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The offshore plant equipment usually has a long life cycle. During its O&M (Operation and Maintenance) phase, since the
accidental occurrence of offshore plant equipment causes catastrophic damage, it is necessary to make more efforts for managing
critical offshore equipment. Nowadays, due to the emerging ICTs (Information Communication Technologies), it is possible to
send health monitoring information to administrator of an offshore plant, which leads to much concern on CBM (Condition-
Based Maintenance). This study introduces three approaches for predicting the next failure time of offshore plant equipment (gas
compressor) with case studies, which are based on finite state continuous time Markov model, linear regression method, and their
hybrid model.

1. Introduction

In general, maintenance is defined as all technical and man-
agerial actions taken during usage period to maintain or
restore the required functionality of an asset or equipment.
There have been various classifications of maintenance poli-
cies. Simply, maintenance policies can be divided into break-
down maintenance (corrective maintenance), preventive
maintenance, and CBM (Condition-Based Maintenance).
Unlike breakdownmaintenance and preventivemaintenance,
the CBM focuses on not only fault detection and diagnostics
of equipment but also degradation monitoring and failure
prediction. Generally, CBM can be treated as a method used
to reduce the uncertainty of maintenance activities and is
carried out according to the requirements indicated by equip-
ment condition [1]. Thus, the CBM enables us to identify
and solve problems in advance before equipment damage
occurs. In industry systems, any equipment damage can
lead to serious results. Since a critical failure or degrada-
tion of the equipment during its operation can seriously

damage the belief of customers on the equipment reliability,
the maintenance enhancement for preventing this kind of
failure or degradation in advance has precedence over any
other things in a company. Since oil and gas industries
are particularly capital-intensive, careful management on
equipment is very important. In this respect, the CBM is a
very attractive method for oil and gas industries. CBM is
currently being utilized in the petrochemical industry, with
condition monitoring of both on and offshore oil and gas
wells [2].

Until now it has been difficult to achieve the effectiveness
of maintenance operations because there is no informa-
tion visibility during equipment’s usage period. However,
recently, with emerging technologies such as various sen-
sors, SCADA (Supervisory Control And Data Acquisition)
and PEID (Product Embedded Information Devices) are
expected to be rapidly used for gathering and monitoring
the status data of equipment during equipment usage period.
Advancements in information communication technology
have added accelerated growth in the CBM technology area
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by enabling network bandwidth, data collection and retrieval,
data analysis, and decision support capabilities for large data
sets of time series data [3]. Under the new environment,
we can gather the equipment status data related to usage
conditions, failure, maintenance or service events, and so on.
These data sets enable us to diagnose the degradation status
of the equipment in a more exact way. Therefore, using this
information gives us new challenging issues for improving
the efficiency of equipment maintenance operations. We can
diagnose equipment status, predict equipment abnormality,
and execute proactive maintenance, that is, doing CBM.

Although there have been some relevant research works
so far, the CBM is still challenging area. Current approaches
have the limitation in detailed methods or validated predic-
tive models, in particular, in the offshore plant domain. This
study deals with the approaches that can predict the next fail-
ure time of offshore plant equipment (gas compressor) used
in LNG FPSO (Liquefied Natural Gas Floating Production
Storage and Offloading vessel).

An LNG FPSO is an offshore plant of delivering liquefied
gas from a gas field to customers. Recently, the demand for
LNG FPSO is highly increasing and the demand for LNG
FPSO projects will grow along with the increased demand
for natural gas [4]. The O&M phase of LNG FPSO requires
heavy charges and more efforts to optimize the cost and to
reduce the risks than the construction phase because of its
long life cycle. Nowadays due to the fact that an accident of
LNG FPSO in operation causes catastrophic damage, many
studies have focused on a maintenance system. In this vein,
this study focuses on the prognostic approach for the gas
compressor equipment in LNG FPSO, which is one of the
main results for the Korean government supported project
that is being currently developed since 2013 with the objective
of implementing the predictive maintenance system for LNG
FPSOs.The objective of this study is to develop the algorithm
for estimating the next failure time of a gas compressor
based on gathered vibration sensing and failure data. To
this end, in this study, finite state Markov model based ap-
proach, linear regression model based approach, and their
hybridmodel have been introduced. To evaluate the proposed
approaches, the case study and computational experiments
for compressor equipment have been carried out.

The rest of this study is organized as follows. First, rele-
vant previous studies are reviewed and their limitations are
discussed in Section 2. Then, Section 3 describes the equip-
ment for CBM focused on this study and two approaches
for estimating the next failure time of a compressor, and
Section 4 introduces relevant case studies and computational
experiments. In Section 5, the hybrid approach combining
two approaches is proposed with computational experiment.
Finally this study is concluded with further research issues in
Section 6.

2. Literature Review

There are several maintenance policies: corrective mainte-
nance, preventive maintenance, opportunistic maintenance,
Condition-Based Maintenance, and predictive maintenance.

Correctivemaintenance is the unplannedmaintenance.How-
ever, preventivemaintenance (such as constant intervalmain-
tenance, age basedmaintenance, and imperfectmaintenance)
and predictive maintenance (such as RCM (Reliability Cen-
tered Maintenance) and CBM) are the types of planned
maintenance. Formore details, please refer to Bevilacqua and
Braglia [5] or Kothamasu et al. [6]. Among various mainte-
nance policies, this study focuses on the CBM.

The term, CBM, is often used with other terms such
as PdM (Predictive Maintenance), PHM (Prognostic and
Health Management), and on-condition maintenance which
comes from the US Department of Defense and Department
of Energy. In this study, we define CBM as a maintenance
policy which does maintenance action before equipment
failures happen, by assessing equipment condition including
operating environments and predicting the risk of equip-
ment failures in a real-time way, based on gathered data.
The benefits of a successful CBM strategy are expected to
include less regular maintenance, the reduction of unsched-
uled maintenance, and improved supply chain management
[7].

Until so far, there have been several research works about
CBM. For example, Lee [8] introduced the fundamental
technologies for remotemaintenance (called teleservice engi-
neering) and CBM: machine performance assessment and
remote diagnosis. Lee [9] introduced a new methodology of
CBM, called machinery dynamics and data fusion through
remote machinery monitoring. He presented an example of
a remote wireless application currently in use for monitoring
machinery in industrial plants. Dieulle et al. [10] dealt with
the problem related to CBM policy for a single-unit deteri-
orating system and proposed the approach to determine the
optimal inspection schedule and replacement threshold with
renewal processes theory. Furthermore, Grall et al. [11] dealt
with a condition-based inspection/replacement problem for
a stochastically and continuously deteriorating single-unit
system. With regenerative and semiregenerative processes
theory, they tried to find twomaintenance decision variables:
preventive replacement threshold and inspection schedule,
with the objective of minimizing the long run expected
maintenance cost per unit time. In addition, Lin and Tseng
[12] combined traditional reliability modelling methods with
vibration-based monitoring techniques and artificial neural
network technologies in an integrated system to determine
the health status of machinery, namely, CMAC-PEM (Cere-
bellar Model Articulation Controller neural network-based
machine Performance Estimation Model). They developed
a WPHM (Weibull Proportional Hazards Model) and car-
ried out a bearing deterioration experiment to test both
the CMAC-PEM and the WPHM. Moore and Starr [13]
have reviewed the methods and functionality of criticality
assessments in condition-based monitoring and proposed
the CBC (Cost Based Criticality) algorithm to rank all the
alarms arising from conditionmonitoring, which could allow
optimized prioritization of maintenance activities. Wu et
al. [14] proposed an intelligent decision support system for
the optimal CBM policy. They developed a neural network
model that uses bearing vibration information to predict the
life percentage of a machine and the remaining life of the
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machine.They also computed the optimal replacement strate-
gies by proposing a cost matrix method and suggested an
optimal replacement time for assistingmaintenance decision-
making. In addition, in their other work [15], they proposed
a prognostic method for machine degradation tracking using
ARIMA (AutoRegressive Integrated Moving Average) time
series model in order to predict the pending failures and the
RUL (Remaining Useful Life) of machines. They developed a
forecasting strategy and an automatic prediction algorithm of
ARIMAmodels and carried out the analysis on the vibration
severity data collected from rotating machines. They com-
pared the performance of the proposed approach with the
basic Box-JenkinsARIMAmethod. Recently,Hashemian and
Bean [16] discussed the limitations of time-based equipment
maintenance methods and the advantages of predictive or
online maintenance techniques in identifying the onset of
equipment failure. Gruber et al. [17] suggested a CBM frame-
work that is based on system simulations and a targeted
Bayesian network model. Simulations are used for explor-
ing various CBM policies under different scenarios and the
Bayesian network is used for failure prediction based on
simulation data.Theproposed framework has been applied to
a freight rail fleet case. In addition, Lee et al. [18] carried out
a comprehensive review of the PHM field. They introduced
a systematic PHM design methodology, 5S methodology,
for converting data to prognostics information. They also
presented a systematic methodology for conducting PHM as
applied to machinery maintenance.

In particular, some research works focused on Markov-
based model for CBM. For example, Bunks et al. [19] intro-
duced an application of HMMs (Hidden Markov Models) to
CBM for the helicopter gearbox case and presented examples
of torque level, defect level, and defect-type classification.
They concluded that HMMs have a strong potential for
constructing practical and robust algorithms for CBM. Fur-
thermore, Ambani et al. [20] developed a continuous time
Markov chain degradation model and a cost model to quan-
tify the effects of maintenance on a multiple machine system.
To evaluate the effectiveness of the proposed methods, they
introduced a case study of an automotive assembly line.
In their model, a Markov-based degradation model is used
to represent discrete state degradation process, under the
assumption that the future degradation state of the machine
depends only on the current degradation state and not on the
history of the degradation states. Si et al. [21] mentioned that
Markovian-based models have been widely applied to RUL
estimation and to maintenance decision-making support.
They said that themain reason forMarkovian-basedmodel is
that the plant operation condition can be divided into several
meaningful states, such as Good, OK, andMinor defects only,
Maintenance required, and Unserviceable, so that the state
definition is closer to what is used in industry than other
stochastic models and therefore is easy to understand.

On the other hand, some previous works have focused
on the maintenance of offshore plant. For example, Wang
and Majid [22] carried out a case study of the analysis of
reliability and maintenance data on five gas turbines and
of the modelling for determining the appropriate preventive
maintenance/inspection intervals of offshore oil platform

plant. Arthur and Dunn [23] introduced an application of an
optimized CBM approach to large reciprocating compressors
on an offshore installation. Caselitz and Giebhardt [24] intro-
duced results of work in the field of condition monitoring
and fault prediction in offshorewind energy converters.Their
work included not only development hardware and software
solution but also prototype tests and integration of fault pre-
diction and maintenance and repair scheduling techniques.
Furthermore, Dey et al. [25] developed a risk based main-
tenance model using a combined multiple-criteria decision-
making and weight method for offshore oil and gas pipelines.
Eleye-Datubo et al. [26] and Eleye-Datubo et al. [27] applied
Bayesian network methods for examining the system safety
of FPSOs. Migueláñez and Lane [28] presented the recovery
system of offshore wind turbines. The recovery system takes
a broad view of events and sensor values across the complete
turbine system and subsystems. In addition, Hussin et al.
[29] dealt with a systematic methodology for analyzing the
maintenance data of gas compression train system on an
offshore platform to gain insight about the system reliability
performance and identify the critical factors influencing the
performance. Telford et al. [2] explored the existing literature
on the development and applications of CBM in the oil
and gas industry. de Andrade Melani et al. [30] proposed a
method for risk analysis of LNG carriers operations based
on Bayesian network method. Recently, Griffith et al. [7]
addressed initial development and integration of SHPM
(StructuralHealth andPrognosticsManagement) system into
the O&M process for offshore wind power plants. They
developed a multiscale simulation-based methodology to
investigate the sensitivity (or effects) of damage of blades.
Cho et al. [31] proposed a linear regression-based approach
for estimating the remaining life time of compressor. Cho
et al. [32] reviewed previous studies associated with CBM
of offshore plants and introduced case studies of prognosis
system development predicting performance and failures of
offshore plant equipment such as compressor and pump
tower.

Although not a few previous research works dealt with
various CBM issues, little attention has been paid to the
research that deals with offshore plant equipment and has the
limitation in estimating the next failure time (remaining life
time from the current time) based on gathered sensor data.
Estimating the next failure time with sensor data is still the
undeveloped area in an offshore plant equipment. To cope
with the limitations, this study proposes three approaches to
estimate the next failure time of offshore equipment based on
finite state continuous time Markov model, linear regression
model, and their hybrid model.

3. Target Equipment and
Proposed Approaches

LNG FPSOs are used when an oil platform is in a remote or
deepwater location where seabed pipelines are not cost effec-
tive [33]. Nowadays due to the fact that an accident of LNG
FPSO in operation causes catastrophic damage, many studies
dealt with the improvement of operating a maintenance
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Figure 1: Process flow diagram of water, oil, and gas separation in LNG FPSO.

system for LNG FPSO. The LNG FPSO is composed of lots
of facilities and equipment. Depending on location, they can
be classified into top-side, hull-side, and subsea-side. Among
them, this case study focuses on a gas compressor in the top-
side of LNGFPSO. Figure 1 shows the process flowdiagramof
water, oil, and gas separation in LNG FPSO. The compressor
is used in liquefaction processes of offshore plants. It is
important equipment in not only offshore but also onshore
plants. It is a mechanical device to increase the pressure of
gas and to reduce its volume. It spends most of the energy
in offshore plants. Offshore gas compressors are used for
various tasks including reservoir management, production
enhancement, and the transmission of gas. Any unexpected
or prolonged downtime of these units has a large impact
on plant availability, as a loss of compression capability
drastically affects the oil and gas production of the asset
[23]. There are several kinds of compressors. Among them,
this study deals with the centrifugal compressor. According
to Hussin et al. [29], the number of failures of centrifugal
compressor used in an offshore plant is about 26 during
six years. For this reason, it preferentially needs to do the
development of a prognosis system for the compressor.

According to OREDA [34], frequently observable failure
modes of compressor are low output, overheating, spurious
stop, external leakage, and so on. The failure mode is usually
generated from some failure causes. Compressor failure
causes (frequency) are shown as follows:

Rotation/shaft (22%); instrumentation (21%); radial
bearing (13%)
Blade/impeller (8%); thrust bearing (6%); compressor
seal (6%)
Motor winding (3%); diaphragm (1%); and so forth
(20%)

Hence, in this study, we focus on one main cause,
rotation/shaft for CBM.

3.1. Vibration Analysis: Compressor. There are some kinds
of parameters to monitor the status of the compressor. This
study deals with a vibration parameter, because it is widely
used in detecting the status of rotating equipment. Generally
speaking, vibration is the value with time of the magnitude
of a quantity that is descriptive of the motion or position of a
mechanical system. Because most normal plant equipment is
mechanical, vibration monitoring provides the best tool for
routine monitoring and identification of incipient problems
[35]. The increasing amplitude of vibration may be an
indication of a deteriorating machine condition and the rate
of increase is proportional to the degree of damage.Therefore,
it is possible to predict the trend of deterioration of amachine
by monitoring the amplitudes of its fault related vibration
features [36].

Relative shaft vibration and bearing vibration data are
usually used to evaluate the status of a compressor of an LNG
FPSO. In this study wemonitor the status of a gas compressor
through relative shaft vibration data. ISO 7919 (international
standard for relative shaft vibration of rotating machines)
suggests a way for the measurement of a vibration parameter.
According to ISO 7919, the max value among two peak-peak
values measured by two sensors located in 𝑥-axis and 𝑦-axis
as 90 degree is expressed as 𝑆(p-p)max = [𝑆𝑋(p-p), 𝑆𝑌(p-p)]max.

A common practice in industry is to set up various warn-
ing levels instead of maintenance stages. The warning levels
can be classified as alert, high alert, alarm, serious alarm,
and breakdown. General guidelines for setting up warning
levels for different types of machines are recommended by
various national and international committees [36]. ISO
7919 recommends four vibration limits: limit of start-up
performance (A), limit of good vibration performance (B),
limit for warning alarm (C), and limit for trip (D). The
values of limits are calculated as follows:A/B (4800/√𝜋), B/C
(9000/√𝜋), and C/D (13200/√𝜋) where 𝜋 denotes the RPM
(Revolution Per Minute) of a compressor.
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Figure 2: Overview of proposed approaches.

In this study, we propose three approaches for estimating
the next failure time of a compressor: (1) Markov model
based approach, (2) regression model based approach, and
(3) hybrid approach combining (1) and (2). In the Markov
model based approach, we divide the vibration value into
some levels and stochastically predict the next failure time
based on the finite state continuous time Markov model
theory. In the regression model based approach, when the
vibration data evidently differs from themoving average filter
and shows increasing trends, we predict the next failure time
using simple linear regression model. The hybrid approach
takes the advantage of two approaches. Depending on the
vibration level, one of two approaches is applied to estimate
the next failure time. Figure 2 depicts the detailed process
flow of these approaches.

3.2. Markov Model Based Approach. In order to apply the
CBM policy of an LNG FPSO compressor, among various
prognostics methods such as wavelets, artificial neural net-
works, and Bayesian network, in this study, we use the finite
state continuous time Markov model since it has the benefit
in the amount of data required for analysis, compared to
other methods. Furthermore, it allows an exact computation
of system reliability.

In this study, it is assumed that LNG FPSO operation
system records 𝑆(p-p)max and its timestamp data whenever
the level of relative shaft vibration exceeds the predefined
limit (e.g., warning level and trip level). Furthermore, the
amplitude of vibration signal of the compressor will remain
the limit of tolerance range unless it has abnormal symptoms
for faults or failures. In addition, we assume that the vibration
state evolves continuously over time and state transition rate
does not depend on time based on the interview result with
compressor engineers.

To maintain brevity and consistency, this study defines
the following notation.

𝑠: index of compressor state
𝜏𝑠,𝑠󸀠 : the number of changes from 𝑠 to 𝑠󸀠
𝑇𝑠,𝑠󸀠 : transition rate from 𝑠 to 𝑠󸀠
𝑡𝑛𝑠,𝑠󸀠 : the time interval of the 𝑛th status transition from
status 𝑠 to status 𝑠󸀠
𝐿 𝑠,𝑠󸀠 : the expected time to reach the state 𝑠󸀠 from the
state 𝑠
𝐸𝑠,𝑠󸀠 : the expected time from status 𝑠 to the very next
state 𝑠󸀠
𝑃𝑟𝑠: the probability to transit from state 𝑠 to state 𝑠+1
𝑃𝑗𝑠 : the probability of the 𝑗th return to the state 𝑠 after
going through state 𝑠 − 1
𝜋: the RPM (Revolution Per Minute) of a compressor
𝜆: the deteriorating transition rate
𝜇: the recovery transition rate

The detailed procedures of the proposed approach are as
follows.

Step 1 (collecting relative shaft vibration data classified by
vibration state levels). We assumed that LNG FPSO opera-
tion system records 𝑆(p-p)max and its timestampdatawhenever
the level of relative shaft vibration exceeds the predefined
limit. Regarding the predefined limit, based on ISO 7919, we
set the vibration levels into good vibration level and alarm
level. Andwe divide the alarm level into low,middle, and high
levels, in detail, because it is more important to predict the
next failure time in an alarm level than in a good vibration
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Figure 3: Example of vibration state transition plot in Markov
model based approach.

performance level.Thus, whenever the vibration data exceeds
over the predefined levels, the state values (denoted as 𝑠) for
representing each level and its timestamp data are recorded.
The value of state 𝑠 has the following meaning:

𝑠 = 0: a good vibration level under 9000/√𝜋
𝑠 = 1: a low alarm level under 10400/√𝜋
𝑠 = 2: a middle alarm level under 11800/√𝜋
𝑠 = 3: a high alarm level under 13200/√𝜋
𝑠 = 4: a trip level above 13200/√𝜋

Figure 3 depicts an example of transition plot represent-
ing the state values of vibration data changed over time.

Step 2 (estimating status transition rates). From the interview
with compressor maintenance engineers, we identified that
the failures of the compressor shaft are not much related to
the deterioration process and occur randomly. Hence, in this
study, we assume that the time when status transition occurs
follows the homogeneous Poisson process having the state
transition rate as follows:

𝑇𝑠,𝑠󸀠 = 𝜏𝑠,𝑠󸀠
∑𝜏𝑠,𝑠󸀠
𝑘=1

𝑡𝑘
𝑠,𝑠󸀠

. (1)

Then, since the state transition rate is constant and does
not depend on the time, we assume that it has the Markovian
property.

Step 3 (estimating the next failure time). Then, 𝐿0,𝑠 could be
estimated by the following formula:

𝐿0,𝑠
= ∞∑
𝑗=0

[𝑃𝑗𝑠−1 ⋅ 𝑃𝑟𝑠−1 ⋅ {𝑗 ⋅ (𝐿 𝑠−2,𝑠−1 + 𝐸𝑠−1,𝑠−2) + 𝐸𝑠−1,𝑠}]
+ 𝐿0,𝑠−1,

(2)

where 𝐿0,0 = 0 and 𝐿0,1 = 1/𝜆0, 𝑠󸀠 = 2, 3, 4.

Let 𝑗 be the number of first passage from 𝑠󸀠 − 1 to 𝑠󸀠 − 2.
The first term of formula (2) indicates the expected time until
arriving at state 𝑠 after the 𝑗th return to state 𝑠−1, calculated by
multiplying the duration time; that is, (𝑗⋅(𝐿 𝑠−2,𝑠−1+𝐸𝑠−1,𝑠−2)+𝐸𝑠−1,𝑠) and its probability (𝑃𝑗𝑠−1 ⋅ 𝑃𝑟𝑠−1). The second term (i.e.,𝐿0,𝑠−1) of formula (2) denotes the expected time from state 0
to state 𝑠 − 1.

Let 𝜆𝑠 = 𝑇𝑠,𝑠+1, 0 ≤ 𝜆𝑠 ≤ 1, for 𝑠 = 0, 1, 2, 3, which
indicates the deteriorating transition rate, and 𝜇𝑠 = 𝑇𝑠+1,𝑠,0 ≤ 𝜇𝑠 ≤ 1, for 𝑠 = 0, 1, 2, 3, which indicates the recovery
transition rate, respectively. Then, according to Anderson
[37], 𝐸𝑠−1,𝑠 = 1/𝜆𝑠−1, 𝐸𝑠,𝑠−1 = 1/𝜇𝑠, 𝑃𝑗𝑠 = (𝜇𝑠/(𝜆𝑠 + 𝜇𝑠))𝑗, and𝑃𝑟𝑠−1 = (𝜆𝑠/(𝜆𝑠 +𝜇𝑠)) in the continuous timeMarkov model.
As a result, formula (2) could be unfolded as follows:

𝐿0,𝑠 = ∞∑
𝑗=0

[𝑃𝑗𝑠−1 ⋅ 𝑃𝑟𝑠−1
⋅ {𝑗 ⋅ (𝐿 𝑠−2,𝑠−1 + 𝐸𝑠−1,𝑠−2) + 𝐸𝑠−1,𝑠}] + 𝐿0,𝑠−1
= ∞∑
𝑗=0

[( 𝜇𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)
𝑗 ⋅ ( 𝜆𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)

⋅ {𝑗 ⋅ (𝐿 𝑠−2,𝑠−1 + 1𝜇𝑠−1) +
1𝜆𝑠−1}] + 𝐿0,𝑠−1

= ∞∑
𝑗=0

[( 𝜇𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)
𝑗 ⋅ ( 𝜆𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)

⋅ {𝑗 ⋅ (𝐿 𝑠−2,𝑠−1 + 1𝜇𝑠−1)}] +
∞∑
𝑗=0

[( 𝜇𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)
𝑗

⋅ ( 𝜆𝑠−1𝜆𝑠−1 + 𝜇𝑠−1) ⋅
1𝜆𝑠−1 ] + 𝐿0,𝑠−1

= ∞∑
𝑗=0

[( 𝜇𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)
𝑗 ⋅ ( 𝜆𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)

⋅ {(𝑗 + 1) ⋅ (𝐿 𝑠−2,𝑠−1 + 1𝜇𝑠−1)}]

− ∞∑
𝑗=0

[( 𝜇𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)
𝑗 ⋅ ( 𝜆𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)

⋅ (𝐿 𝑠−2,𝑠−1 + 1𝜇𝑠−1)] +
∞∑
𝑗=0

[( 𝜇𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)
𝑗

⋅ ( 𝜆𝑠−1𝜆𝑠−1 + 𝜇𝑠−1) ⋅
1𝜆𝑠−1 ] + 𝐿0,𝑠−1 = (

𝜆𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)

⋅ (𝐿 𝑠−2,𝑠−1 + 1𝜇𝑠−1) ⋅
∞∑
𝑗=0

[( 𝜇𝑠−1𝜆𝑠−1 + 𝜇𝑠−1)
𝑗 ⋅ (𝑗 + 1)]

− (𝐿 𝑠−2,𝑠−1 + 1𝜇𝑠−1) +
1𝜆𝑠−1 + 𝐿0,𝑠−1.

(3)
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Figure 4: Example of the trend plot of vibration data in regression model based approach.

Since
∞∑
𝑗=0

[𝐾𝑗 ⋅ (𝑗 + 1)] = 𝑑𝑑𝐾
∞∑
𝑗=0

𝐾𝑗+1 = 𝑑𝑑𝐾 ( 𝐾1 − 𝐾)

= 1
(1 − 𝐾)2 ,

(4)

where 𝐾 = 𝜇𝑠−1/(𝜆𝑠−1 + 𝜇𝑠−1), the above equation could be
expressed as follows.

= ( 𝜆𝑠−1𝜆𝑠−1 + 𝜇𝑠−1) ⋅ (𝐿 𝑠−2,𝑠−1 +
1𝜇𝑠−1)

⋅ 1
[1 − (𝜇𝑠−1/ (𝜆𝑠−1 + 𝜇𝑠−1))]2 − (𝐿 𝑠−2,𝑠−1 +

1𝜇𝑠−1)
+ 1𝜆𝑠−1 + 𝐿0,𝑠−1

= (𝜆𝑠−1/ (𝜆𝑠−1 + 𝜇𝑠−1)) − [1 − 𝜇𝑠−1/ (𝜆𝑠−1 + 𝜇𝑠−1)]2
[1 − 𝜇𝑠−1/ (𝜆𝑠−1 + 𝜇𝑠−1)]2

⋅ (𝐿 𝑠−2,𝑠−1 + 1𝜇𝑠−1) +
1𝜆𝑠−1 + 𝐿0,𝑠−1

= (𝜆𝑠−1 ⋅ 𝜇𝑠−1) / (𝜆𝑠−1 + 𝜇𝑠−1)2
[1 − 𝜇𝑠−1/ (𝜆𝑠−1 + 𝜇𝑠−1)]2 ⋅ (𝐿 𝑠−2,𝑠−1 + 1𝜇𝑠−1)
+ 1𝜆𝑠−1 + 𝐿0,𝑠−1

= 𝜇𝑠−1𝜆𝑠−1 ⋅ (𝐿 𝑠−2,𝑠−1 +
1𝜆𝑠−1) +

1𝜆𝑠−1 + 𝐿0,𝑠−1.

(5)

Along formula (5), it is possible to estimate𝐿0,4 as follows:
𝐿0,4 = [𝜇3𝜆3 ⋅ {𝐿2,3 +

1𝜇3}] +
1𝜆3 + 𝐿0,3. (6)

Also, we can know that the expected time to reach state 𝑠
from state 𝑠 − 1 is simply calculated as follows.

𝐿 𝑠−1,𝑠 = 𝐿0,𝑠 − 𝐿0,𝑠−1. (7)

Along formulae (5) and (7), 𝐿0,3 and 𝐿2,3 in formula (6)
could be estimated as follows:

𝐿0,3 = [𝜇2𝜆2 ⋅ {𝐿1,2 +
1𝜇2}] +

1𝜆2 + 𝐿0,2, (8)

𝐿2,3 = 𝐿0,3 − 𝐿0,2. (9)

𝐿0,𝑠 and 𝐿 𝑠−1,𝑠 in a series of calculations like 𝐿0,2 and 𝐿1,2
in formula (8) could be estimated using formulae (5) and (7)
in the same way.

If the current state is 𝑠, then 𝐿 𝑠,4 could be estimated as
follows:

𝐿 𝑠,4 = 𝐿0,4 − 𝐿0,𝑠. (10)

Then, finally the next failure time could be estimated as
follows:

The next failure time = the current time + 𝐿 𝑠,4. (11)

3.3. Regression Model Based Approach. In addition to the
Markov model based approach, in this study, the regression
model based approach for estimating the next failure time
of the compressor is proposed. The regression model based
approach is based on the 𝑆(p-p)max trend plot (please refer to
Figure 4).The trend plot is amethod to record the variation of
themagnitude that is descriptive ofmotion or positions of the
equipment with time. The trend plot helps engineers figure
out the status of the equipment at a glance. After the raw data
of vibration is recorded in the trend plot, the regressionmodel
based approach analyzes 𝑆(p-p)max trend plot with moving
average filter and abnormal indicator variable (denoted as V𝑖).
According to ISO 7919, we let the limit for trip be a critical
limit for the failure of a compressor. Then, it calculates the
point where the simple linear regression line intersects with
the limit for trip and considers it as the next failure time.

To maintain brevity and consistency, this study defines
the following notation.

𝑘: the number of 𝑦𝑖’s𝑚: index for calculating 𝜂
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𝑛: the number of entities used in the moving average
filter
𝑟: the number of comparisons with 𝑦𝑖 and 𝑦𝑖
V𝑖: the 0-1 binary variable that indicates whether 𝑦𝑖 <𝑦𝑖 or not (i.e., whether abnormal situation occurs or
not)
𝑥𝑖: the time when the 𝑖th 𝑆(p-p)max value (relative shaft
vibration data) is recorded
𝑦𝑖: the 𝑖th 𝑆(p-p)max value𝑦𝑖: moving average filter of 𝑦𝑖𝜂: the time point just before the vibration value is
continuously over themoving average filter valuewith𝑟 times
𝜋: the RPM (Revolution Per Minute) of a gas com-
pressor

The detailed procedure is as follows.

Step 1 (calculating the moving average of vibration data).
In this study, in order to predict the next failure time, it is
necessary to carefullymonitor the trend of vibration data over
time points. Since the vibration value itself has the limitation
in giving the trend of time series values, the moving average
filter is applied to catch the trend of vibration values. If there
are 𝑦1, 𝑦2, . . . , 𝑦𝑘, a moving average filter 𝑦𝑖 for 𝑆(p-p)max is
calculated as follows:

𝑦𝑖 = 𝑦𝑖−𝑛+1 + 𝑦𝑖−𝑛+2 + ⋅ ⋅ ⋅ + 𝑦𝑖𝑛 , 𝑛 ≤ 𝑖 ≤ 𝑘. (12)

Step 2 (finding the abnormal time point by comparing vibra-
tion datawith filtered data). If there is the time point showing
abnormal situations continuously compared to previous data,
we assume that the failure propagation evolves in a fast way
after that point. In this study, to find the abnormal time point,𝜂 is calculated by formula (13).Here, 𝜂 indicates the timepoint
just before showing the abnormal performance (i.e., 𝑦𝑖 < 𝑦𝑖)
continuously in 𝑟 times.

𝜂 = {arg min
𝑚

(𝑚+𝑟−1∏
𝑖=𝑚

V𝑖)} , 𝑛 ≤ 𝑚 ≤ 𝑘 − 𝑟 + 1, (13)

where

V𝑖 = {{{
1 (if 𝑦𝑖 < 𝑦𝑖)
0 (otherwise) for 𝑛 ≤ 𝑖 ≤ 𝑘. (14)

Step 3 (estimating the next failure time by a linear regression
model). The next failure time could be estimated based on
the values of 𝑥𝜂+1, 𝑥𝜂+2, . . . , 𝑥𝑘 by a linear regression model.
If the regression equation is expressed as𝑦𝑖 = 𝛽̂0+𝛽̂1 ⋅𝑥𝑖 where𝛽̂0 = 𝑦−𝛽̂1 ⋅𝑥 and 𝛽̂1 = ∑𝑘𝑖=𝜂+1(𝑥𝑖−𝑥)(𝑦𝑖−𝑦)/∑𝑘𝑖=𝜂+1(𝑥𝑖−𝑥)2,
then the next failure time could be estimated by formula (15):

The next failure time = 1̂
𝛽1 ⋅ (

13200√𝜋 − 𝛽̂0) . (15)
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Figure 5: Example of vibration data.

4. Case Study

For a case study, we used the data on shaft vibration of
a gas compressor generated based on the sample vibration
data obtained from a compressor manufacturing company
in South Korea. The generated data for about three years
includes 20 failures and about 564 state transitions, where
RPM is 3600 (i.e., 𝜋 = 3600). The vibration data used in this
study is depicted by Figure 5.

4.1. Case Study of Markov Model Based Approach. From the
example data of the case study, we obtain the number of
changes from 𝑠 to 𝑠󸀠, that is, 𝜏𝑠,𝑠󸀠 as follows: 𝜏0,1 = 135,𝜏1,0 = 115, 𝜏1,2 = 108, 𝜏2,1 = 88, 𝜏2,3 = 59, 𝜏3,2 = 39, and𝜏3,4 = 20. Here, we describe how to calculate the transition
rate, 𝜆3, that is, 𝑇3,4. Other calculations for 𝑇𝑠,𝑠󸀠 are omitted
for the convenience.𝜆3 could be estimated as follows:

𝜆3 = 𝜏3,4∑𝜏3,4
𝑘=1

𝑡𝑘3,4 =
2015 + 14 + 15 + ⋅ ⋅ ⋅ + 13 = 0.0738. (16)

We could obtain the transition rates in the same way as
follows: 𝜆0 = 0.0068, 𝜆1 = 0.0506, 𝜆2 = 0.0569, 𝜇1 = 0.0580,𝜇2 = 0.0453, and 𝜇3 = 0.0392. The state transition diagram
with these transition rates is depicted in Figure 6.

Where the current state is the state 0, the expected time
to reach the failure from the state 0 (𝐿0,4) could be estimated
along formula (6) as follows:

𝐿0,4 = [0.03920.0738 ⋅ {𝐿2,3 + 10.0392}] + 10.0738 + 𝐿0,3. (17)

In formula (17),𝐿2,3 and𝐿0,3 could be estimated in a series
of calculations as follows:

𝐿2,3 = 𝐿0,3 − 𝐿0,2,
𝐿0,3 = [0.04530.0569 ⋅ {𝐿1,2 + 10.0453}] + 10.0569 + 𝐿0,2,
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State
(0) Good vibration performance
(1) A warning alarm (low)
(2) A warning alarm (middle)
(3) A warning alarm (high)
(4) A trip

𝜇3 = 0.0392

𝜇2 = 0.0453

𝜇1 = 0.0580

𝜆3 = 0.0738
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Figure 6: Example of state transition diagram.

𝐿0,2 = [0.05800.0506 ⋅ {𝐿0,1 + 10.0580}] + 10.0506 + 𝐿0,1,
𝐿0,1 = 10.0068 = 147.9778.

(18)

Table 1 shows a result of a series of the above formulae.
The time point when we estimated the next failure time is
27628 (hours). Since 𝑆(p-p)max value is 197.8346 at that time, the
vibration state is the state level 3.Thus, the next failure time is
as follows: the current time point + 𝐿3,4 = 27628 + 134.17 =27762.17 (hours).The real failure time is known as 27776.The
residual life time at 27628 time point is only about 134 (hours).
Hence, we could see that the estimated next failure time by
Markov model based approach is close to the real one.

4.2. Computational Experiments of Markov Model Based Ap-
proach. In order to evaluate the performance of the Markov
model based approach, we have carried out computational
experiments based on the vibration history data (refer to
Figure 5). To quantify the degree of the performance of the
proposed approach, this study uses the MAPE (Modified
Absolute Percentage Error [38]) measure represented as
follows:

MAPE = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑅 − 𝑅∗(𝑅 + 𝑅∗) /2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋅ 100, (19)

Table 1: 𝐿 𝑠,𝑠󸀠 calculations.
𝑛 𝑡𝑛3,4𝐿0,4 693.3072𝐿0,3 559.1403𝐿0,2 357.3453𝐿0,1 147.9778𝐿3,4 134.1669𝐿2,3 201.7950𝐿1,2 209.3675

Table 2: Test results of Markov model based approach.

Failure event Average
MAPE∗

♯ obs. less
than 30%†

♯ obs. less
than 50%♣

1 0.308 6 8
2 0.310 5 8
3 0.498 2 6
4 0.407 5 6
5 0.653 3 4
6 0.422 5 7
7 0.377 3 5
8 0.667 5 5
9 0.438 6 8
10 0.644 2 5
11 0.485 4 5
12 0.387 5 5
13 0.258 6 10
Average 0.450 4.380 6.310
∗The average on 10 MAPEs for each failure event.
†Number of observations such that MAPE < 30% among 10 test examples.♣Number of observations such that MAPE < 50% among 10 test examples.

where 𝑅∗ indicates residual time to the next failure and 𝑅 is
the estimated residual time to the next failure.

With MAPE, we could avoid the problem of large errors
when the residual life time to the next failure is close to
zero. To calculate the value of MAPE, in the computational
experiment, we use the data after 10000 hours, because
Markov model based approach needs enough history data.
And then, we randomly chose ten time points for each
failure time and estimated the failure time at those times.
Table 2 shows that the average MAPE of Markov model
based approach is 45.03%.Observation results for the number
of solutions less than 30% or 50% showed us that a few
solutions have highMAPEvalues so that they seemed to affect
the overall performance of the approach. Furthermore, we
could find thatMarkovmodel based approach has more large
MAPEs as the time point becomes close to the real failure
time.

4.3. Case Study of RegressionModel Based Approach. Thecase
study of regression model based approach has been carried
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Figure 7: Example of regression model based approach.

out based on 100 time point data sets as shown in Table 3.
Note that 𝑦𝑖 is the maximum 𝑆(p-p)max value at time 𝑖 whose
unit time is an hour. We set parameters as follows: 𝑛 = 10,𝑟 = 5, and 𝑘 = 27705. Table 3 shows moving average filter𝑦𝑖, indicator variable V𝑖, and ∏𝑚+𝑟−1𝑖=𝑚 V𝑖 for the time point 𝑥𝑖.
Along formula (13), 𝜂 is 27676 in this case study.

Figure 7 depicts how to estimate the next failure time.The
linear regression model in this case study is calculated as 𝑦 =0.7305𝑥 − 20066 based on the values where (𝑥27677, 𝑦27677),(𝑥27678, 𝑦27678), . . . , (𝑥27705, 𝑦27705). Along formula (15), the
next failure time could be estimated as follows:

The next failure time = 10.7305 ( 13200√3600 + 20066)
≐ 27756.33 (hours) .

(20)

The real failure time is 27776. Since the time point when
we estimated the next failure time is 27705, the remaining
life time is 51.33 (hours). Hence, we could also see that
the estimated next failure time by regression model based
approach is close to the real one.

4.4. Computational Experiments of Regression Model Based
Approach. In order to evaluate the performance of regression
model based approach, we have also carried out computa-
tional experiments. Table 4 shows the values of MAPEs when
comparing the residual life time estimated from proposed
regression model based approach to the real residual life
time. According to this table, we could find the trend that
regression model based approach has good performance as
the residual life time becomes close to zero, compared to
Markov model based approach. However, we could also see
that the regression model based approach has the limitation
in estimating the next failure time when the residual life time
is relatively long since the linear regression model has the
tendency in being highly affected by abnormal data.

5. Hybrid Approach

Throughout case study and computational experiments for
two approaches, we could find that Markov model based
approachhasmore better performance than regressionmodel
based approach when the remaining residual life time is
relatively long, while regression model based approach has
more better performance in the opposite case. The Markov
model based approach could have stable performance com-
pared to the regression model based approach although it
seems to give not good performance as the residual life time
becomes closed to the failure time. On the contrary, the
linear regression method is straightforward and practical,
and it gives us the relative good performance when the
residual life time is closed to the failure time compared
to the Markov model based approach. However, it is so
sensitive on some abnormal data that it often overestimates
or underestimates them. For this reason, in this study we
suggest the hybrid approach that applies both Markov model
based approach and regression model based approach into
estimating the next failure time. In the hybrid approach, until
a certain vibration level, Markov model based approach is
applied, and then, after over the certain vibration level, the
regression model based approach is used to estimate the next
failure time. The below formula shows us how to apply both
approaches depending on the level of vibration, in the hybrid
approach.

The next failure time = {{{
EFT1, (𝑦𝑖 < 𝜔)
EFT2, Otherwise, (21)

where EFT1 and EFT2 represent the estimated next failure
time by the Markov model based approach and that by
the regression model based approach, respectively, and 𝜔
indicates the vibration index.

In order to minimize the MAPE, it is necessary to find
the best 𝜔. To this end, we have carried out the experiments
with increasing 𝜔 from 3000/√RPM to 12600/√RPM by
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Table 3: Data and variables used in the regression model based
approach.

𝑥𝑖 𝑦𝑖 𝑦𝑖 V𝑖 ∏𝑚+𝑟−1𝑖=𝑚 V𝑖
27606 136.703
27607 139.811
27608 143.092
27609 146.458
27610 149.736
27611 153.115
27612 156.455
27613 159.753
27614 163.064
27615 166.381 151.457 1 1
27616 169.561 154.742 1 1
27617 172.655 158.027 1 1
27618 175.649 161.283 1 1
27619 178.551 164.492 1 1
27620 181.348 167.653 1 1
27621 183.963 170.738 1 1
27622 186.444 173.737 1 1
27623 188.752 176.637 1 1
27624 190.983 179.429 1 1
27625 193.030 182.094 1 1
27626 194.859 184.623 1 1
27627 196.451 187.003 1 1
27628 197.835 189.222 1 1
27629 198.999 191.266 1 1
27630 199.979 193.129 1 1
27631 200.711 194.804 1 1
27632 201.280 196.288 1 1
27633 201.615 197.574 1 1
27634 201.790 198.655 1 0
27635 201.793 199.531 1 0
27636 201.542 200.199 1 0
27637 201.101 200.664 1 0
27638 200.427 200.924 0 0
27639 199.639 200.988 0 0
27640 198.696 200.859 0 0
27641 197.652 200.553 0 0
27642 196.376 200.063 0 0
27643 194.990 199.400 0 0
27644 193.359 198.557 0 0
27645 191.658 197.544 0 0
27646 189.901 196.380 0 0
27647 187.956 195.065 0 0
27648 186.044 193.627 0 0
27649 184.097 192.073 0 0
27650 181.980 190.401 0 0
27651 179.913 188.627 0 0
27652 177.806 186.770 0 0
27653 175.629 184.834 0 0
27654 173.501 182.849 0 0
27655 171.427 180.825 0 0

Table 3: Continued.

𝑥𝑖 𝑦𝑖 𝑦𝑖 V𝑖 ∏𝑚+𝑟−1𝑖=𝑚 V𝑖
27656 169.394 178.775 0 0
27657 167.483 176.727 0 0
27658 165.574 174.680 0 0
27659 163.767 172.647 0 0
27660 162.018 170.651 0 0
27661 160.327 168.693 0 0
27662 158.764 166.788 0 0
27663 157.409 164.966 0 0
27664 156.072 163.223 0 0
27665 154.883 161.569 0 0
27666 153.795 160.009 0 0
27667 152.810 158.542 0 0
27668 151.905 157.175 0 0
27669 151.295 155.928 0 0
27670 150.824 154.808 0 0
27671 150.363 153.812 0 0
27672 150.066 152.942 0 0
27673 149.992 152.200 0 0
27674 149.918 151.585 0 0
27675 150.113 151.108 0 0
27676 150.297 150.758 0 0
27677 150.689 150.546 1 1
27678 151.243 150.480 1 1
27679 151.726 150.523 1 1
27680 152.399 150.680 1 1
27681 153.234 150.968 1 1
27682 154.061 151.367 1 1
27683 154.907 151.859 1 1
27684 155.768 152.444 1 1
27685 156.715 153.104 1 1
27686 157.694 153.843 1 1
27687 158.639 154.638 1 1
27688 159.699 155.484 1 1
27689 160.672 156.379 1 1
27690 161.683 157.307 1 1
27691 162.687 158.252 1 1
27692 163.702 159.217 1 1
27693 164.565 160.182 1 1
27694 165.367 161.142 1 1
27695 166.084 162.079 1 1
27696 166.677 162.977 1 1
27697 167.268 163.840 1 1
27698 167.799 164.650 1 1
27699 168.114 165.395 1 1
27700 168.363 166.063 1 1
27701 168.493 166.643 1 1
27702 168.592 167.132 1
27703 168.541 167.530 1
27704 168.372 167.830 1
27705 168.135 168.035 1
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Table 4: Computational experiment results of regression model based approach.

RLT∗ 10 15 20 25
No.† Est.‡ MAPE Est. MAPE Est. MAPE Est. MAPE
1 9.323 7.01% 18.692 21.91% 29.264 37.61% 45.582 58.32%
2 9.836 1.65% 21.562 35.89% 36.439 58.25% 87.836 111.38%
3 11.632 15.09% 24.609 48.52% 38.227 62.61% 58.742 80.59%
4 6.703 39.47% 13.807 8.28% 22.950 13.74% 37.241 39.33%
5 4.897 68.52% 10.003 39.97% 17.013 16.14% 26.157 4.52%
6 10.510 4.97% 21.993 37.81% 35.793 56.61% 59.961 82.30%
7 9.318 7.06% 18.093 18.69% 27.484 31.52% 40.181 46.58%
8 6.443 43.26% 14.471 3.59% 26.705 28.71% 181.786 151.64%
9 10.946 9.03% 22.764 41.12% 36.031 57.22% 56.923 77.93%
10 9.669 3.36% 18.323 19.94% 27.370 31.12% 39.112 44.02%
11 9.845 1.57% 20.124 29.17% 31.880 45.80% 50.038 66.73%
12 6.977 35.62% 14.004 6.87% 22.399 11.32% 33.762 29.82%
13 7.267 31.65% 14.912 0.59% 23.800 17.35% 36.211 36.63%
Average 20.64% 24.03% 36.00% 63.83%
Total average 36.12%
∗Residual life time (unit : hour).
†Failure event number.
‡Residual life time estimated by regression model based approach (unit : hour).

Table 5: Test results depending on 𝜔.
𝜔 Average MAPE
3000/√RPM 48.64%
3600/√RPM 47.88%
4200/√RPM 47.04%
4800/√RPM 45.85%
5400/√RPM 43.93%
6000/√RPM 42.13%
6600/√RPM 40.05%
7200/√RPM 38.02%
7800/√RPM 37.25%
8400/√RPM 37.09%
9000/√RPM 37.39%
9600/√RPM 37.32%
10200/√RPM 37.85%
10800/√RPM 37.98%
11400/√RPM 38.27%
12000/√RPM 38.48%
12600/√RPM 38.69%

600/√RPM. Table 5 shows the result of experiments depend-
ing on the changes of 𝜔. It shows us that 𝜔 = 8400/√RPM
has the best performance.

6. Conclusion

This study has dealt with the approaches for estimating the
next failure time of offshore plant equipment, gas compressor.
How to estimate the next failure time based on vibration data

has been proposed by three approaches: regression model
based approach, Markov model based approach, and their
hybrid approach. In theMarkovmodel based approach, based
on the gathered vibration state-timestamp data, the next
failure time of a gas compressor has been estimated by the
finite state continuous time Markov model theory. In the
regressionmodel based approach, the linear regressionmodel
using moving average filter has been proposed. The hybrid
approach takes the advantage of two approaches. Depending
on the vibration level, one of two approach is applied to
estimate the next failure time.

To show the usefulness of the proposed approaches,
case examples and computational experiments based on
shaft vibration sensor data were introduced in a case study.
Although the proposed approaches have some limitations in
fully evaluating the usability in the real field due to the limited
examples used in the case study, we believe that it will provide
offshore operation companies with a reference for doing the
improved maintenance planning and decreasing equipment
downtime due to unexpected failures.

We can think of several future research works. First,
after suitably tuning the parameters (e.g., 𝑛, 𝜂, and regression
parameters) used in our approaches based on lots of field data,
our approaches could be applied to not only gas compressor
but also other pieces of equipment, the failure of which
could be being monitored by vibration signals. Second, the
linear regression model could be improved to the more
elaborate regression model by considering the trade-offs
between generalizability and goodness of fit. In general case,
since exponential model seems to be more suitable for the
degradation model of mechanical system, it is valuable to
consider more complex regression model rather than the
first-order linear regression model. Third, it is possible to
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specify the approaches in detail considering the segmentation
of ocean environment and equipment operating mission
profile. Fourth, in this study, based on engineers interview,
we assumed that the state transition in the Markov model is
time independent. However, as the future research issue, it is
meaningful to consider the time dependency of deterioration
process of compressor. In addition, we did not consider real-
time interactive update of the parameters used in theMarkov
model. However, since the degradation process is changing
over time due to various uncertainties, it is also valuable to
consider the real-time update by using the methods such
as MCMC (Monte Carlo Markov Chain) and classic control
models. Finally, other probabilistic methods such as Bayesian
network and artificial neural network could be applied to
develop a more elaborated prognostic algorithm.
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