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This paper proposes a 2-dimensional cellular automaton (CA)model and how to derive the model evolution rule to simulate a two-
dimensional vibrant membrane. The resulting model is compared with the analytical solution of a two-dimensional hyperbolic
partial differential equation (PDE), linear and homogeneous. This models a vibrant membrane with specific conditions, initial and
boundary.The frequency spectrum is analysed as well as the error between the data produced by the CAmodel.Then it is compared
to the data provided by the solution evaluation to the differential equation. This shows how the CA obtains a behavior similar to
the PDE. Moreover, it is possible to simulate nonclassical initial conditions for which there is no exact solution using PDE. Very
interesting information could be obtained from the CA model such as the fundamental frequency.

1. Introduction

The infinitesimal calculus and its descendants [1] have been
one of the dominant branches in mathematics since it was
developed by Newton and Leibniz. Differential equations are
the main core of calculus and have been the cornerstone
for understanding sciences, particularly physics. It is often
necessary to consider more than one variable since it is
required to change this in function to another one or the
time. Therefore, to model physical systems, the differential
equations have had great success due to more than three
centuries of experience with methods to give the symbolic
solutions. Even so, few partial differential equations have an
exact solution [2].

Moreover, the current necessity to experiment with phys-
ical systems in order to recognize their behavior make neces-
sary to developmodels that simulate the systems and become
less complex allowing manipulation and approximation as
close as possible to reality. In this order of ideas, the discrete
techniques have had more success when they have been

implemented for simulation purposes. An example of this is
the cellular automata (CA). Wolfram [3, 4] defined the CA as
a mathematical idealization of physical systems whose time
and space are discrete and in which the physical quantities
can be grouped in a finite set of values.TheCAare appropriate
in physical systems with a highly nonlinear regime such
as chemical or biological systems, where there are discrete
thresholds [5].

For example, the two-dimensional wave equation is an
important one since it represents the hyperbolic partial differ-
ential equations. Although it has many analytical solutions,
if the initial or boundary conditions are changed, it cannot
be solved. There are attempts to simulate the wave equation
behavior using a CA as presented by Chopard and Droz [6]
and Kawamura et al. [7]; they have only been performed in
a one-dimensional automaton. This due to the complexity of
applying a suitable rule for the CA evolution.

The evolution rule for CA is a fundamental problem that
has no analytical solution [2]. In this paper amethodology for
clarifying the CA evolution rule that simulates the behavior
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of a vibrating membrane is compared with the analytical
solution of hyperbolic PDE. This simulates a proposed fre-
quency spectrum observing similarity solutions. This shows
that the discretemodeling can be an alternative for systems in
which the boundary conditions or other circumstances make
the PDE intractable. Section 1 offers a brief introduction;
Section 2 presents the two-dimensional continuous wave
equation model as well as the solution to the equation given
the initial and boundary conditions. Section 3 shows the
methodology used to make the problem discrete and obtain
the CA evolution rule and the discrete model definition.
Section 4 analyses and discusses the results of the continuous
model against the proposed CA discrete model. Finally,
Section 5 gives the conclusions.

2. Vibrating Membrane, Classical Model

Themotion equation for amembrane is based on the assump-
tion that it is thin and uniform with negligible stiffness
that is perfectly elastic and without spring vibrating with
small amplitude movements. The equation governing the
transverse membrane vibrations is given by

(𝜕2𝑢𝜕𝑥2 +
𝜕2𝑢
𝜕𝑦2) = 1

𝑐2
𝜕2𝑢
𝜕𝑡2 , (1)

where 𝑢(𝑥, 𝑦, 𝑡) is the membrane deflection and 𝑐2 = 𝑇/𝜌,
where 𝜌 is themembranemass density [8] and𝑇 ismembrane
tension per unit length. Equation (1) is called wave equation
in two dimensions.

Considered as a square membrane (see Figure 1), the
boundary conditions are defined as follows:

𝑢 (𝑥, 𝑦, 𝑡) = 0 for 𝑥 = 0, 𝑥 = 𝑏, 𝑦 = 0, 𝑦 = 𝑏 ∀𝑡. (2)

The initial conditions are defined as

𝑢 (𝑥, 𝑦, 𝑡) = 𝑓 (𝑥, 𝑦) ,
𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 = 𝑔 (𝑥, 𝑦) , (3)

where 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are the membrane displacement
and initial speed, respectively.

The initial conditions are defined as

𝑢 (𝑥, 𝑦, 𝑡) = 𝑥𝑦 (𝑥 − 𝑏) (𝑦 − 𝑏) , (4)

𝜕𝑢 (𝑥, 𝑦, 𝑡)
𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 = 0. (5)

Then, the repose membrane starts with a spatial distribu-
tion that can be seen in Figure 2.
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Figure 1: Rectangular membrane of 𝑏 × 𝑏 length.
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Figure 2: The membrane system initial and boundary conditions.

Differential equation solution (1) with the initial condi-
tions and boundary shown in (4) and (5), a length 𝑏 = 0.12𝑚,
and a constant 𝑐 = 14.2829 is

𝑢 (𝑥, 𝑦, 𝑡) = 64 (0.12)4
𝜋6

⋅ ∞∑
𝑚=1
𝑚=odd

∞∑
𝑛=1
𝑛=odd

1
𝑚3𝑛3 cos(

𝜋√𝑚2 + 𝑛2
0.12 14.2829𝑡)

⋅ sin(𝑚𝜋𝑥
0.12 ) sin(

𝑛𝜋𝑦
0.12) .

(6)

The dynamic response of the central membrane point𝑝 =(𝑏/2, 𝑏/2) according to (6) can be observed in Figures 3(a) and
3(b).

3. Discrete Membrane Model

This paper considers a synchronous CA [9] where the under-
lying topology is a rectangular two-dimensional finite lattice.
For this type of CA there are two classic neighborhoods; the
case of the CA is considered a Von Neumann neighborhood
type [10] consisting of a central cell and its four geographical
neighbors to the north, south, east, and west (𝑛, 𝑠, 𝑒, 𝑤).
In this sense, the importance of extending the CA to two
dimensions lies in that [11] the extension is the emergence
of two-dimensional patterns that have no simple analogue
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Figure 3: PDE graph simulation (a) presents the cell displacement (𝑏/2, 𝑏/2) on the 𝑧-axis; (b) zoom-in of the PDE simulation graph.

in one dimension, and two-dimensional dynamic sometimes
allows a direct physical systems comparison.

The methodology used for the discretization of the PDE
on a 2-dimensional CA is presented.

3.1. Formal Definition of Cellular Automata. There are dif-
ferent authors [4, 9, 11, 12] that have defined the CA, but all
coincide in four elements. Taken as a base a CA is as follows.

Definition 1. A CA is a 4-tuple CA = (𝐿, 𝑆, 𝑉,Φ) where
𝐿 is a regular lattice 𝐿 = {𝑐 ∈ C𝑑} for a 𝑑-dimensional
lattice,

𝑆 is a finite set of all possible cell states, 𝑐 ∈ 𝐿,
𝑉 is a finite set of cells that define the cell neighborhood,

Φ, 𝑆𝑑 → 𝑆 is a transition function applied simultane-
ously to the cells that conform the lattice [9].

The objective cell state actualization requires knowing the
neighborhood cell states [6, 9].

3.2. AnalyticalModel Discretization. Suppose there is amem-
branewhich can be thought of as a succession of specificmass
points connected by springs (see Figure 4). Each point of
the membrane is attached to the four orthogonal neighbors,
where the membrane mass is spread over the attachment
points and not on the springs, and the membrane boundary
is subject to a fixed surface.

Let us call 𝑑
𝑒
(or equilibrium length) the spring length

that joins two masses in an equilibrium state.
For a vibrating membrane system with initial position

conditions described in (4) and starting in repose. Each
membrane junction point is subjected to four forces acting
toward each orthogonal neighbor, called 𝑚

𝑐
, 𝑚
𝑛
, 𝑚
𝑠
, 𝑚
𝑒
,

and 𝑚
𝑤
, for the central cell, north, south, east, and west,

respectively (see Figure 5).
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Figure 4: Representation of themembrane as a succession ofmasses
and springs, each mass joined to its neighbors as north, south, east,
and west.

Suppose it is necessary to know the force each neighbor
applied over 𝑚

𝑐
. Following the defined process by Huerta-

Trujillo et al. [13], the force that a neighbor exercises over the
central cell𝑚

𝑐
is computed (see Figure 6).

Now, taking into account Figure 6 gives

󳨀󳨀→Δ𝑟
𝑤
= 󳨀→𝑟
𝑤
−󳨀→𝑟
𝑐
. (7)

Knowing that |󳨀󳨀→Δ𝑟
𝑤
| represents the separation length

between masses, it is possible to write this scalar as the sum
of the spring length increasing the deformation undergone
by the same spring due to the central mass position change.
Thus,

󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤
󵄨󵄨󵄨󵄨󵄨󵄨 Δ̂𝑟𝑤 = (𝑑

𝑒
+Δ𝑑
𝑒
) Δ̂𝑟
𝑤
, (8)

where Δ𝑑
𝑒
is the spring deformation value; therefore it is

necessary to compute this with the purpose of knowing
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Figure 5: Representation of the central cell and its four orthogonal
neighbors forming a Von Neumann CA neighborhood, as well as
the direction in which the neighbor force acts, represented by the
direction of the vectors.
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Figure 6: Representation of the vectors associated with the central
cell, a neighbor, and the direction of the force exercised by the spring
in the neighbor cell direction; 󳨀→𝑟

𝑐
, 󳨀→𝑟
𝑤
, and 󳨀󳨀→Δ𝑟

𝑤
represent the central

cell vectors, the west neighbor, and the spring vector that join them,
respectively.

the force increase from the equilibrium to the analysis point.
Thus,

Δ𝑑
𝑒
Δ̂𝑟
𝑤
= (󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤

󵄨󵄨󵄨󵄨󵄨󵄨 − 𝑑𝑒) Δ̂𝑟𝑤. (9)

Given that both sections of (9) are vectors, their compo-
nents are represented as follows:

Δ𝑑
𝑒
Δ̂𝑟
𝑤
= (Δ𝑥

𝑤
, Δ𝑦
𝑤
, Δ𝑧
𝑤
) (10)

and the second vector components

(󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤
󵄨󵄨󵄨󵄨󵄨󵄨 − 𝑑𝑒) Δ̂𝑟𝑤

= (󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤
󵄨󵄨󵄨󵄨󵄨󵄨 − 𝑑𝑒)(

𝑥
𝑤
− 𝑥
𝑐󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤
󵄨󵄨󵄨󵄨󵄨󵄨
, 𝑦𝑤 − 𝑦𝑐󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤

󵄨󵄨󵄨󵄨󵄨󵄨
, 𝑧𝑤 − 𝑧𝑐󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤

󵄨󵄨󵄨󵄨󵄨󵄨
) . (11)

Equating component to component of (10) and (11) gives

Δ𝑥
𝑤
= (󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤

󵄨󵄨󵄨󵄨󵄨󵄨 − 𝑑𝑒)
𝑥
𝑤
− 𝑥
𝑐󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤
󵄨󵄨󵄨󵄨󵄨󵄨
,

Δ𝑦
𝑤
= (󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤

󵄨󵄨󵄨󵄨󵄨󵄨 − 𝑑𝑒)
𝑦
𝑤
− 𝑦
𝑐󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤
󵄨󵄨󵄨󵄨󵄨󵄨
,

Δ𝑧
𝑤
= (󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤

󵄨󵄨󵄨󵄨󵄨󵄨 − 𝑑𝑒)
𝑧
𝑤
− 𝑧
𝑐󵄨󵄨󵄨󵄨󵄨󵄨󳨀󳨀→Δ𝑟𝑤
󵄨󵄨󵄨󵄨󵄨󵄨
.

(12)

So, the rectangular components Δ𝑥
𝑤
, Δ𝑦
𝑤
, and Δ𝑧

𝑤
are

obtained corresponding to the displacement increase of the
axis coordinates 𝑥, 𝑦, and 𝑧 for the mass 𝑚

𝑐
for 󳨀󳨀→Δ𝑟

𝑤
. The

component values for the vectors 󳨀󳨀→Δ𝑟
𝑛
, 󳨀󳨀→Δ𝑟
𝑠
, and 󳨀󳨀→Δ𝑟

𝑒
are

calculated in the same manner.
Following the analysis, for Hooke’s law, given for the𝑚
𝑐
particle, there are three forces exercised for 𝑚

𝑤
in the

direction of 󳨀󳨀→Δ𝑟
𝑤
due to the vector components 𝑥, 𝑦, and𝑧 and similar to each of the particles 𝑚

𝑛
, 𝑚
𝑠
, and 𝑚

𝑒
in

the directions 󳨀󳨀→Δ𝑟
𝑛
, 󳨀󳨀→Δ𝑟
𝑠
, and 󳨀󳨀→Δ𝑟

𝑒
, respectively. Thus, the force

applied by the neighbors in the 𝑥 component is

𝐹
𝑥
= − 𝑘
𝑛
Δ𝑥
𝑛
− 𝑘
𝑠
Δ𝑥
𝑠
− 𝑘
𝑒
Δ𝑥
𝑒
− 𝑘
𝑤
Δ𝑥
𝑤
. (13)

Considering that the springs that join the masses to the
membrane are equal gives 𝑘

𝑛
= 𝑘
𝑠
= 𝑘
𝑒
= 𝑘
𝑤
= 𝑘 so this

yields

𝐹
𝑥
= − 𝑘 (Δ𝑥

𝑛
+Δ𝑥
𝑠
+Δ𝑥
𝑒
+Δ𝑥
𝑤
) . (14)

In the same manner

𝐹
𝑦
= − 𝑘 (Δ𝑦

𝑛
+Δ𝑦
𝑠
+Δ𝑦
𝑒
+Δ𝑦
𝑤
) ,

𝐹
𝑧
= − 𝑘 (Δ𝑧

𝑛
+Δ𝑧
𝑠
+Δ𝑧
𝑒
+Δ𝑧
𝑤
) . (15)

These are the forces acting over 𝑚
𝑐
, which define that

the acceleration at the time 𝑚
𝑐
is oscillating. Since the force

is known and the acceleration stays constant in each time
step, using the straight-line motion equation with constant
acceleration, in terms of the initial speed of 𝑚

𝑐
for its

rectangular components, yields

V
𝑓𝑥

= V
𝑖𝑥
+ 𝑎
𝑥
𝑡. (16)

Accordingly

V
𝑓𝑦
= V
𝑖𝑦
+ 𝑎
𝑦
𝑡, (17a)

V
𝑓𝑧
= V
𝑖𝑧
+ 𝑎
𝑧
𝑡, (17b)

where 𝑎 can be computed using second Newton’s law.
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The previous equations define the speed of 𝑚
𝑐
after time𝑡. This permits calculating the new particle position for the

same instant time using the following equations:

𝑥
𝑓𝑖
= 𝑥
𝑖
+ V
𝑖𝑥
𝑡 + 1

2
𝑎
𝑥
𝑡2, (18a)

𝑦
𝑓𝑖
= 𝑦
𝑖
+ V
𝑖𝑦
𝑡 + 1

2
𝑎
𝑦
𝑡2, (18b)

𝑧
𝑓𝑖
= 𝑧
𝑖
+ V
𝑖𝑧
𝑡 + 1

2
𝑎
𝑧
𝑡2. (18c)

Speed equations (16), (17a), and (17b) and position (18a),
(18b), and (18c) are those used in the evolution function for
the proposed CA.

3.3. Vibrant Membrane Model Using a 2-Dimensional CA.
Using the developed analysis defines the CA model for a
vibrant membrane system, fixed at the borders, of an area𝑙 × 𝑙 as a 4-tuple AC = (𝐿, 𝑆, 𝑉,Φ), where each cell 𝑚

𝑐
∈ 𝐿

is defined by its mass, initial position, and speed. When the
membrane is found in rest state, this gives the following.

𝐿: this is a regular 2-dimensional lattice.
𝑆:

𝑆 =
{{{{{{{{{

0, 1: if it is a fixed cell
󳨀󳨀󳨀→𝑃𝑡
𝑚𝑖,𝑗

: vector of position in time 𝑡
𝑉𝑡
𝑚𝑖,𝑗

: speed in the time 𝑡,
∀𝑚
𝑖,𝑗
∈ L

2.

(19)

𝑉: 𝑉 = {(𝑚
𝑛
, 𝑚
𝑠
, 𝑚
𝑐
, 𝑚
𝑒
, 𝑚
𝑤
)}.

Φ: R3 → R3.

Φ: (a) 󳨀󳨀󳨀→𝑃𝑡+1
𝑚𝑐𝑓

= 󳨀󳨀→𝑃𝑡
𝑚𝑐𝑖

+ 󳨀󳨀󳨀→𝑉𝑖𝑡
𝑚𝑐𝑖
𝑡 + 1

2
(∑4

V=1 𝑎𝑡V𝑐)𝑡2.
(b) 󳨀󳨀󳨀󳨀→𝑉𝑓𝑡+1

𝑚𝑐
= 󳨀󳨀󳨀󳨀→𝑉𝑖𝑡
𝑚𝑐𝑓

+ ∑4
V=1

󳨀→𝑎𝑡V𝑐𝑡,
where ∑4

V=1
󳨀→𝑎𝑡V𝑐 is the acceleration that the neighbors of

𝑚
𝑐
exercise over the cell in time 𝑡; 󳨀󳨀󳨀→𝑃𝑡+1

𝑚𝑐𝑓
is the final cell

position in space, composed of three variables 𝑝
𝑥
, 𝑝
𝑦
, and𝑝

𝑧
, and according to its rectangular coordinates, each one is

represented by 32 bits;
󳨀󳨀󳨀󳨀→𝑉𝑓𝑡+1
𝑚𝑐

is the final speed in time 𝑡 + 1,
composed of three variables V

𝑥
, V
𝑦
, and V

𝑧
, and according to

its rectangular coordinates, each one is represented by 32 bits.
This implementation allows having real stateswithout contra-
dicting the definition of cellular automaton [4] (moreover, the
total states that each cell can take are restricted to 2193 states).

The evolution function Φ is composed of two rules, both
applied simultaneously to all the cells that conform the lattice.
This is different from the model proposed by Glabisz [14, 15]
where the rules are applied in an asymmetric form.

The rule (a) defines the cell position at time 𝑡 + 1, taking
the speed at time 𝑡. This position is updated, to be the new

starting position for 𝑡+2 and so on. Similarly, for (b) the final
speed for time 𝑡 + 1 is updated, with the initial speed for time𝑡 + 2.

An important point in the model definition is the spring
restitution coefficient. Unlike other models [13] where the
constant restitution is relatively simple to calculate, this
model faces a problem: The arrangement of masses and
springs has no serial pattern but shows an array of grids.
To obtain this coefficient, it follows the process defined by
Huerta-Trujillo et al. [16].

3.4. 𝑘 Restitution Coefficient Calculation. To calculate the𝑘 restitution coefficient value of the springs that bind the
corresponding mass, the process begins by assuming that the
membrane has a spring constant with a value equal to 𝑘

𝑡
.

Starting with a membrane represented by the proposed
CA consisting of 2 × 2 nodes, thereupon, following the
reduction springs connected in series and in parallel obtains

𝑘 = 𝑘
𝑡
. (20)

Following the process for a CA consisting of 3 × 3 nodes
gives

𝑘 = 3𝑘
𝑡

2
; (21)

carrying on the process, the relation for 𝑛 springs has the form
𝑘 = 𝑛

2
𝑘
𝑡
, (22)

where 𝑘 is the spring constant, 𝑘
𝑡
is the membrane elasticity

constant, and 𝑛 is the number of nodes for a CAof 𝑛×𝑛 nodes.
4. Simulation and Results

CA was implemented applying the object-oriented paradigm
using the C++ language in which each cell is implemented as
a Bean object which has as attributes the cell spatial location,
the value of its mass, its instantaneous speed, or if it is a fixed
cell. CA space represented by the square lattice is regularly
implemented as an object composed of cell arrangements.
The CA as such is composed of a grid object and one that
implements the evolution rule and the definition of the CA
neighborhood.

The CA dynamic response is given by defining a mem-
brane represented by a lattice of 𝑛×𝑛 nodes, 𝑛 = 51, based on
the necessary number of cells to simulate a linear system [13].
For CA the basis is a membrane 10× 10 cm, stretched by 20%
of its length in the direction of its axes 𝑥 and 𝑦 for a length
equal to that used in the PDE taken as reference node located
at (𝑛/2, 𝑛/2) to match the point (𝑏/2, 𝑏/2) of the membrane.
The mass of cells is proportional to the density used to solve
the PDE as shown in Section 2. The CA response is shown
in Figures 7(a) and 7(b). Qualitatively, the CA response is
relevant to the response of the PDE, taking the same initial
and boundary conditions for both models.

The initial CA conditions are the same as those described
for the PDE model ((4) and (5)). The displacement was
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Figure 7: Response graph (a) of the simulation made by the CA, presenting the cell (𝑛/2, 𝑛/2) on the 𝑧-axis, (b) zoom-in of the simulation
graphic.
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Figure 8: Overlay graphic (a) of the simulation realised by the CA and the PDE shows the displacement of the cell (𝑛/2, 𝑛/2) on the 𝑧-axis
in both cases; (b) zoom-in graphic overlay.

obtained by the PDE membrane ranging 1𝑠 and took 1 × 104
presented samples. The displacement that was obtained from
the CA proposed the same cell (in this case the cell located
at (𝑛/2, 𝑛/2)) at the same time and with the same number
of samples. Fifty simulations were performed with the same
averaged data for comparison against the obtained PDE.
Figures 8(a) and 8(b) show overlapping graphs obtaining
oscillations by CA (in solid line) and the PDE (in dotted line)
as well as a zoom-in to the same graph.Themean square error
is defined as

MSE = 1
𝑛
𝑛∑
𝑖=1

(Vac
𝑖
−Vr
𝑖
)2 , (23)

where Vac
𝑖
is the 𝑖th value estimated by the CA and Vr

𝑖
is

the reference value taken by the PDE. The error between

the measurements generated by the CA and the reference
values given by the PDE is MSE = 4.4189 × 10−11, which
ensures that the CA simulates the PDE response.

In contrast to other models [7, 15], the proposed CA
model uses 50% less cells in the lattice to get the PDE
response.

In a quantitative form there is a corresponding phase
between the two models for the same cell. Analytically, the
fundamental frequency is limited by the constants values 𝑛
and𝑚. The frequency is defined as [17]

𝑓
𝑛𝑚

= 𝑐
2
√(𝑛𝑏)

2 + (𝑚𝑏 )
2. (24)
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Figure 9: Graphic of frequency spectra overlay (a) of the simulation realized by the CA and the PDE, (b) zoom-in of the graphic overlay.
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Figure 10: Graphic of the simulation of lattice’s central cell for the CAmodel (a); the graphic (b) shows frequency spectra for the central cell.

So, a fundamental frequency is expected approximately as

𝑓1,1 = 84.1625Hz. (25)

Obtaining frequency spectra for both signals and plot-
ting them observe that there is a congruence between the
frequency spectra given by the CA and PDE (see Figure 9(a)).
Figure 9(b) shows the fundamental frequency for both mod-
els around 85Hz. The fundamental frequency error between
the analytical solution and that simulated by the proposedCA
is 0.995%, which is smaller than that found in other models
[7, 14, 18].

Furthermore, the robustness of the CA model can be
tested given a type of irregular initial condition, for example,
a random initial position for all cells, with 0 < 𝑧

𝑐
≪ 𝑏, where𝑧

𝑐
is the cell position on the 𝑧-axis. The density, tension, and

boundary conditions are the same as described in Section 2.
In this case the PDE does not have an analytical solution

since it is not possible to define a function to describe
the initial conditions and to be derivable, but the pro-
posed CA model endures this kind of initial conditions.

Simulating the conditions described and plotting the same
point (𝑏/2, 𝑏/2) as in the previous cases, the CA model
provides the central cell response. The results can be seen
in Figure 10(a); the frequency spectra of this evolution are
shown in Figure 10(b) where the fundamental frequency is
approximately 85Hz such as that obtained in the previous
cases.

5. Conclusions

The 2-dimensional CA model to a vibrant membrane system
shown in this paper was derived from a 1-dimensional CA
model that simulates a vibrant string [13].The CAmembrane
model is released from the initial conditions so it is not
necessary to redefine it; thus it is possible to define the initial
conditions and simulate the system behavior immediately.
This is different to the 2-dimensional wave PDE that is
sensitive to these conditions. Its solution could only be
found if the initial conditions are represented by a derivative
function in all space; otherwise the PDE would not have
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an analytical solution. The proposed CA model can be set to
almost any initial condition to acquire the response due to
that definition.

Themodel expansion from one to two dimensions entails
increasing the model computational complexity, linear in the
case of one dimension, to𝑂(𝑛2) complexity because CA space
now has an array of 𝑛 × 𝑛. In this sense, the parallel model is
justified if𝑚 is defined as the number of threads that help the
development of CA per unit time.Then, the complexity of the
CA will be 𝑂(𝑛2/𝑚) and if𝑚 is made large enough such that𝑚 → 𝑛, then the complexity is reduced to 𝑂(𝑛).

On the other hand, in our experience it is possible to
extend this model to a three-dimensional CA; the challenge
is to obtain the relationship between the elasticity of the
material being modeled and the restitution constant for the
CA internal springs.

Finally, it is worth mentioning that, in this work, there
is not a straight relationship between the CA model and the
PDE. From this paper it is clear that the results between
the PDE and CA are in excellent agreement. Moreover, the
cellular automata could simulate systemswhich are simulated
by PDE under conditions that these equations could not.The
latter suggest that perhaps it is possible to find amathematical
transformation from PDE to CA.
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