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A systematic analysis of the dynamic behavior of a gear-bearing systemwith nonlinear suspension,
couple-stress fluid flow effect, nonlinear oil-film force, and nonlinear gear mesh force is performed
in the present study. The dynamic orbits of the system are observed using bifurcation diagrams
plotted using the dimensionless rotational speed ratio as a control parameter. The onset of chaotic
motion is identified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents
and fractal dimension of the gear-bearing system. The numerical results reveal that the system
exhibits a diverse range of periodic, subharmonic, quasiperiodic, and chaotic behaviors. The
couple-stress fluid would be a useful lubricating fluid to suppress nonlinear dynamic responses
and improve the steady of the systems. The results presented in this study provide some useful
insights into the design and development of a gear-bearing system for rotating machinery that
operates in highly rotational speed and highly nonlinear regimes.

1. Introduction

Lubricants with additives are often considered as non-Newtonian fluids and are found to be
able to used to improve the properties of lubricants such as the viscosity of lubricants in many
studies and also many applications. According to the results of experiments, it evidenced that
the use of small amounts of suitable additives can improve lubricant properties. It can make
the viscosity of the lubricant to be independent of the temperature. With the development
of modern machine elements, the increasing use of complex fluids as lubricants has been
emphasized. Oliver [1] had found that the presence of dissolved polymer in the lubricant
could increase the load-carrying capacity and decrease the friction. Spikes [2] showed that
the base oil blending with additives could reduce the friction and the surface damage in
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elastohydrodynamic contacts. Because of the behavior of the complex fluids violates the
linear shear-stress-rate relationship, it fails to describe the rheological behaviour of the
non-Newtonian fluid. Therefore, a different microcontinuum theory has been developed
to better describe the rheological behaviour of the non-Newtonian fluid. Shehawey and
Mekheimer [3] applied the couple-stress model to analyze the peristalsis problem for its
relativemathematical simplicity. Das [4] proposed the analysis of elastohydrodynamic theory
of line contacts. Das [5] studied the slider bearing lubricated with couple-stress fluids
in magnetic field and observed that both the values of the maximum load capacity, and
corresponding inlet-outlet film ratio depend on couple stress, magnetic parameters and the
shape of bearings. Elsharkawy and Guedouar [6] proposed an efficient numerical scheme
to solve the direct lubrication problem for journal bearings lubricated with couple stress
fluids, which consists of the modified Reynolds equation, the film thickness equation, and the
boundary conditions for the pressure field. Hsu et al. [7] studied the short journal bearings
lubricated with the non-Newtonian fluid which is combined with the effects of couple-
stresses and surface roughness. It was found that the combined effects of couple stress and
surface roughness can improve the load-carrying capacity and decrease the attitude angle
and friction parameters. Lahmar [8] also found that the lubricants with couple stress would
increase the load-carrying capacity and stability and decrease the friction factor and the
attitude angle. The above researches are all about the applications of the couple-stress fluids,
and all the results of their studies emphasized that the couple-stress fluids are more superior
and more stable than the traditional Newtonian fluids. Chang-Jian and Chen [9] found
couple-stress fluid can be used to suppress nonperiodic or even chaotic dynamic response
especially for higher rotating speeds in rotor-bearing systems.

Gears have played important roles in power transmission, and therefore the study
of gear dynamics is necessary. Many studies have focused on analyzing gear dynamics or
relative researches. Vedmar and Andersson [10] presented a method to calculate dynamic
gear tooth force and bearing forces and the bearing model was under elastic bearings
assumption. The simulation results of elastic model were somewhat different comparing
with stiff one. The gear mesh model used with constant was studied by a lot of people,
such as Kahraman and Singh [11] , Lin et al. [12] , Yoon and Rao [13] , and Ichimaru and
Hirano [14] . Amabili and Fregolent [15] introduced a method based on the measurement
of the gear torsional vibrations to identify natural frequency, damping parameters, and
equivalent gear error of a spur-gear-pair model. Özgüven and Houser [16, 17] performed
dynamic analysis on gears with the effects of variable mesh stiffness, damping, gear errors
profile modification, and backlash. Cai and Hayashi [18] calculated the optimum profile
modification to obtain a zero vibration of the gear pair. Umezawa et al. [19] analyzed a single
DOF numerical gear pair model and compared their numerical results with experimental
dynamic transmission errors. McFadden and Toozhy [20] used the high-frequency technique
combinedwith synchronous averaging to detect the failure in rolling element bearings. Litvin
et al. [21] proposed a modified geometry of an asymmetric spur-gear drive designed as
a favorable shape of transmission errors of reduced magnitude and also reduced contact
and bending stresses for an asymmetric spur-gear drive. Guan et al. [22] performed finite-
element method to simulate the geared rotor system constructed from beam and lumped
mass/stiffness elements and compared the required actuation effort, control robustness, and
implementation cost. Giagopulos et al. [23] presented an analysis on the nonlinear dynamics
of a gear-pair system supported on rolling element bearings and used a suitable genetic
algorithm to measure noise and model error. Theodossiades and Natsiavas [24] investigated
dynamic responses and stability characteristics of rotordynamic systems interconnected
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with gear pairs, supported on oil journal bearings. They found many nonperiodic dynamic
behaviors. They [25] also analyzed the motor-driven gear-pair systems with backlash and
found periodic and chaotic dynamics in this system.

Although virtually all physical phenomena in the real world can be regarded as
nonlinear, most of these phenomena can be simplified to a linear form given a sufficiently
precise linearization technique. However, this simplification is inappropriate for high-power,
high-rotational-speed gear system, and its application during the design and analysis
stage may result in a flawed or potentially dangerous operation. As a result, nonlinear
analysis methods are generally preferred within engineering and academic circles. The
current study performs a nonlinear analysis of the dynamic behavior of a gear-pair system
equipped with couple-stress fluid lubricated journal bearings under nonlinear suspension.
The nondimensional equation of the gear-bearing system is then solved using the Runge-
Kutta method. The nonperiodic behavior of this system is characterized by using phase
diagrams, power spectra, Poincaré maps, bifurcation diagrams, Lyapunov exponents, and
the fractal dimension of the system.

2. Mathematical Modeling

2.1. Nonlinear Dynamic Models

Some assumptions are presented to simplify dynamic models to be able to simulate
the gear-bearing system, that is, nonlinear suspension (hard spring effect), short journal
bearing, nonlinear gear meshing force, and nonlinear couple-stress fluid film force effect are
established. Figure 1 shows the gear-baring model presented in this study. The equations of
motion used to describe geometric centers of gear and pinion (Og(Xg, Yg) and Op(Xp, Yp))
can be written as

mpẌp + CẊp +K
(
Xp −Xj1

)
= Wcx,

mpŸp + CẎp +K
(
Yp − Yj1

)
= Lpy −Gpy −Wcy −mpg,

mgẌg + CẊg +K
(
Xg −Xjg

)
= −Wcx,

mgŸg + CẎg +K
(
Yg − Yj2

)
= Lpy −Gpy +Wcy −mgg,

(2.1)

where Lpy and Lgy are the centrifugal forces in the vertical gear mesh direction for pinion and
gear,Gpy andGgy are the inertia forces in the vertical gear mesh direction for pinion and gear,
Wcx is the dynamic gear mesh force in the horizontal direction, and Wcy is the dynamic gear
mesh force in the vertical direction.

The equations of motion of the center of bearing 1 (X1, Y1) and the center of bearing 2
(X2, Y2) under the assumption of nonlinear suspension can be written as

m1Ẍ1 + c1Ẋ1 + k11X1 + k12X
3
1 = Fx1,

m1Ÿ1 + c1Ÿ1 + k11Y1 + k12Y
3
1 = −m1g + Fy1,

m2Ẍ2 + c2Ẋ2 + k21X2 + k22X
3
2 = Fx2,

m2Ÿ2 + c2Ÿ2 + k21Y2 + k22Y
3
2 = −m2g + Fy2.

(2.2)
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Figure 1: Schematic illustration of the gear-bearing system under nonlinear suspension and the model of
force diagram for pinion and gear.

According to the principles of force equilibrium, the forces acting at the center of journal 1,
that is, Oj1(Xj1, Yj1) and center of journal 2, that is, Oj2(Xj2, Yj2) are given by

Fx1 = fe1 cosϕ1 + fϕ1 sinϕ1 =
Kp1

(
Xp −Xj1

)

2
,

Fy1 = fe1 sinϕ1 − fϕ1 cosϕ1 =
Kp1

(
Yp − Yj1

)

2
,

Fx2 = fe2 cosϕ2 + fϕ2 sinϕ2 =
Kp2

(
Xg −Xj2

)

2
,

Fy2 = fe2 sinϕ2 − fϕ2 cosϕ2 =
Kp2

(
Yg − Yj2

)

2
,

(2.3)

in which fe1 and fϕ1 are the viscous damping forces in the radial and tangential directions
for the center of journal 1, respectively, and fe2 and fϕ2 are the viscous damping forces in the
radial and tangential directions for the center of journal 2, respectively.
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2.2. Nonlinear Couple-Stress Fluid Film Force

The non-Newtonian Reynolds-type equation can be performed as

∂

∂x

(
g(h, l)

∂p

∂x

)
+

∂

∂z

(
g(h, l)

∂p

∂z

)
= 6μU

∂h

∂x
+ 12μ

∂h

∂t
, (2.4)

where g(h, l) = h3−12l2h+24l3 tanh(h/2l), ∂h/∂x = −(cε/R) sin θ, ∂h/∂t = cε̇ cos θ+cεϕ̇ sin θ,
x = Rθ,U = Rω, ε = e/c, and h = c(1+ ε cos(γ −ϕ(t))) = c(1+ ε cos θ). Thus g(h, l) can also be
performed as g(h, l) = c3(1 + ε cos θ)3 − 12l2c(1 + ε cos θ) + 24l3 tanh(c(1 + ε cos θ)/2l), where
l = (η/μ)1/2, in which μ is the classical viscosity parameter and η is a new material constant
peculiar to fluids with couple stresses and Reynolds equation that can be rewritten as

∂

R∂θ

(
g(h, l)

∂p

R∂θ

)
+

∂

∂z

(
g(h, l)

∂p

∂z

)
= −6μωcε sin θ + 12μ

(
cε̇ cos θ + cεϕ̇ sin θ

)
. (2.5)

Using the “short bearing approximation” (L/D < 0.25, ∂p/∂θ � ∂p/∂z), then we can set
∂p/∂θ = 0. The following equation can be introduced:

∂2p

∂z2
=

−6μωcε sin θ + 12μ
(
cε̇ cos θ + cεϕ̇ sin θ

)

g(h, l)
. (2.6)

The resulting damping forces about the journal center in the radial and tangential
directions are determined by integrating pressure distribution over the area of the journal
sleeve:

fe = F cosϕ =
∫L

0
r

∫2π

0
p(θ) cos θdθ dz, (2.7)

fϕ = F sinϕ =
∫L

0
r

∫2π

0
p(θ) sin θdθ dz. (2.8)

Substituting (2.7) and (2.8) into (2.2)–(2.3) enables the values of Fx1, Fx2, Fy1, and Fy2 to be
obtained.

2.3. Nonlinear Gear Meshing Force

Figure 2 presents a schematic illustration of the dynamic model considered between gear and
pinion. Lpy and Lgy are the centrifugal forces in the vertical gearmesh direction for pinion and
gear,Gpy andGgy are the inertia forces in the vertical gear mesh direction for pinion and gear,
Wcx is the dynamic gear mesh force in the horizontal direction, and Wcy is the dynamic gear
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Figure 2: Bifurcation diagrams of gear-bearing system using dimensionless rotational speed ratio, s, as
bifurcation parameter for non-Newtonian lubricating fluid with l∗ = 0.0.

mesh force in the vertical direction. Thus, Lpy, Lgy, Gpy, Ggy,Wcx, andWcy can be performed
as

Lpy = mpepω
2
p sin θ1,

Lgy = mgegω
2
g sin θ2,

Gpy = mpepθ̈1 cos θ1,

Ggy = mgegθ̈2 cos θ2,

Wcx = Cm

(
Ẋp − Ẋg − epΩ sin(Ωt)

)
+Km

(
Xp −Xg − ep cos(Ωt)

)
,

Wcy = Cm

(
Ẏp − Ẏg − epΩ cos(Ωt)

)
+Km

(
Yp − Yg − ep sin(Ωt)

)
.

(2.9)

Substituting (2.9) into (2.1) enables the values of Lpy, Lgy, Gpy, Ggy, Wcx, and Wcy to be
obtained.

2.4. Dimensionless of Nonlinear Dynamic Models

Couple-stress fluid film force and gear meshing force would be introduced in Equations
(2.1)–(2.3) and can be nondimensionalized to yield the following equations:

ε′1 =
β1cKp

[(
yp − y1 − ε1 sinϕ1

)
cosϕ1 −

(
xp − x1 − ε1 cosϕ1

)
sinϕ1

]

4α1

(
γ1δ1 − β1

2
)
ω

− δ1cKp

[(
xp − x1 − ε1 cosϕ1

)
cosϕ1 +

(
yp − y1 − ε1 sinϕ1

)
sinϕ1

]

4α1

(
γ1δ1 − β1

2
)
ω

,
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ϕ′
1 =

1
2
− cKp

[(
yp − y1 − ε1 sinϕ1

)
cosϕ1 −

(
xp − x1 − ε1 cosϕ1

)
sinϕ1

]

4α1δ1ε1ω

−

⎛

⎜
⎝

β1
2cKp

[(
yp − y1 − ε1 sinϕ1

)
cosϕ1 −

(
xp − x1 − ε1 cosϕ1

)
sinϕ1

]

4α1ε1δ1
(
γ1δ1 − β1

2
)
ω

−β1δ1cKp

[(
xp − x1 − ε1 cosϕ1

)
cosϕ1 +

(
yp − y1 − ε1 sinϕ1

)
sinϕ1

]

4α1ε1δ1
(
γ1δ1 − β1

2
)
ω

⎞

⎟
⎠,

ε′2 =
β2cKp

[(
yg − y2 − ε2 sinϕ2

)
cosϕ2 −

(
xg − x2 − ε2 cosϕ2

)
sinϕ2

]

4α2

(
γ2δ2 − β2

2
)
ω

− δ2cKp

[(
xg − x2 − ε2 cosϕ2

)
cosϕ2 +

(
yg − y2 − ε2 sinϕ2

)
sinϕ2

]

4α2

(
γ2δ2 − β2

2
)
ω

,

ϕ′
2 =

1
2
− cKp

[(
yg − y2 − ε2 sinϕ2

)
cosϕ2 −

(
xg − x2 − ε2 cosϕ2

)
sinϕ2

]

4α2δ2ε2ω

−

⎛

⎜
⎝

β2
2cKp

[(
yg − y2 − ε2 sinϕ2

)
cosϕ2 −

(
xg − x2 − ε2 cosϕ2

)
sinϕ2

]

4α2ε2δ2
(
γ2δ2 − β2

2
)
ω

−β2δ2cKp

[(
xg − x2 − ε2 cosϕ2

)
cosϕ2 +

(
yg − y2 − ε2 sinϕ2

)
sinϕ2

]

4α2ε2δ2
(
γ2δ2 − β2

2
)
ω

⎞

⎟
⎠,

xp
′′ = −2ξ2

s
x′
p −

1
s2
(
xp − x1 − ε1 cosϕ1

)
+ β cos

(
φ

4

)
− 2ξ3

s

(
x′
p − x′

g − Ep sinφ
)

− Λ
s2
(
xp − xg − Ep cosφ

)
,

yp
′′ = −2ξ2

s
y′
p − 1

s2
(
yp − y1 − ε1 sinϕ1

)
+ β sin

(
φ

4

)
− 2ξ3

s

(
y′
p − y′

g − Ep cosφ
)

− Λ
s2
(
yp − yg − Ep sinφ

) − f

s2
,

xg
′′ = −2ξ4

s
x′
g − 1

s2
(
xg − x2 − ε2 cosϕ2

)
+ βg cos

(
φ

8

)
+
2ξ5
s

(
x′
p − x′

g − Ep sinφ
)

− Λg

s2
(
xp − xg − Ep cosφ

)
,

yg
′′ = −2ξ4

s
y′
g − 1

s2
(
yg − y2 − ε2 sinϕ2

)
+ βg sin

(
φ

8

)
+
2ξ5
s

(
y′
p − y′

g − Ep cosφ
)

+
Λg

s2
(
yp − yg − Ep sinφ

) − fg

s2
,
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x1
′′ +

2ξ1
s1

x1
′ +

1
s12

x1 +
α1

s2
x1

3 − 1
2C1ps2

(
xp − x1 − ε1 cosϕ1

)
= 0,

y1
′′ +

2ξ1
s1

y1
′ +

1
s12

y1 +
α1

s2
y1

3 − 1
2Coms2

(
yp − y1 − ε1 sinϕ1

)
+

f

s2
= 0,

x2
′′ +

2ξ6
s2

x2
′ +

1
s22

x2 +
α2

s2
x2

3 − 1
2C2ps2

(
xg − x2 − ε2 cosϕ2

)
= 0,

y2
′′ +

2ξ6
s2

y2
′ +

1
s22

y2 +
α2

s2
y2

3 − 1
2C2ps2

(
yg − y2 − ε2 sinϕ2

)
+

f

s2
= 0,

(2.10)

where

α1 = −μL
3R

2c2
,

β1 =
∫π

0

sin θ cos θ
[
(1 + ε1 cos θ)

3 − 12(l∗)2(1 + ε1 cos θ) + 24(l∗)3 tanh((1 + ε1 cos θ)/2l∗)
]dθ,

γ1 =
∫π

0

cos2θ
[
(1 + ε1 cos θ)

3 − 12(l∗)2(1 + ε1 cos θ) + 24(l∗)3 tanh((1 + ε1 cos θ)/2l∗)
]dθ,

δ1 =
∫π

0

sin2θ
[
(1 + ε1 cos θ)

3 − 12(l∗)2(1 + ε1 cos θ) + 24(l∗)3 tanh((1 + ε1 cos θ)/2l∗)
]dθ,

α2 = −μL
3R

2c2
,

β2 =
∫π

0

sin θ cos θ
[
(1 + ε2 cos θ)

3 − 12(l∗)2(1 + ε2 cos θ) + 24(l∗)3 tanh((1 + ε2 cos θ)/2l∗)
]dθ,

γ2 =
∫π

0

cos2θ
[
(1 + ε2 cos θ)

3 − 12(l∗)2(1 + ε2 cos θ) + 24(l∗)3 tanh((1 + ε2 cos θ)/2l∗)
]dθ,

δ2 =
∫π

0

sin2θ
[
(1 + ε2 cos θ)

3 − 12(l∗)2(1 + ε2 cos θ) + 24(l∗)3 tanh((1 + ε2 cos θ)/2l∗)
]dθ,

(2.11)

where l∗ = l/c is the dimensionless parameter for l.
Equation (2.10) describes a nonlinear dynamic system. In the current study, the

approximate solutions of these coupled non-linear differential equations are obtained using
the fourth-order Runge-Kutta numerical scheme.
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Figure 3: Bifurcation diagrams of gear-bearing system using dimensionless rotational speed ratio, s, as
bifurcation parameter for non-Newtonian lubricating fluid with l∗ = 0.1.

3. Analytical Tools for Observing Nonlinear Dynamics of
Gear-Bearing System

In the present study, the nonlinear dynamics of the gear-bearing system shown in Figure 1
are analyzed using Poincaré maps, bifurcation diagrams, Lyapunov exponent, and fractal
dimension. The dynamic trajectories of the gear-bearing system provide a basic indication
as to whether the system behavior is periodic or nonperiodic. The projection of the Poincaré
section on the y(nT) plane is referred to as the Poincaré map of the dynamic system. When
the system performs quasiperiodic motion, the return points in the Poincaré map form a
closed curve. For chaotic motion, the return points form a fractal structure comprising many
irregularly distributed points. Finally, for nT-periodic motion, the return points have the form
of n discrete points. In this study, the spectrum components of the motion performed by the
gear-bearing system are analyzed by using the Fast Fourier Transformation method to derive
the power spectrum of the displacement of the dimensionless dynamic transmission error. In
the analysis, the frequency axis of the power spectrum plot is normalized using the rotational
speed, ω.

A bifurcation diagram summarizes the essential dynamics of a gear-train system and is
therefore a useful means of observing its nonlinear dynamic response. In the present analysis,
the bifurcation diagrams are generated using the dimensionless rotational speed ratio, s, to be
a control parameter. In each case, the bifurcation control parameter is varied with a constant
step and the state variables at the end of one integration step are taken as the initial values
for the next step. The corresponding variations of the y(nT) coordinates of the return points
in the Poincaré map are then plotted to form the bifurcation diagram.

The Lyapunov exponent of a dynamic system characterizes the rate of separation of
infinitesimally close trajectories and provides a useful test for the presence of chaos. In a
chaotic system, the points of nearby trajectories starting initially within a sphere of radius
ε0 form after time t an approximately ellipsoidal distribution with semiaxes of length εj(t).
The Lyapunov exponents of a dynamic system are defined by λj = limt→∞(1/t) log(εj(t)/ε0),
where λj denotes the rate of divergence of the nearby trajectories. The exponents of a system
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Figure 4: Bifurcation diagrams of gear-bearing system using dimensionless rotational speed ratio, s, as
bifurcation parameter for non-Newtonian lubricating fluid with l∗ = 0.3.
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Figure 5: Bifurcation diagrams of gear-bearing system using dimensionless rotational speed ratio, s, as
bifurcation parameter for non-Newtonian lubricating fluid with l∗ = 0.5.

are usually ordered into a Lyapunov spectrum, that is, λ1 > λ2 > · · · > λm. A positive value of
the maximum Lyapunov exponent (λ1) is generally taken as an indication of chaotic motion.

The presence of chaotic vibration in a system is generally detected using either the
Lyapunov exponent or the fractal dimension property. The Lyapunov exponent test can be
used for both dissipative systems and nondissipative (i.e., conservative) systems, but it is
not easily applied to the analysis of experimental data. Conversely, the fractal dimension
test can only be used for dissipative systems, but it is easily applied to experimental data.
In contrast to Fourier transform-based techniques and bifurcation diagrams, which provide
only a general indication of the change from periodic motion to chaotic behavior, dimensional
measures allow chaotic signals to be differentiated from random signals. Although many
dimensional measures have been proposed, the most commonly applied measure is the
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Figure 6: Bifurcation diagrams of gear-bearing system using dimensionless rotational speed ratio, s, as
bifurcation parameter for non-Newtonian lubricating fluid with l∗ = 0.3.
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Figure 7: Simulation results obtained for gear-bearing system with s = 0.8 for y1 (l∗ = 0.3).
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Figure 8: Simulation results obtained for gear-bearing system with s = 1.0 for y1 (l∗ = 0.3).
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Figure 9: Simulation results obtained for gear-bearing system with s = 4.2 for y1 (l∗ = 0.3).

correlation dimension dG defined by Grassberger and Procaccia due to its computational
speed and the consistency of its results. However, before the correlation dimension of a
dynamic system flow can be evaluated, it is first necessary to generate a time series of
one of the system variables using a time-delayed pseudo-phase-plane method. Assume an
original time series of xi = {x(iτ); i = 1, 2, 3, . . .N}, where τ is the time delay (or sampling
time). If the system is acted upon by an excitation force with a frequency ω, the sampling
time, τ , is generally chosen such that it is much smaller than the driving period. The delay
coordinates are then used to construct an n-dimensional vector X = (x(jτ), x[(j + 1) τ],
x[(j+2) τ], . . ., x[(j+n−1) τ]), where j = 1, 2, 3, . . . (N−n+1). The resulting vector comprises
a total of (N − n + 1) vectors, which are then plotted in an n-dimensional embedding space.
Importantly, the system flow in the reconstructed n-dimensional phase space retains the
dynamic characteristics of the system in the original phase space. In other words, if the system
flow has the form of a closed orbit in the original phase plane, it also forms a closed path in
the n-dimensional embedding space. Similarly, if the system exhibits a chaotic behavior in the
original phase plane, its path in the embedding space will also be chaotic. The characteristics
of the attractor in the n-dimensional embedding space are generally tested using the function∑N

i,j=1H(r −|xi−xj |) to determine the number of pairs (i, j) lying within a distance |xi−xj | < r

in {xi}Ni=1, where H denotes the Heaviside step function, N represents the number of data
points, and r is the radius of an n-dimensional hyper-sphere. For many attractors, this
function exhibits a power law dependence on r as r → 0, that is, c(r) ∝ rdG . Therefore,
the correlation dimension, dG, can be determined from the slope of a plot of [log c(r)] versus
[log r]. Grassberger and Procaccia [26] showed that the correlation dimension represents the
lower bound to the capacity or fractal dimension dc and approaches its value asymptotically
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Figure 10: Simulation results obtained for gear-bearing system with s = 5.0 for y1 (l∗ = 0.3).

when the attracting set is distributed more uniformly in the embedding phase space. A set
of points in the embedding space is said to be fractal if its dimension has a finite noninteger
value. Otherwise, the attractor is referred to as a “strange attractor.” To establish the nature
of the attractor, the embedding dimension is progressively increased, causing the slope of the
characteristic curve to approach a steady-state value. This value is then used to determine
whether the system has a fractal structure or a strange attractor structure. If the dimension of
the system flow is found to be fractal (i.e., to have a noninteger value), the system is judged
to be chaotic.

4. Numerical Results and Discussions

The nonlinear dynamic equations presented in (2.10) for the gear-bearing system with
nonlinear suspension effects, couple-stress fluid effect, strongly nonlinear oil-film force,
and nonlinear gear mesh force were solved using the fourth-order Runge-Kutta method.
The time step in the iterative solution procedure was assigned a value of π/300 and the
termination criterion was specified as an error tolerance of less than 0.0001. The time series
data corresponding to the first 800 revolutions of the two gears were deliberately excluded
from the dynamic analysis to ensure that the analyzed data related to steady-state conditions.
The sampled data were used to generate the dynamic trajectories, Poincaré maps, and
bifurcation diagrams of the spur-gear system in order to obtain a basic understanding of
its dynamic behavior. The maximum Lyapunov exponent and the fractal dimension measure
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Figure 11: Simulation results obtained for gear-bearing system with s = 1.2 for y1 (l∗ = 0.3).

were then used to identify the onset of chaotic motion. For convenience, only the data of the
displacements in the vertical direction were used to generate diagrams.

The rotational speed ratio s is commonly used as a control parameter for bifurcation
diagrams to analyze nonlinear behaviors of rotor-dynamics, gear-dynamics, bearing systems
or machine tools. Accordingly, the dynamic behavior of the current gear-bearing system was
examined using the dimensionless rotational speed ratio s as a bifurcation control parameter.
Figures 2, 3, 4 and 5 are the bifurcation diagrams for the gear-bearing system displacement
against the dimensionless rotational speed ratio, s, for non-Newtonian lubricating fluid
with l∗ = 0.0, 0.1, 0.3, and 0.5 to describe corresponding dynamic responses. It can be
observed that the dynamic behaviors of bearing center and gear center show abundant
nonperiodic responses at low speeds. The dynamic behaviors become steady and come into
subharmonic motions as rotating with high speed but would behave nonperiodic vibrations
and higher amplitude for higher rotating speeds (i.e., s > 3.0). It is said that the couple-stress
fluid can improve lubricating conditions and therefore can enhance dynamic responses for
turbomachineries. According to bifurcation results, we would find dynamic behaviors show
different results with different l∗. When l∗ = 0.0, lubricating fluid as Newtonian fluid and
the effect of couple-stress fluid would be greater as l∗ becomes greater. The results show
that the range of nonperiodic motions or subharmonic vibrations would be shortened and
the amplitude of the systems would also be suppressed as l∗ increases. Nevertheless, higher
values of l∗ could not suppress nonperiodic vibrations occurring at high speeds. We also find
that the dynamic behaviors of bearing center and gear center are nonsynchronous and the
couple-stress fluid can not also improve gear-dynamics as l∗ increases.
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Figure 12: Simulation results obtained for gear-bearing system with s = 3.6 for y1 (l∗ = 0.3).

Figures 6(a) and 6(b) present the bifurcation diagrams for the gear-bearing system
displacement against the dimensionless rotational speed ratio, s, for non-Newtonian
lubricating fluid with l∗ = 0.3 and some dynamic trajectories and Poincaré maps (e.g., s = 0.1,
0.6, 0.8, 1.3, 2.0, 3.4, and 5.0) are exemplified to describe corresponding dynamic responses.
The bifurcation diagram of bearing center shows quasiperiodic responses at low speeds as
s < 0.15 and turns to nonperiodic or even chaotic motions as s > 0.15. When rotating speed
becomes greater (s > 1.39), the dynamic responses behave nT -periodic motions, but dynamic
responses of bearing center present strongly nonperiodic motions and the amplitude of the
system is also greater than the amplitude of lower rotating speeds. Figures 7, 8, 9, 10, 11,
and 12 are simulation results of phase diagrams, power spectra, Poincaré maps, Lyapunov
exponent and fractal dimension with s = 0.8, 1.0, 1.2, 3.6, 4.2, and 5.0 for y1 (l∗ = 0.3).
In the above case, the phase diagrams are highly disordered and the power spectra reveal
numerous excitation frequencies. Furthermore, it can be seen that the return points in the
Poincaré maps form geometrically fractal structures and the maximum Lyapunov exponent
is positive in each case. In other words, the results presented in these figures all indicate that
the gear center exhibits a chaotic behavior at those values.

5. Conclusions

This study has performed a numerical analysis of the nonlinear dynamic response of a gear-
bearing system subject to nonlinear suspension effects, couple-stress fluid effect, nonlinear
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oil-film force, and nonlinear gear mesh force. The dynamics of the system have been analyzed
by reference to its dynamic trajectories, power spectra, Poincaré maps, bifurcation diagrams,
maximum Lyapunov exponents, and fractal dimensions. When rotating machineries are
turned on, they must meet low rotating speeds and according to the results shown in the
bifurcation diagrams, the dynamic behaviors are strongly nonperiodic responses at low
rotating speeds. As l∗ increases, we can find that the range of nonperiodic motions becomes
shorter and amplitude of the systems is also suppressed. Thus, we may conclude that couple-
stress fluid can be used to improve dynamics of systems and help the systems escaping
nonperiodic responses to be steady.

Nomenclature

c: Radial clearance, c = R − r
C: Damping coefficient of the gear mesh
C1: Damping coefficients of the supported structure for bearing 1
C2: Damping coefficients of the supported structure for bearing 2
C1p: Dimensionless parameter, C1p = m1/mp

C01: Dimensionless parameter, C01 = K/k1
C2p: Dimensionless parameter, C2p = m2/mp

C02: Dimensionless parameter, C02 = K/k2
e: Static transmission error and varies as a function of time
ei: Offset of the journal center of the rotor relative to the X-coordinate direction
f : Dimensionless parameter, f = mpg/dK
fg : Dimensionless parameter, fg = Kg/dmp

fe, fϕ: Components of the fluid film force in radial and tangential directions
g: Acceleration of gravity
K: Stiffness coefficient of the gear mesh
K11, K12: Stiffness coefficients of the springs supporting the two bearing housings for

bearing 1
K21, K22: Stiffness coefficients of the springs supporting the two bearing housings for

bearing 2
Kp1, Kp2: Stiffness coefficients of the shafts
L: Bearing length
m1: Mass of the bearing housing for bearing 1
m2: Mass of the bearing housing for bearing 2
mp: Mass of the pinion
mg : Mass of the gear
O1: Geometric centers of the bearing 1
O2: Geometric centers of the bearing 2
Oj1: Geometric centers of the journal 1
Oj2: Geometric centers of the journal 2
Og : Center of gravity of the gear
Op: Center of gravity of the pinion
p: Pressure distribution in the fluid film
R: Inner radius of the bearing housing
r: Radius of the journal
s: Rotational speed ratio, s = (ω2/ωn

2)1/2
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s1: Dimensionless parameter, s12 = Co1C1ps
2

s2: Dimensionless parameter, s22 = Co2C2ps
2

X, Y , Z: Horizontal, vertical and axial coordinates
xj , yj : Xj/c, Yj/c, j = 1, 2, j1, j2, p, g
α1: Dimensionless parameter, α1 = K12d

2K/m1mp

α2: Dimensionless parameter, α2 = K22d
2K/m2mp

ξ1: Dimensionless parameter, ξ1 = C1/2
√
K1m1

ξ2: Dimensionless parameter, ξ2 = C/2
√
Kmp

ξ3: Dimensionless parameter, ξ3 = Cm/2
√
Kmp

ξ4: Dimensionless parameter, ξ4 : C/2
√
K/mpmg

ξ5: Dimensionless parameter, ξ5 = Cm
√
mp/2mg

√
K

ξ6: Dimensionless parameter, ξ6 = C2/2
√
K2m2

Λ: Dimensionless parameter, Λ = Km/K
Λg : Dimensionless parameter, Λg = Kmm

2
p/mgK

2

ρ: Mass eccentricity of the rotor
φ: Rotational angle, φ = ωt
ω: Rotational speed of the shaft
θ: The angular position
μ: Oil dynamic viscosity
ε: Eccentricity ratio, ε = e/c

ωn: Natural frequency, ωn =
√
K/mp

ωg : Dimensionless parameter, ωg = ωn/8
ωp: Dimensionless parameter, ωp = ωn/4
ϕi: Attitude angle of the rotor relative to the X-coordinate direction.
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