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This work presents a discussion on the pressure transient response of multistage fractured horizontal well in tight oil reservoirs.
Based on Green’s function, a semianalytical model is put forward to obtain the behavior. Our proposed model accounts for fluid
flow in four contiguous regions of the tight formation by using pressure continuity and mass conservation. The time-dependent
conductivity of hydraulic fractures, which is ignored in previous models but highlighted by recent experiments, is also taken into
account in our proposed model. We also include the effect of pressure drop along a horizontal wellbore. We substantiate the validity
of our model and analyze the different flow regimes, as well as the effects of initial conductivity, fracture distribution, and geometry
on the pressure transient behavior. Our results suggest that the decrease of fracture conductivity has a tremendous effect on the
well performance. Finally, we compare our model results with the field data from a multistage fractured horizontal well in Jimsar

sag, Xinjiang oilfield, and a good agreement is obtained.

1. Introduction

Unconventional resources are playing increasingly important
roles in the energy industry [1, 2]. We have witnessed a great
success in North America [3, 4]. Owing to its extremely
low permeability [5], tight oil could not be economically
developed via conventional technology [6-8]. Multistage
fractured horizontal well (MFHW) is an efficient technique
in the development of unconventional reserves [9]. However,
analyzing the pressure response of multifractured horizontal
wells is challenging because several factors, for example,
fracture conductivity, fracture geometry, skew angle between
fracture, and horizontal well, are responsible for the pressure
transient behavior. Therefore, the variation of pressure as a
function of these factors is still ambiguous.

Pressure transient analysis is an important tool to esti-
mate the formation characteristics. Significant efforts have
been dedicated in proposing models to describe the process.
Gringarten and Ramey Jr. analyzed the transient behavior
of uniform-flux fracture and infinite-conductivity fracture
well through source function method [10]. Cinco-Ley and

Samaniego developed a mathematical model for finite-
conductivity fracture [11]. Then Cinco-Ley and Meng gave the
solution for wells with finite-conductivity fractures in Laplace
domain [12]. Ozkan and Raghavan employed point-source
solution method to get transient pressure solutions under a
variety of conditions [13]. Although these studies only dealt
with a single fracture, they have laid a solid foundation for
the analysis of pressure behavior in multiple fractures.

The tools that are commonly used to make the transient
pressure analysis of multiple fractures can be divided into
three categories: analytical, semianalytical, and numerical
method. Guo et al. developed an analytical method for
horizontal well intersecting multiple fractures [14]. However,
the interference of the fractures was neglected. Wan and Aziz
derived an analytical 3D solution for horizontal well with
multiple random fractures by using Fourier analysis to a 2D
solution [15]. Ozkan et al. proposed a trilinear flow model, in
which the linear flow in outer reservoir, inner reservoir, and
hydraulic fractures are included [16]. Brown et al. improved
this model to simulate the pressure transient and production
behaviors of fractured horizontal wells in unconventional
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TaBLE 1: Background information for the experimental studies on the variation of fracture conductivity with time.

Author Material Confining stress

McDaniel (1986) Sand, resin coated sand, and three ceramic proppants 8000 psi

Cobb and Farrell (1986) Ceramic proppants 10000 psi and 5000 psi

Handren and Palisch (2007) Sand and resin coated sand 6000 psi
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FIGURE I: Schematic showing the variation of relative fracture
conductivity with time (Montgomery, 1984).

shale reservoirs [17]. Al Rbeawi and Djebbar introduced a
new analytical model that can be used to investigate the
pressure behavior and flow regimes of a horizontal well with
multiple inclined hydraulic fractures and applied it in type
curve matching [18].

Semianalytical approaches are another important way
in analyzing the transient behavior. Horne and Temeng
considered the interference among the fractures via the
superposition of influence functions [19]. Zerzar and Bet-
tam combined the boundary element method and Laplace
transformation to deal with interaction of reservoir flow and
fracture flow [20]. Yao et al. presented a method based on
Green’s functions and the source/sink method to obtain the
transient pressure response for a multifractured horizontal
well in a closed box-shaped reservoir [21]. Zhou et al.
proposed a semianalytical model to simulate the pressure
transient behavior in complex hydraulic fracture networks
[22]. Yu combined gas desorption and Zhou et al’s model to
solve the gas production problem in shale gas reservoir [23].
Jia et al. presented a model to solve the transient behavior in
complex fracture networks with deep consideration for flow
in fractures [24].

Numerical approaches overcome many limitations in
analytical and semianalytical method in studying uncon-
ventional reservoirs. Al-Kobaisi et al. presents a hybrid,
numerical-analytical model for the pressure transient re-
sponse of a finite-conductivity fracture intercepted by a
horizontal well [25]. Freeman et al. used numerical sensitivity
studies to show the effect of mechanisms and factors on

the performance of multifractured horizontal well [26-28].
Olorode et al. employed numerical method to study the effect
of fracture angularity and nonplanar fracture configurations
on well performance [29]. Yu et al. conducted numerical sim-
ulation to investigate the impact of fracture patterns, matrix
permeability, cluster spacing, and fracture conductivity
[30].

In previous studies, the conductivity of hydraulic frac-
tures was often assumed to be uniformly distributed and
remained constant with time. However, this assumption
contradicted field practice. After hydraulic fracturing, the
fractures close rapidly. In order to mitigate the production
decrease, proppants are added in the fracturing fluid to prop
the fracture and maintain the productivity. However, this
operation can only alleviate the decrease rate of the fracture
conductivity. The conductivity will eventually decrease [31-
34]. Previous studies suggest that the fracture conductivity
decreases rapidly during the first couple of days and for
the rest of the time the decline degree remains very small
(Figure 1).

Table 1 shows some experiments that studied the variation
of fracture conductivity with time. McDaniel reported that
the sand lost 80% of the conductivity within 15 days, among
which the resin coated sand lost 55%, and ceramic proppants
lost 25% to 30% [35]. Tests by Cobb and Farrell showed
that ceramic proppants lost ~20% of conductivity in 70 days
when confined at 10000 psi and the sand lost over 30% when
confined at 5000 psi [36]. Handren and Palisch reported
decline in the conductivity with sands losing 55% and resin
coated sand losing 25% to 30% [37]. Because the production
rate is strongly dependent on the fracture conductivity, its
variation with time must be taken into account to accurately
predict the well performance.

Contrary to the reported observations, many studies have
assumed horizontal well to be of infinite conductivity [16,
24, 38]. This assumption is not reliable as it cannot reflect
the radial influx, frictional, and acceleration effects. It is
necessary to examine the effect of pressure drop within the
wellbore on the production performance.

The objective of this study is to examine the effect of time-
dependent fracture conductivity on the transient behavior of
MFHW. As shown in Figure 2(a), some hydraulic fractures are
not perpendicular to the horizontal wellbore, which contra-
dicts the common assumption in the analytical models. That
is, the pressure transient behavior of this complex fracture
network is not readily to be analytically accounted for. There-
fore, we present a semianalytical model to take into account
the time-dependent fracture conductivity and the pres-
sure drop along a horizontal wellbore, as well as the complex
fracture networks.
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FIGURE 2: (a) Microseismic data showing the complex fractures in Jimsar sag, Xinjiang oilfield. (b) Schematic of a fracture network. The black,
red, and blue lines represent the wellbore, hydraulic fractures, and natural fractures, respectively.

2. Methodology

2.1. Mathematical Model. The reservoir after fracturing
includes four regions: the matrix, the natural fracture net-
work, hydraulic fractures, and the horizontal wellbore. There-
fore, the fluid flow in the reservoir consists of (1) fluid flow
from the reservoir to the hydraulic fractures ((i) in Fig-
ure 2(b)); (2) fluid flow from the reservoir to the natural
fractures ((ii) in Figure 2(b)); (3) fluid flow from natural frac-
ture to hydraulic fractures ((iii) in Figure 2(b)); (4) fluid flow
among natural fractures ((iv) in Figure 2(b)); (5) fluid form
hydraulic fractures to the horizontal wellbore ((v) in Fig-
ure 2(b)); (6) fluid flow in the horizontal wellbore ((vi) in Fig-
ure 2(b)). These six types of flow can be categorized into three
groups: reservoir flow ((i) and (ii) in Figure 2(b)), fracture
flow ((iii), (iv), and (v) in Figure 2(b)), and wellbore flow ((vi)
in Figure 2(b)).
Following assumptions are made:

(1) Reservoir is isotropic, homogeneous, box-shaped,
and of uniform thickness with impermeable bound-
aries.

(2) Fluid in the reservoir is single-phase and slightly com-
pressible and its compressibility and viscosity are con-
stant.

(3) Fractures are rectangular and vertical. The flux rate is
uniform along the fracture.

(4) Horizontal well is parallel to the upper and lower
boundary of the reservoir.

(5) Effect of gravity is neglected.
First, we define some dimensionless parameters for gen-

erality. The dimensionless pressure and time can be defined
as

_ 2npkh

ChoT (pi—p) )
o kt

P ¢HCtL2'

The dimensionless flow rate and influx rate can be defined as

dp = C%’
()
q

The dimensionless length along x and y directions can be
defined as

3)

2.1.1. Reservoir Flow. We use Green’s function that has been
frequently applied to solve problems of transient flow since
its usage was first explored in well testing by Gringarten
and Ramey Jr. [10]. Based on the Newman product method,
instantaneous source functions of fracture panels can be
obtained; therefore, the pressure response at any point in the
reservoir from one fracture panel can be expressed as follows
(see Appendix for further details):

Ap(x, y,2,t) = p; = p(x, y,2:t)

(4)

= ac J 95 (t = 1)S; (x, y,2,7) dr,

where S j(x, ¥, 2, T) is the instantaneous plane source function
of the jth panel and p; is the initial reservoir pressure which
is assumed to be uniformly distributed in the reservoir.

For fracture j rotated at any horizontal angle to the well,
the plane source function is
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By using the superposition principle, pressure at any point in
the reservoir at a given time can be given by

Ap(x, y,2,t) = p; = p(x, y,2.t)

N,

p ot (6)
1
- ¢CZ Jo a5 (t=1)S; (%, 3,2, 7) dr.

j=1

Then we can get the dimensionless form of (6),
po (Xps ¥p 2ps tp)
Np tp (7)
= 27'[2 L qfip (tp = 7p) Sip (xp» ¥p»2p> Tp) dTp.
=1

Therefore, pressure map can be obtained at a given time.

2.1.2. Fracture Flow. We assume that each hydraulic fracture
is of finite-conductivity and fluid flow inside the fracture
is one dimensional [17, 39-41]. We use Darcy’s equation to
describe the fluid flow in fractures. For the jth panel, the
pressure at any point in the fracture is (see Appendix for
further details):

Pj1 = Pjm

) J ( pkfbfh ) ; [+ ag (x = x5 )] dx.

Then the dimensionless form is

(8)

Pjmp ~ Pjip

kL (¥imp
= % J [q]'m + 495D (xD - leD)] dxp.
iAo

Xj1Dp

)

Equations (8) and (9) can be applied to both hydraulic
fractures and natural fractures.

It is worth noting that fluid flow from the fractures
to the horizontal wellbore is radial in the near-well region
(Figure 3). In order to minimize the error caused by linear
flow approximation, a choke flow factor is introduced [42]:

(o) lnGr)5) w

where r,, is the radius of the horizontal well and b, is the
hydraulic fracture width.

2.1.3. Time-Dependent Conductivity. Proppants are often
pumped into the formation to maintain the fracture con-
ductivity. However, the proppant particles usually break and
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FIGURE 3: Sketch showing the change of flow pattern from linear to
radial.

embed, which causes the fracture conductivity to reduce until
equilibrium is established. Montgomery and Steanson sug-
gested that there is a logarithmic relation between hydraulic
fracture conductivity and time for 10/20 Sand and 20/40 Sand
(Figure 4(a)) [43]. Other tests also show logarithmic relation
between fracture conductivity and time, including Lanzhou
sand from China with diameter of 0.45~0.90 mm [44], and
sand from Shanshan oil field in China (Figure 4(c)) [45].
Other kinds of proppants such as ceramic proppants with
diameter of 0.45~0.9 mm and Lanzhou sand with diameter
of 0.9~1.25 mm show similar correlations, but the slope of the
curve, also referred to as the decline coefficient, for each prop-
pant is different. The decline coefficient decreases in the order
of Lanzhou sand with diameter of 0.90~1.25 mm, the ceramic
proppant, and the Lanzhou sand with smaller diameter.

Based on the trend of observations in Figure 4, we use
the following model to describe the variation of fracture
conductivity as a function of time,

cf=cf0<1—ﬁ1gé>, an

where C f is the fracture conductivity at time ¢, C 0 is the
initial conductivity, and f is the decline coefficient. C; in
(11) is substituted by kf . bf in (8) and (9). It is assumed
that when the effect of hydraulic fracture disappears totally,
the fracture conductivity is equal to the product of formation
permeability and fracture width.

2.1.4. Wellbore Flow. Previous studies assumed horizontal
wellbore as infinite-conductivity pipe [15, 16], which implic-
itly assumes no pressure drop along the horizontal well
because of uniform pressure distribution along the wellbore.
To examine the validity of this approximation, we include the
wellbore pressure drop in the present model. The pressure
decrease along the wellbore consists of frictional losses and
acceleration losses (Figure 5). Based on the Darcy-Weisbach
Equation [46], the fictional pressure drop can be expressed as

fid;
A = =0V,

Prric P Di Pivi (12)
where f; is the frictional coefficient and A/, is the length of
the wellbore segment. For each segment of the wellbore, fluid
flow from the hydraulic fractures to the wellbore will cause an
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FIGURE 4: Relation between relative fracture conductivity and time. (a) Montgomery and Steanson (1985) tested two samples with different
kind of proppants for 9 months, case 1 denotes 10/20 Sand at 250°F, and case 2 denotes 20/40 Sand at 75°F. (b) Experiment conducted by Yu

(1987). (c) Field data from Shanshan oilfield.
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FIGURE 5: Sketch of microsegment in horizontal well.

increase of the flow rate. This will result in the change of the
momentum of the fluid which leads to the acceleration pres-
sure drop:

Apacce =pi (Viut - )
Dimensionless form of the pressure drop along the well bore
is given by (see Appendix for further details):

( )

2.1.5. Coupling Relationship. Due to the pressure continuity
at the center of each fracture, the pressure response obtained
from the reservoir flow should be consistent with the fracture
flow. Therefore, we have

v (13)

Ppi ~ Ppji+1

_ 2mkhQ
= —;,LAZ

2 2 _f]'Alj 2
pD,j ~ DpD,j+1 2D 9pp,j

Pjco1 = Pjepe- (15)

Picor and pjep, are given by (7) and (9), respectively. The mass
balance is applied to both the intersection nodes between

fractures and the intersection nodes of fractures and wellbore
(Figure 6). Therefore, for each node, the inflow of fluid must
be equal to the outflow of the fluid,

qin,D = qout,D' (16)
For the intersection nodes of fractures and wellbore, the
inflow and outflow are taken into account between the frac-
tures and between the fractures and the wellbore pipe.

2.2. Computational Approach. From (17), we obtain n, equa-
tions at the nodes for mass balance, n,, equations for pressure
drop along the fractures, and 1, equations for pressure con-
tinuity in the panel centers, resulting in n, + 2n, nonlinear
equations that need to be solved. Newton’s method has been
widely used to solve systems of equations because of its quick
convergence. However, it requires the inverse of Hessian
matrix at each iteration and the convergence may not be
reached if the Hessian matrix is ill-conditioned or nonposi-
tive definite. Therefore, we use Gauss-Newton method, which
is an improved version of Newtons method for finding a
minimum of a function [47]. The basic idea is to use the
Taylor series expansion to approximate nonlinear regression
model and correct the solution through iteration. This algo-
rithm is robust and has a good convergence rate. The iteration
equation of Gauss-Newton method can be expressed as

PP [VF (x*) vF (xk)]_l vF () F (). @)

Pressure at each node, flow rate inside the fracture, and fluxes
along the fractures can be obtained through iteration. Thus,
dimensionless pressure at any point in the reservoir can be
calculated via (7). If the bottom-hole pressure is given, we can
get the flow rate in the same way. The flow rate behavior in
different conditions can be obtained consequently.
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2.3. Model Validation. While solving for the numerical solu-
tion, fractures are discretized into several panels and to
ensure that we obtain correct numerical solution it is nec-
essary to probe the grid independence with respect to the
number of panels used. Figure 7 shows the grid independence
analysis for a horizontal well with three transverse hydraulic
fractures, where m is the number of panels that a fracture is
discretized into. We can conclude that the result we obtained
from our model is independent of segment when 1 is greater
than 1.

CMG, a commercial reservoir numerical simulator [48],
was employed to validate our model. In this article, the IMEX
module in CMG, which is a conventional three-phase black-
oil simulator, is utilized to make the comparison. Interested
readers may find the governing equations of this module
from the textbooks on reservoir numerical simulation. The
conventional Cartesian grids are employed and the total
number of cells is 121 x 121 x 5 and the basic parameters used
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12 [ ]

10° 10! 10° 10°
t(d)
— CMG
m  Our model

FIGURE 8: Bottom-hole pressure obtained using our proposed model
and CMG.

in the validation are listed in Table 2. The outer boundary
of our simulation domain is impermeable. Meanwhile, to be
consistent with the assumptions of our proposed model, we
maintain the oil production rate constant in the simulation.
Figure 8 compares the bottom-hole pressure obtained from
CMG simulator and our model and it shows a good match
during initial stage. Figure 9 shows the comparison of
reservoir pressure from CMG with our model, and except for
the pressures near fractures, we see a good match between
the two. The reason for this slight difference around the
fractures is because in CMG the fluid flows directly from
the reservoir to the horizontal well, however, many studies
[27, 49, 50] have reported that the correct representation
of fluid flow must consider intersection and activation of
preexisting natural fractures with hydraulic fractures, which
will create a complex fracture network. This representation of
complex fracture network can be readily incorporated in our
model; however, it is an extremely challenging task to do that
in CMG.
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length x,, = 240).

3. Results and Discussions

3.1. Flow Regime Analysis. The transient behavior can be
shown by type curves, which is employed to obtain the char-
acteristic of formation and the reservoir fluids and to figure
out different flow regimes. Figure 10 shows the dimensionless
well pressure and its derivative for a horizontal well with three
fractures. The transient behavior can be divided into several
flow periods.

(1) Linear Flow (Figure 11(a)). Fluid flows linearly from the
reservoir to the fracture and each fracture behaves inde-
pendently. Both the slope of dimensionless pressure and
derivative is 1/2 in this stage.

7
(MPa)
30
28.4
26.8
25.2
23.6
22
20.4
18.8
17.2
15.6
14
(b)

TABLE 2: Basic parameters for model validation.
Properties Value
Reservoir permeability k, ym?> 1x107*
Reservoir porosity, ¢ 10%
Reservoir length, x,, m 600
Formation thickness, h, m 20
Total compressibility, C,, MPa ™" 4x107°
Initial pressure, p;, MPa 30
Fluid viscosity, 4, mPa-s 20
Fluid density, p, kg/m’ 900
Fracture conductivity, Cap> ymz-m 0.5
Fracture half-length, x M 75
Fracture spacing, d, m 100
Production rate, Q, t/d 4.32

(2) Early Radial Flow (Figure 11(b)). An early radial flow
occurs around each fracture after the linear flow. This period
mainly depends on the fracture length and fracture spacing.
Besides, in this period, fractures still behave independently.
The characteristic of this stage is a horizontal line of 1/(2N)
in pressure derivative curve (N is the fracture stage). We

can figure out that the value of the horizontal line plateau is
1/6.

(3) Biradial Flow (Figure 11(c)). Fractures interact with each
other and flow becomes elliptical to the wellbore. The slope
of pressure derivative is 0.36.

(4) Pseudo Radial Flow (Figure 11(d)). Fluid flows to the
fracture-well system appear to be radial and flow across
the outermost elements plays important part. The pressure
derivative curve demonstrates a horizontal line of 0.5.
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Xgp = 1, dimensionless fracture spacing dj, = 0.67, and dimensionless reservoir length x,, = 120). (a) Pressure and derivative curve. (b)

Dimensionless production rate.

(5) Boundary Dominated Flow. In the closed system, the
flow will reach pseudo-steady state. The pressure curve and
derivate tend to merge and the slope equals 1.

3.2. Effect of Initial Fracture Conductivity. Figure 12 illustrates
the effect of initial conductivity on the pressure transient

response and production rate. This figure shows that increas-
ing hydraulic fracture conductivity results in an increase in
well productivity; however, the incremental benefit decreases
as the fracture conductivity increases. Figure 12 also shows
that variations in the dimensionless pressure and the pro-
duction rate tend to disappear as the flow regime approaches
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pseudo radial flow. The reason why the variations in these
two parameters disappear is because the flow at late times is
dominated by the outer reservoir, and therefore, the effect of
fracture conductivity will be extremely small. Therefore, to
utilize the potential of the hydraulic fractures, we must delay
the occurrence of pseudo radial flow and that can be done by
optimal well placement.

Although it is well documented that the fracture conduc-
tivity decreases rapidly at first and tends to converge asym-
ptotically [31-34, 37], previous studies always assumed that
hydraulic fractures do not vary with time. Below, we analyze
the difference between time-independent and time-depend-
ent fractures. As discussed earlier, the conductivity, and hence
the productivity of the horizontal well, decreases with time.
Therefore, the pressure response of the well is larger than
the time-independent situation, as suggested by Figure 13(a).
The flow rate of a horizontal well with time-independent
conductivity fractures exceeds that with time-dependent
conductivity fractures in the initial stage (Figure 13(b)), and
that could be attributed to the dominant role of fractures.
During late times of production, the fluid flow in the outer
reservoir becomes dominant and negligible difference can
be observed between time-dependent and time-independent
cases. Therefore, for the optimal exploitation of an uncon-
ventional reservoir it is necessary to maintain the fracture
conductivity, especially in the initial stage of the production.

Figure 14 shows the effect of decline coefficient on the
production performance of the horizontal well, where a larger
decline coefficient results in smaller production rate and if the
decline coeflicient is too large the fracture permeability tends
to quickly approach the formation permeability, which results
in sharp decline in the production rate.

10!
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FIGURE 14: Effect of decline coeflicient on the production perfor-
mance of the horizontal well (fracture number n = 2, dimensionless
fracture half-length x, = 1, dimensionless fracture spacing dp, =
0.67, and dimensionless reservoir length x,,, = 120).

3.3. Effect of Fracture Distribution. The pressure difference
created during hydraulic fracturing allows the proppants to
stay in the fractures away from the horizontal well heel [51],
and as a result, the fracture conductivities are different that
may further have an impact on the pressure behavior. Two
scenarios of even and uneven proppant distribution can be
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FIGURE 16: Effect of unevenly distributed fracture conductivity on the pressure and production behavior (fracture number n = 3,

dimensionless fracture half-length x, = 1, dimensionless fracture spacing d, = 0.67, dimensionless reservoir length x,, = 120. The

conductivity of evenly distributed fracture is 0.375 um*-m; for unevenly distributed fracture, the conductivities are 0.25 gm?*-m, 0.375 ym*-m,
and 0.5 ,umz-m.). (a) Dimensionless pressure curve. (b) Dimensionless production rate curve.

seen as schematics in Figures 15(a) and 15(b), respectively,
which are used to study the effect of proppant distribution.

For unevenly distributed fractures, the fracture nearest
to the well toe has the largest conductivity, whereas the
conductivity of the intermediate fracture equals that of the
evenly distributed fractures.

Figure 16(a) shows the dimensionless pressure drop of a
horizontal well (at constant production rate multistage frac-
tured well) with evenly distributed and unevenly distributed
fractures. The pressure response with unevenly distributed
proppants is slightly larger than that with evenly distributed
proppants at initial period but the gap disappears after
that. Result of Figure 16(b) suggests that horizontal well
with evenly distributed proppants produces with higher rate
initially than with unevenly distributed proppants. Therefore,
these two results indicate that well with evenly distributed
proppants performs better than that with unevenly dis-
tributed proppants.

Figure 17 shows the dimensionless flux rate of three frac-
tures that have evenly and unevenly distributed proppants.

When the fracture conductivities (or proppant distribution)
are evenly distributed, the dimensionless flux rate of Fractures
1 and 3 increases with time, but the flux rate of Fracture 2
decreases sharply with time. At the initial stage, each fracture
behaves independently; however, with time the fractures
begin to interfere with each other and the flux rate of
Fractures 1and 3 tends to increase, whereas owing to the sym-
metry, the flux rate of intermediate fracture, Fracture 2, is hin-
dered. If the fracture conductivities are unevenly distributed,
the flux rate of the third fracture will first decrease and
then increase with the time. However, production rate of the
first fracture increases steadily with time and it crosses the
conductivity of the second fracture at some point.

3.4. Effect of Fracture Geometry. In hydraulic fracturing, the
existent propped fractures result in the redistribution of local
earth stresses. Moreover, microseismic measurements have
proved that there is mechanical-stress interference between
multiple transverse fractures. The stress-shadow effect can
restrict the growth of the fracture in the middle section while
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FIGURE 18: Sketch of different fracture geometries. (a) Equilong type. (b) Spindle-shaped type. (c) Dumbbell-shaped type.

promoting the growth of the fractures at the heel or the toe
(49, 52]; therefore, different fracture geometry may exist in
the reservoir. Three geometries shown in Figure 18, equilong
type, spindle-shaped type, and dumbbell-shaped type, are
studied.

Figure 19 shows the dimensionless flux rate of three frac-
tures from three fracture geometries of Figure 18, respectively.
For spindle-shaped geometry, the flux rate of the first and
third fracture will first decrease and then slightly increase
before levelling off at long time (Figure 19(b)). However, the
flux of the second fracture always remains smaller than the
other two fractures, although it has a larger fracture length.
Figure 19(c) shows that, for dumbbell-shaped geometry, the
flux rate of fractures near the heel and toe will slightly increase
with time, whereas the flux of the intermediate fracture will
sharply decrease with time. From these results it is evident
that no matter what the fracture geometry is, the flux of the
intermediate fracture always decreases with time. Figure 20
suggests that if the bottom-hole pressure is constant, the
production rate of equilong fracture type is higher than the
others because it has the longest effective interference fracture
length. Apparently, this is the reason why equilong fracture
type is usually preferred over other fracture geometries.

3.5. Effect of Horizontal Wellbore Pressure Drop. Many previ-
ous studies considered the horizontal wellbore as an infinite
wellbore; however, it has been shown that wellbore pressure
drop exists in the production [53, 54]. We investigated
the effect of horizontal wellbore pressure drop on pressure
behavior as shown in Figure 21, which shows that the effect
of considering wellbore pressure drop is negligible. This
observation can be explained by the low permeability and
low flow rate in ultratight reservoir. Therefore, we conclude
that the horizontal wellbore pressure drop can be neglected
in ultratight reservoir.

3.6. Complex Fracture Network. It is inappropriate to sim-
ulate the production with biwing fracture when the char-
acteristic of complex fracture network is evident [55-57].
Figure 22 shows the schematic of a complex fracture network,
the red lines represent the hydraulic fractures, the blue lines
are natural fractures, and black line denotes horizontal well.
Parameters of the reservoir, fluid, and the fractures are shown
in Table 3. Figure 23 shows the pressure distribution of the
complex fracture network at different times. With increasing
time, the area that contributes to production as well as the
elastic production in a specific volume increases.
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4. Field Example

Well J172-H is a multistage fractured horizontal well in Jimsar
sag, which is a typical tight oil region located in the southeast
of the Junggar Basin of China. Tight oil in the sag is mainly
in Permian Lucaogou Formation, which is divided into the
first member and the second member from bottom to top
(Figure 24). Sweet spots are developed in the lower parts of
both members, that is, the upper sweet spot and the lower
sweet spot. J172-H is placed in the upper sweet spot, and
the reservoir is characterized by alternating layers of fine
dolarenite, dolomitic siltstone, and fine dolomitic mudstone
in the vertical direction [58]. The interpretation of nuclear
magnetic log shows that the porosity of the upper sweet spot
lies between 0.061 and 0.258, with an average of 0.101, whereas

TABLE 3: Basic parameters for complex fracture network case.

Properties Value
Reservoir permeability, k, ym” 1x107*
Reservoir porosity, ¢ 10%
Reservoir length, x,, m 600
Formation thickness, h, m 20
Total compressibility, C,, MPa™" 2.76 1073
Initial pressure, p;, MPa 30
Fluid viscosity, 4, mPa-s 20
Fluid density, p, kg/m’ 900
Hydraulic fracture conductivity, Cy, pm*-m 0.2
Natural fracture conductivity, C,,, pm*-m 0.04
Production rate, Q, t/d 1.92

the permeability of the upper sweet spot is in the range of
0.001 x 107 um?* to 0.284 x 10> um?, with an average of
0.012 x 107> um?. The permeability of over 90 percent of the
samples is less than 0.1 x 107> ym?.

J172-H went into production in September of 2012, and
during the initial stage the production rate of J172-H was
approximately 15 times that of the adjacent vertical well. A
build-up well test was conducted in May of 2013 and Figure 25
shows the pressure and pressure derivative data of that build-
up test, which was conducted for a short period. Thus, it can
be concluded that the data shown in Figure 25 comes from
very beginning of the build-up test.

Due to the short test and ultralow reservoir permeability,
some characteristic responses in the middle and late time
period, corresponding to the biradial flow and boundary
dominated flow regimes featured by the slope of 0.36 and 1
in the pressure derivative curve, cannot be found from the
well test data. In the regimes of wellbore storage and early
linear flow, the slopes of pressure derivative curves are equal
toland 0.5, respectively. We matched the curves with straight
lines of slope 1and 0.5 and identified the flow regime from the
data as wellbore storage period and linear flow period. Note
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FIGURE 22: Schematic of a complex fracture network. The black,
red, and blue lines represent the wellbore, hydraulic fractures, and
natural fractures, respectively.

that the effect of wellbore storage is not taken into account
in this study, because our model is proposed on the basis of
Green’s function in real domain and it is difficult to obtain
the derivative of pressure with respect to time in the inner
boundary condition. However, the wellbore storage effect
can be accounted for by transforming the equations from
real domain to the Laplace domain by using the following
equation:

Sﬁu}D +S
s+Cps? (spp+9)’

p wD;storage,skin — (18)

where pp orageskin Stands for the dimensionless pressure
including wellbore storage and skin effects (in Laplace space),
Pup is the dimensionless pressure without these effects (in
Laplace space), s is the Laplace variable, and Cp, and S are
the wellbore storage coeflicient and skin factor, respectively.
This is the subject of future studies. Therefore, data from the
linear flow period is employed in our analysis. A physical
experiment was conducted to estimate the decline coefficient
of hydraulic fractures, and the resulting value is 0.106.
Figure 26 shows the match for linear flow regime, from

TaBLE 4: Comparison between fitting parameter and the field data.

Parameter Our model Field data
Fracture half-length, m 148 110~230
Fracture spacing, m 81 78.5 (in average)
Formation permeability, 10> yum®  0.0107 0.001~0.284

which we estimate the fracture and reservoir parameters. In
Table 4, we compare the fitting parameters from our proposed
model and the field data from microseismic monitoring. Our
estimated average half-length of these fractures approximates
to 148 m, which lies in the range of 110-230 m. The fracture
spacing obtained from our match, 81 m, approximates to the
average value from microseismic map. Because the reservoir
heterogeneity is not taken into account in our proposed
model, we only get the mean permeability of the formation,
which is fairly comparable to the well logging results.

5. Conclusions

A semianalytical model was proposed to analyze the pressure
behavior of multistage fractured horizontal well in tight oil
reservoirs. Factors that influence the pressure behavior of
multistage fractured horizontal well were analyzed to provide
a deep understanding of the pressure transient behavior.
Following conclusions were reached.

(1) Higher hydraulic fracture conductivity will result in
an increase in well productivity. Therefore, hydraulic fracture
conductivities should be optimized according to the well
performance and investment.

(2) The stimulated region has more significant impor-
tance on the transient pressure and rate behavior than the
outer reservoir region. In order to make use of the hydraulic
fractures, the existence of pseudo radial flow must be delayed
through optimal well placement.
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(3) The comparison among different factors suggests that
fracture conductivity is the most important factor when
exploiting the full potential of a horizontal well. The decline of
fracture conductivity has a tremendous influence on the well
performance. Therefore, the proppant selection should be
given the first priority to maintain the fracture conductivity.
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(4) The interference among fractures of equilong type is
the strongest. This geometry is favorable for both fracture flux
rate and total production rate.

(5) Due to the low permeability and flow rate of ultratight
reservoir, the effect of wellbore pressure drop is negligible;
therefore, the horizontal wellbore pressure drop can be
ignored in ultratight reservoir.

Appendix

Here we provide the detailed derivation of equations that
describe fluid flow in reservoir, fracture, and wellbore.

Reservoir Flow. For fractures rotated at any horizontal angle
to the well, instantaneous point function can be obtained
through the superposition of source function in three dimen-
sions. Then the instantaneous plane function of the fracture
panel can be calculated through the integration on the
fracture panel. The infinite plane source function in slab
reservoir with no-flow boundary is

VII (x) = xi [1
‘ (A1)

2
nix

11 Xy
COS NTT— COS ,
xe xe

+2Z exp(

where x,, denotes the location of the plane source and x is the
value in x-direction of an arbitrary point in the reservoir. By
applying Newman method, the instantaneous point function
is described as
=
= 1
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Through integration, the instantaneous plane function of the
fracture panel can be expressed by
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Fractures perpendicular to the horizontal well can be treated
as a special case of the above situation. Complex double inte-
gration is no longer needed in calculating the source function
of the fracture panels. The instantaneous plane function of the
fracture panel can be directly obtained through the superpo-
sition of infinite slab source function and infinite plane source
function in slab reservoir with no-flow boundaries.

The infinite slab source function in slab reservoir with no-
flow boundary is

x 4x, S 1 iyt
X (x) = i [1 + —eZ— exp <——2}7"
. XN x2
(A.4)
. hnx nrix,, nrx ]
- sin cos cos .
xe xe 'xe

The instantaneous plane function of the fracture panel per-
pendicular to the horizontal well can be expressed by
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Therefore, by applying Green’s function, the pressure
response at any point in the reservoir result from one frac-
ture panel can be expressed as

Ap(x, y.2:t) = p; = p(x, . 2:t)
1t (A.6)
= ac J a5 (t = 7)S; (x, y,2,7)dr.
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Fracture Flow. Darcy’s law is employed in the fracture flow.
According to Darcy’s law, the pressure drop is proportional
to the velocity,

S

In fracture flows, fluid flow is considered to be one-
dimensional flow. The panel can be illustrated as Figure 27.
The flow rate at any point in the panel can be expressed by

q; (x) =qj; + 9y (x—le). (A.8)

By substituting (A.8) to (A.7), we obtain

Pj—Pjpa

) I (pkfbfd ) j (91 + 4y (x = xp)] .

The choke flow factor results from the radial flow near the
wellbore entry point. An additional pressure drop is taken
into account when calculating the pressure in the wellbore.
For a horizontal well in the midplane of the reservoir, the
pressure drop is

(A9)

B quln (h/2r,)

A =

> (A.10)

where h is the fracture height and k; and by denote fracture
permeability and width, respectively. When the flow from the
fracture to the reservoir is treated as linear flow, the pressure
drop is

quh
Ap, = : (A1)
4k ;bch
Therefore, the pressure difference between radial and linear
flow can be obtained by

Aps = Apr - Apl (A12)
and the choke flow factor is
SC=<L>[ln<L>—E]. (A.13)
27X, 21, 2

Wellbore Flow. Due to the influx flow to the wellbore, the
velocity profile is modified. The inflow expands and lifts
the boundary layer, causing an increase of axial velocity
beyond the layer. The axial velocity near the pipe wall
decreases consequently. As a consequence, using no-wall-
flow frictional factor may cause inaccuracy in calculating fric-
tional losses. In order to take the effect of wall roughness and
fluid mixing into account, the frictional factor corrected by
Ouyang et al. is employed [59].
For laminar flow, the frictional factor is

64
fi= q (1+0.04303Re,7™),

€

(A.14)
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where Re,; is the inflow Reynolds number, which can be
described by Re,,; = qqp;/7p;. q; is the inflow rate per unit
length.
For turbulent flow, the frictional factor can be calculated
by
fi = for(1-0.0153Re}7) (A.15)

where f,; is the no-wall-flow frictional factor and can be
obtained by Colebrook-White correlation

L 40t +228—4log[4'—67 + 1] (A.16)
Vo €D VfoReep ‘

However, the no-wall-flow frictional factor is hard to get
explicitly by (A.16) and iteration is needed. With the aim
of simplicity, the equation was approximated [60]. The
approximate equation can be expressed as follows:

1 21.25
—_— = 1.14—210g<€D+ W)

Vo

(A.17)

The inflow pressure is p;,A;, the outflow pressure is
PoutA > and the shear force by the pipe wall surface is ;7D;Al;
the following equation is obtained consequently:

PinAi = PouwrAi — TED; Al

(A.18)
= PoutboutVout ~ Pin9inVin-
Equation (A.18) can be rewritten as
D; 2 2
Pin = Pout — TiﬂjAli = PoutVout ~ PinVin- (A-19)
1

The right side of (A.19) denotes the accelerational pressure
losses; namely,

2 2
Apacce = pi (Vom - Vin) . (A.20)

Therefore, the pressure drop in the wellbore can be expressed
by

Ap = Apa + Apyy. (A.21)

Nomenclature

Symbols

bs:  Fracture width, m

C,: Total compressibility, MPa~
Cy: Fracture conductivity, pm*-m

Cyo: Initial fracture conductivity, pm*-m

1
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d:  Fracture spacing, m

f;+  Fraction coefficient, dimensionless

h:  Reservoir thickness, m

k:  Formation permeability, yum®

ks Fracture permeability, pm?

L:  Reference length, m

m: Number of panels that a fracture is discretized into
n:  Fracture number

N,: Number of fracture panels

pp: Dimensionless pressure

p;» Initial pressure, MPa

pji: Pressure at one end of j panel, MPa
Pjc: Pressure at the center of j panel, MPa
Q: TFlow rate, t/d

qp: Dimensionless flow rate, dimensionless
qfp: Dimensionless flux rate, dimensionless
s Well radius, m

Chock flow factor, dimensionless

tp:  Dimensionless time, dimensionless

ty:  Initial time, s

Reservoir length, m

y,:  Reservoir width, m.

Greek Letters

B: Decline coefficient, dimensionless
p: Oil density, kg/m’

p: Oil viscosity, mPa-s

¢: Porosity, dimensionless.

Subscripts

D: Dimensionless
f: Fracture

c: Center

w: Well.
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