + 0.000023 2.60𝐸 − 01 ± 5.00𝐸 − 02 + 0.000016 2.48𝐸 − 01 ± 5.10𝐸 − 02
𝐹wht 3.64𝐸 + 02 ± 4.92𝐸 + 01 + 0.000016 1.81𝐸 + 02 ± 9.33𝐸 + 01 + 0.000020 2.02𝐸 + 02 ± 7.95𝐸 + 01
𝐹pn1 1.66𝐸 − 02 ± 8.29𝐸 − 02 + 0.000012 1.57𝐸 − 32 ± 5.59𝐸 − 48 + 0.000012 1.57𝐸 − 32 ± 5.59𝐸 − 48
𝐹pn2 1.50𝐸 − 28 ± 2.28𝐸 − 28 + 0.000012 1.35𝐸 − 32 ± 5.59𝐸 − 48 + 0.000012 1.35𝐸 − 32 ± 5.59𝐸 − 48
𝐹1 9.21𝐸 − 30 ± 2.29𝐸 − 29 + 0.015625 0.00𝐸 + 00 ± 0.00𝐸 + 00 + 0.015625 0.00𝐸 + 00 ± 0.00𝐸 + 00
𝐹2 8.74𝐸 − 03 ± 6.88𝐸 − 03 + 0.000126 1.84𝐸 − 03 ± 1.84𝐸 − 03 + 0.004162 3.30𝐸 − 03 ± 3.47𝐸 − 03
𝐹3 2.12𝐸 + 06 ± 5.42𝐸 + 05 − 0.005355 3.02𝐸 + 06 ± 1.10𝐸 + 06 − 0.001721 2.83𝐸 + 06 ± 8.65𝐸 + 05
𝐹4 1.65𝐸 + 03 ± 1.00𝐸 + 03 + 0.000018 3.27𝐸 + 02 ± 1.82𝐸 + 02 + 0.000014 3.70𝐸 + 02 ± 2.21𝐸 + 02
𝐹5 3.01𝐸 + 03 ± 7.74𝐸 + 02 + 0.000029 1.46𝐸 + 03 ± 6.61𝐸 + 02 + 0.000240 2.16𝐸 + 03 ± 6.52𝐸 + 02
𝐹6 2.01𝐸 + 01 ± 2.05𝐸 + 01 + 0.002064 7.65𝐸 + 00 ± 1.87𝐸 + 01 + 0.000014 6.39𝐸 − 01 ± 1.23𝐸 + 00
𝐹7 6.56𝐸 − 04 ± 1.77𝐸 − 03 − 0.028314 6.37𝐸 − 03 ± 8.33𝐸 − 03 − 0.002699 1.45𝐸 − 02 ± 1.76𝐸 − 02
𝐹8 2.10𝐸 + 01 ± 4.29𝐸 − 02 = 0.287862 2.09𝐸 + 01 ± 5.36𝐸 − 02 = 0.157770 2.09𝐸 + 01 ± 6.50𝐸 − 02
𝐹9 2.73𝐸 + 01 ± 4.60𝐸 + 00 + 0.000065 1.54𝐸 + 01 ± 7.09𝐸 + 00 + 0.000023 1.53𝐸 + 01 ± 5.74𝐸 + 00
𝐹10 1.64𝐸 + 02 ± 3.19𝐸 + 01 + 0.000051 1.11𝐸 + 02 ± 1.98𝐸 + 01 + 0.000014 9.53𝐸 + 01 ± 1.38𝐸 + 01
+/=/− 16/2/2 16/2/2

Table 2: Results of the multiple-problem Wilcoxon’s test for HFCS
and CS for 20 functions at𝐷 = 30.
Algorithm 𝑅+ 𝑅− 𝑝 value 𝛼 = 0.05 𝛼 = 0.1
rHFCSversusCS 185.000 25.000 0.002821 + +
cHFCSversusCS 184.000 26.000 0.003185 + +

the given Error, shown in Table 3; however, because of the
lack of convergence stability, rHFCS and cHFCS show better
convergence curves; see Figure 1(f).

According to the Error, FES, and convergence curve,
HFCS overall makes an improvement on solution quality and
convergence speed. This is because different factors provide
different step size information, resulting in the improvement
of search ability.

4.2. Scalability of HFCS. The scalability study is investigated
to show the performance of HFCS when the dimensionality
of problem changes. The experiments are carried out on the
20 functions at 10-𝐷 and 50-𝐷 due to their definition up to
50-𝐷 [44]. The results are tabulated in Tables 4 and 5.

In the case of 𝐷 = 10, according to Error, HFCS exhibits
a great improvement on solutions to most of functions. For
example, except for 𝐹3, 𝐹7, and 𝐹8, rHFCS brings the higher
accurate solutions, while cHFCS gains the solutions with
higher accuracy except for 𝐹3 and 𝐹8. Furthermore, in terms
of the total of “+,” “=,” and “−,” rHFCS performs better than

Table 3: FES obtained by CS, rHFCS, and cHFCS at𝐷 = 30.

Fun
CS

AVGFES ±
STDFES (SR)

rHFCS
AVGFES ±
STDFES (SR)

cHFCS
AVGFES ±
STDFES (SR)

𝐹sph 88383 ± 2231
(25)

43527 ± 1131
(25)

45389 ± 1211
(25)

𝐹ros — 232260 ± 22231
(2) 235200 ± 0 (1)

𝐹ack 168073 ± 18358
(24)

65055 ± 1079
(25)

68547 ± 1628
(25)

𝐹grw 133903 ± 24099
(24)

58582 ± 13464
(25)

61533 ± 14039
(24)

𝐹ras — 236640 ± 36317
(2) —

𝐹wht — 102330 ± 5558
(2) 145140 ± 2715

(2)
𝐹pn1 162088 ± 28646

(24)
48329 ± 3944

(25)
51641 ± 4573

(25)

𝐹pn2 104043 ± 4511
(25)

49906 ± 3471
(25)

51164 ± 2413
(25)

𝐹1 93267 ± 2693
(25)

45024 ± 1427
(25)

46515 ± 1190
(25)

𝐹6 191580 ± 0 (1) 224858 ± 43665
(8) 259395 ± 29000

(4)
𝐹7 157916 ± 29354

(25)
128916 ± 64695

(20)
156660 ± 64681

(19)
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Figure 1: Convergence curves of CS, rHFCS, and cHFCS.

Table 5: Results of the multiple-problem Wilcoxon’s test for HFCS
and CS for 20 functions at𝐷 = 10 and𝐷 = 50.

Algorithm 𝑅+ 𝑅− 𝑝 value 𝛼 = 0.05 𝛼 = 0.1

𝐷 = 10
rHFCS

versus CS 180.000 30.000 0.005111 + +

cHFCS
versus CS 190.000 20.000 0.001507 + +

𝐷 = 50
rHFCS

versus CS 168.000 42.000 0.018675 + +

cHFCS
versus CS 167.000 43.000 0.020633 + +

CS on 16 out of 20 functions, shows equivalence to CS on
3 out of 20 functions, and performs worse than CS on 1
out of 20 ones. cHFCS wins CS on 17 out of 20 functions,
ties CS on 2 out of 20 ones, and loses CS on 1 out 20 ones.
Additionally, rHFCS and cHFCS gain higher 𝑅+ value than𝑅− valuemarkedlywith the help of the results listed in Table 5.

When 𝐷 = 50, HFCS still can bring solutions with
higher quality to most of functions. For instance, rHFCS
achieves the better solutions except for 𝐹2, 𝐹3, 𝐹7, and 𝐹8,
while cHFCS does well except for 𝐹2, 𝐹3, 𝐹7, and 𝐹8. rHFCS
outperforms, draws a tie, and loses CS on 14, 4, and 2 out of
20 functions, respectively. cHFCS is superior to CS on 15 out
of 20 functions, is equal to CS on 3 out of 20 functions, and

is inferior to CS on 2 out of 20 ones. Moreover, by the aid of
the results reported in Table 5, rHFCS and cHFCS also obtain
remarkable higher 𝑅+ value than 𝑅− value.

Summarily, it suggests that the improvement of HFCS is
stable when the dimensionality of problems increases.

4.3. Comparison with VCS and CCS. The comparison is
made between HFCS with VCS and CCS due to the random
sequence and the chaotic sequence used in these two algo-
rithms, respectively. Table 6 lists the Error obtained by VCS
and rHFCS,while Table 7 shows the Error achieved by cHFCS
and CCS where CCS employs the chaotic sequence as factor
in (4) and the parameter 𝑝𝑎 is 0.25, termed as fCCS. Table 8
reports the results of the multiple-problem Wilcoxon’s test
between HFCS and VCS and fCCS for all functions.

It can be observed from Table 6 that the hybrid factor
of the constant and the random sequence overall perform
better than the random sequence. As for unimodal functions,
compared with VCS, rHFCS brings solutions with higher
accuracy. Moreover, as for multimodal functions, rHFCS
not only keeps the same Error as VCS for 𝐹grw, 𝐹pn1, and𝐹pn2, but also enhances the accuracy except for 𝐹ack and 𝐹sal.
Additionally, as for rotated and/or shifted functions, the same
conclusion onmultimodal functions can be drawnon rHFCS.
In all, rHFCS outperforms VCS on 7 out of 20 functions, ties
VCS on 11 out of 20 functions, and loses VCS on 2 out of
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Table 6: Error obtained by VCS and rHFCS at𝐷 = 30.
VCS rHFCS

AVGEr ± STDEr 𝑝 value AVGEr ± STDEr

𝐹sph 4.53𝐸 − 49 ±7.48𝐸 − 49 + 0.000012 3.10E − 67 ±
3.87E − 67

𝐹ros 4.67𝐸 + 00 ±2.33𝐸 + 00 + 0.000018 6.47E − 01 ±
1.27E + 00

𝐹ack 7.25E − 15 ±
7.11E − 16 = 0.500000 7.67𝐸 − 15 ±1.97𝐸 − 15

𝐹grw 0.00𝐸 + 00 ±0.00𝐸 + 00 = 1.000000 0.00𝐸 + 00 ±0.00𝐸 + 00
𝐹ras 1.78𝐸 + 01 ±6.96𝐸 + 00 + 0.007423 1.16E + 01 ±

5.98E + 00
𝐹sch 5.61𝐸 + 02 ±3.38𝐸 + 02 + 0.037043 3.57E + 02 ±

3.08E + 02
𝐹sal 2.24E − 01 ±

4.36E − 02 − 0.009417 2.60𝐸 − 01 ±5.00𝐸 − 02
𝐹wht 2.42𝐸 + 02 ±6.47𝐸 + 01 + 0.003507 1.81E + 02 ±

9.33E + 01
𝐹pn1 1.57𝐸 − 32 ±5.59𝐸 − 48 = 1.000000 1.57𝐸 − 32 ±5.59𝐸 − 48
𝐹pn2 1.35𝐸 − 32 ±5.59𝐸 − 48 = 1.000000 1.35𝐸 − 32 ±5.59𝐸 − 48
𝐹1 0.00𝐸 + 00 ±0.00𝐸 + 00 = 1.000000 0.00𝐸 + 00 ±0.00𝐸 + 00
𝐹2 1.44𝐸 − 02 ±1.27𝐸 − 02 + 0.000020 1.84E − 03 ±

1.84E − 03
𝐹3 3.34𝐸 + 06 ±9.76𝐸 + 05 = 0.353258 3.02E + 06 ±

1.10E + 06
𝐹4 4.45𝐸 + 02 ±2.74𝐸 + 02 = 0.097970 3.27E + 02 ±

1.82E + 02
𝐹5 1.84𝐸 + 03 ±7.73𝐸 + 02 = 0.121828 1.46E + 03 ±

6.61E + 02
𝐹6 1.91𝐸 + 01 ±2.65𝐸 + 01 + 0.004162 7.65E + 00 ±

1.87E + 01
𝐹7 3.46E − 03 ±

6.55E − 03 = 0.275832 6.37𝐸 − 03 ±8.33𝐸 − 03
𝐹8 2.09𝐸 + 01 ±4.42𝐸 − 02 = 0.696425 2.09𝐸 + 01 ±5.36𝐸 − 02
𝐹9 1.74𝐸 + 01 ±6.33𝐸 + 00 = 0.210872 1.54E + 01 ±

7.09E + 00
𝐹10 9.87E + 01 ±

1.50E + 01 − 0.034670 1.11𝐸 + 02 ±1.98𝐸 + 01
+/=/− 7/11/2

20 ones. Additionally, rHFCS gets higher 𝑅+ value than 𝑅−
value, and rHFCS andVCS are of significant difference at two
significant levels. It suggests that rHFCS is overall better than
VCS.

Table 7 shows that the hybrid factor of the constant and
the chaotic sequence overall perform better than the chaotic
sequence. Compared with fCCS, cHFCS works better on
unimodal functions. As for multimodal functions, cHFCS
gains the same performance as fCCS for 𝐹grw, 𝐹pn1, and 𝐹pn2
and increases the accuracy of solutions to 𝐹ras, 𝐹sch, and 𝐹wht.
As for rotated and/or shifted functions, cHFCS performs

Table 7: Error obtained by fCCS and cHFCS at𝐷 = 30.
fCCS cHFCS

AVGEr ± STDEr 𝑝 value AVGEr ± STDEr

𝐹sph 1.63𝐸 − 52 ±1.87𝐸 − 52 + 0.000012 2.38E − 60 ±
2.95E − 60

𝐹ros 3.64𝐸 + 00 ±2.53𝐸 + 00 + 0.001079 3.29E + 00 ±
1.41E + 01

𝐹ack 7.11E − 15 ±
0.00E + 00 = 1.000000 7.39𝐸 − 15 ±1.42𝐸 − 15

𝐹grw 0.00𝐸 + 00 ±0.00𝐸 + 00 = 1.000000 0.00𝐸 + 00 ±0.00𝐸 + 00
𝐹ras 1.60𝐸 + 01 ±6.52𝐸 + 00 = 0.509755 1.54E + 01 ±

5.67E + 00
𝐹sch 7.60𝐸 + 02 ±4.90𝐸 + 02 = 0.300241 5.66E + 02 ±

3.97E + 02
𝐹sal 2.12E − 01 ±

3.32E − 02 − 0.005355 2.48𝐸 − 01 ±5.10𝐸 − 02
𝐹wht 2.48𝐸 + 02 ±5.93𝐸 + 01 + 0.047967 2.02E + 02 ±

7.95E + 01
𝐹pn1 1.57𝐸 − 32 ±5.59𝐸 − 48 = 1.000000 1.57𝐸 − 32 ±5.59𝐸 − 48
𝐹pn2 1.35𝐸 − 32 ±5.59𝐸 − 48 = 1.000000 1.35𝐸 − 32 ±5.59𝐸 − 48
𝐹1 0.00𝐸 + 00 ±0.00𝐸 + 00 = 1.000000 0.00𝐸 + 00 ±0.00𝐸 + 00
𝐹2 9.96𝐸 − 03 ±6.91𝐸 − 03 + 0.000194 3.30E − 03 ±

3.47E − 03
𝐹3 2.59E + 06 ±

7.35E + 05 = 0.353258 2.83𝐸 + 06 ±8.65𝐸 + 05
𝐹4 3.68E + 02 ±

2.46E + 02 = 0.946369 3.70𝐸 + 02 ±2.21𝐸 + 02
𝐹5 1.76E + 03 ±

6.68E + 02 = 0.078001 2.16𝐸 + 03 ±6.52𝐸 + 02
𝐹6 1.88𝐸 + 01 ±2.40𝐸 + 01 + 0.000016 6.39E − 01 ±

1.23E + 00
𝐹7 3.96E − 03 ±

7.53E − 03 − 0.028314 1.45𝐸 − 02 ±1.76𝐸 − 02
𝐹8 2.09𝐸 + 01 ±6.14𝐸 − 02 = 0.819095 2.09𝐸 + 01 ±6.50𝐸 − 02
𝐹9 1.91𝐸 + 01 ±6.96𝐸 + 00 + 0.047967 1.53E + 01 ±

5.74E + 00
𝐹10 1.01𝐸 + 02 ±1.68𝐸 + 01 = 0.051087 9.53E + 01 ±

1.38E + 01
+/=/− 6/12/2

Table 8: Results of the multiple-problemWilcoxon’s test for HFCS,
VCS, and fCCS for 20 functions at𝐷 = 30.
Algorithm 𝑅+ 𝑅− 𝑝 value 𝛼 = 0.05 𝛼 = 0.1
rHFCS versus VCS 164.500 45.500 0.026331 + +
cHFCS versus fCCS 118.875 91.125 0.604645 = =

better on 𝐹1, 𝐹2, 𝐹6, 𝐹9, and 𝐹10. In summary, cHFCS is
superior to fCCS on 6 out of 20 functions, is equal to fCCS on
12 out of 20 functions, and is inferior to fCCS on 2 out of 20
ones. In addition, cHFCS gains higher𝑅+ value than𝑅− value,



Mathematical Problems in Engineering 9

Table 9: Error obtained by OPICS and HFOPICS at 𝐷 = 30.
Fun OPICS rHFOPICS cHFOPICS
𝐹sph 1.99E − 88 ± 1.67E − 88∗ 2.17𝐸 − 85 ± 3.79𝐸 − 85 6.43𝐸 − 77 ± 9.35𝐸 − 77
𝐹ros 4.94𝐸 + 00 ± 1.46𝐸 + 01 1.13E + 00 ± 4.10E + 00 3.23𝐸 − 01 ± 9.88𝐸 − 01∗
𝐹ack 7.67𝐸 − 15 ± 1.97𝐸 − 15 7.25E − 15 ± 1.62E − 15 7.11𝐸 − 15 ± 0.00𝐸 + 00∗
𝐹grw 0.00𝐸 + 00 ± 0.00𝐸 + 00 0.00𝐸 + 00 ± 0.00𝐸 + 00 0.00𝐸 + 00 ± 0.00𝐸 + 00
𝐹ras 5.17𝐸 − 01 ± 6.50𝐸 − 01 7.96E − 02 ± 2.75E − 01 3.18𝐸 − 01 ± 5.54𝐸 − 01∗
𝐹sch 1.90𝐸 + 01 ± 4.43𝐸 + 01∗ 1.42E + 01 ± 3.93E + 01 4.74𝐸 + 01 ± 7.65𝐸 + 01
𝐹sal 3.28𝐸 − 01 ± 5.42𝐸 − 02 2.12E − 01 ± 3.32E − 02 2.08𝐸 − 01 ± 2.77𝐸 − 02∗
𝐹wht 6.70E + 00 ± 1.66E + 01∗ 3.07𝐸 + 01 ± 2.65𝐸 + 01 3.26𝐸 + 01 ± 4.20𝐸 + 01
𝐹pn1 1.57𝐸 − 32 ± 5.59𝐸 − 48 1.57𝐸 − 32 ± 5.59𝐸 − 48 1.57𝐸 − 32 ± 5.59𝐸 − 48
𝐹pn2 1.35𝐸 − 32 ± 5.59𝐸 − 48 1.35𝐸 − 32 ± 5.59𝐸 − 48 1.35𝐸 − 32 ± 5.59𝐸 − 48
𝐹1 0.00𝐸 + 00 ± 0.00𝐸 + 00 0.00𝐸 + 00 ± 0.00𝐸 + 00 0.00𝐸 + 00 ± 0.00𝐸 + 00
𝐹2 4.54𝐸 − 02 ± 1.04𝐸 − 01 1.15E − 03 ± 9.03E − 04 3.50𝐸 − 03 ± 2.73𝐸 − 03∗
𝐹3 3.48𝐸 + 06 ± 9.19𝐸 + 05 2.68E + 06 ± 7.82E + 05 3.12𝐸 + 06 ± 8.87𝐸 + 05∗
𝐹4 8.62𝐸 + 02 ± 6.36𝐸 + 02 1.90E + 02 ± 1.51E + 02 2.85𝐸 + 02 ± 1.97𝐸 + 02∗
𝐹5 2.47𝐸 + 03 ± 5.40𝐸 + 02 1.71E + 03 ± 6.61E + 02 1.80𝐸 + 03 ± 6.17𝐸 + 02∗
𝐹6 1.12𝐸 + 01 ± 2.05𝐸 + 01 2.49E + 00 ± 7.82E + 00 7.54𝐸 + 00 ± 1.93𝐸 + 01∗
𝐹7 1.60E − 03 ± 2.88E − 03∗ 8.30𝐸 − 03 ± 7.37𝐸 − 03 6.46𝐸 − 03 ± 6.39𝐸 − 03
𝐹8 2.09𝐸 + 01 ± 5.51𝐸 − 02 2.09𝐸 + 01 ± 4.97𝐸 − 02 2.09𝐸 + 01 ± 4.37𝐸 − 02
𝐹9 1.23𝐸 + 00 ± 1.55𝐸 + 00 6.37E − 01 ± 7.53E − 01 9.95𝐸 − 01 ± 9.53𝐸 − 01∗
𝐹10 1.10𝐸 + 02 ± 1.79𝐸 + 01 7.92E + 01 ± 1.31E + 01 8.31𝐸 + 01 ± 1.82𝐸 + 01∗

Table 10: Results of themultiple-problemWilcoxon’s test for OPICS
and HFOPICS for 20 functions at𝐷 = 30.
Algorithm 𝑅+ 𝑅− 𝑝 value 𝛼 = 0.05 𝛼 = 0.1
rHFOPICS
versus
OPICS

173.125 36.875 0.010981 + +

cHFOPICS
versus
OPICS

155.750 54.250 0.058141 = +

although cHFCS and fCCS are not significant differences at
two significant levels. It reveals that cHFCS is overall better.

4.4. Effect of Integration into Improved Algorithms. In this
section, we investigate the performance of the hybrid factor
integrated into improved algorithms to analyze the suitability.
Considering the implementation of the improved algorithm,
we choose one-position inheritance cuckoo search algorithm,
called OPICS, to be integrated, resulting in rHFOPICS and
cHFOPICS. rHFOPCIS presents that OPICS is enhanced
with the hybrid factor of the constant and the random
sequence, while cHFOPICS presents that OPICS is combined
with the hybrid factor of the constant and chaotic sequence.
Table 9 lists Error obtained by rHFOPICS, cHFOPICS,
and OPICS, where the better Error between rHFOPICS
and OPICS is highlighted in boldface, and the better Error
between cHFOPICS and OPICS is marked with asterisk.
Table 10 lists the results of the multiple-problem Wilcoxon’s
test between OPICS and HFOPICS for all functions.

It can be seen from Table 7 that the hybrid factor can
make the OPICS enhance the accuracy of solutions on most
of functions. In terms of Error, the results can be kept when
rHFOPICS and cHFOPICS solve for 𝐹grw, 𝐹pn1, 𝐹pn2, 𝐹1, and𝐹8. As for unimodal functions, rHFOPICS and cHFOPICS
bring the higher accurate solutions to 𝐹ros. As for multimodal
functions, except for 𝐹wht, rHFOPICS achieves the solutions
with higher accuracy, while cHFOPICS does the same things
except for 𝐹sch and 𝐹wht. As for rotated and/or shifted
functions, rHFOPICS and cHFOPICS perform better than
OPICS except for𝐹7.Moreover, Table 8 shows that rHFOPICS
gains higher 𝑅+ value than 𝑅− value, and rHFOPICS and
OPICS are of significant difference at two significant levels.
It suggests that rHFOPICS is significantly better than OPICS.
We can see from Table 8 that cHFOPICS also achieves higher𝑅+ value than 𝑅− value, and OPICS is significantly inferior to
cHFOPICS at 𝛼 = 0.1 significant level.

5. Conclusion

In this paper, we presented a hybrid factor strategy for
CS, called HFCS. The hybrid factor strategy was combined
with the constant and the random sequence or the chaotic
sequence. HFCS employed the dimensional distance to select
dimensions to use the constant or the random sequence
or the chaotic sequence. HFCS was tested on a suit of
20 benchmark functions. The results show that the hybrid
factor strategy can effectively improve the performance of
CS for most of functions including solution quality and
convergence speed. The results also show that the hybrid
factor strategy is effective and stable when the dimension of
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problems increases. In addition, the hybrid factor can be easy
to integrate into other improved algorithms.

There are several interesting directions for future work.
Experimentally, the mean dimensional distance is used to
select some dimensions; thus, the next work will be per-
formed using different distance, for example, the median
dimensional distance. Secondly, we plan to investigate the
hybrid factor strategy for other improved algorithms. Last
but not least, we plan to apply HFCS to some real-world
optimization problems.
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