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The accurate and sensitive determination of H,O, is very important in many cases because it is a product of reactions catalysed by
several oxidase enzymes in living cells and it is essential in environmental and pharmaceutical analyses. The fabrication of enzyme
protein activity based biosensors is a very promising way for this purpose because the function of biological molecules is very
specific, sensitive, and selective. Horseradish peroxidase (HRP) is the most commonly used enzyme for H,O, detection because
it can oxidize hydrogen atoms and, for example, xenobiotics in the presence of H,0,. In order to define the limit of detection
(LOD) of H,0, we made calibrations with guaiacol and amplex red (AR), which are hydrogen donors of HRP. The accumulation
of the reaction products, tetraguaiacol, and resorufin, respectively, then can be easily detected by absorption or emission
(fluorescence) spectroscopy. In our experiments an enzyme electrode was fabricated from ITO (indium tin oxide), functionalized
multiwalled carbon nanotubes (f-MWCNTs), and HRP. Although the enzyme activity was smaller by about two orders of magnitude
when the enzyme was bound to the f-MWCNTs (ca. 107> M H,0,/(M HRP-sec) compared to ca. 2M H,0,/(M HRP-sec) and
5MH,0,/(MHRP-sec) with AR and guaiacol in buffer solution), LOD of the H,O, decomposition was about 6 pM H,0,/sec
and 10 pM H, O, /sec in the case of AR and guaiacol, respectively.

1. Introduction

H,0, is one of the reactive oxygen species (ROS) which
should be considered in many chemical and biological
processes, for example, in food chemistry and biology,
physiological, pathological and pharmaceutical procedures,
and environmental fields [1, 2]. There is a large interest to
reduce the formation of the ROS components because they
may react with the components of the systems resulting in
their degradation, consequently, reducing the efficiency of the
reactions.

Due to the increasing role of free radical mechanisms
in air and in aquatic environment, H,O, has an increasing

concentration (together with other reactive oxygen species)
in the atmosphere and water [3]. In addition, it is a natural
product of oxidative processes in metabolism of living cells
(like electron transport of biological oxidation and photo-
synthesis) with a very wide apparent concentration range
from few tens of pM to mM [4, 5]. Detection of extracellular
H,0, can be an important diagnostic tool for cancer cell
lines expressing either transfected dual oxidase (DUOX)
or endogenous DUOX (e.g., in thyroid, airway or colonic
epithelium, and lung) (see [6], and the references in it).
Although H,0, is a strong two-electron oxidant, many
of its two-electron oxidation reactions are too slow to be
biologically relevant due to the high activation energy of
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this process. There are, however, important exceptions. For
example, metallocomplexes (e.g., metalloproteins) or specific
proteins (thiol or methionine proteins) and lipids (especially
unsaturated ones) are extremely sensitive to reactions with
H,0, [7, 8].

Consequently, the rapid, accurate, sensitive, and selective
determination of the spatial and temporal variations of these
harmful reactive oxygen species is of great significance and
became in the focus of many laboratories. It is not the
aim of this publication to give a summary; however, it
must be mentioned that numerous techniques have been
used for the detection of H,O, [9-12]. Besides the classical
titrimetry [13], optical [14, 15], and infrared spectroscopy
[16], electrochemical techniques coupled with the use of
electrodes decorated by redox proteins are more and more
promising ways to detect H,0, [17-20]. Natural enzyme-like
activity of enzyme mimetics (nanozymes) has been applied
to detect various bio- and/or biologically relevant molecules
and reviewed by Shin et al. [21]. There are many tasks that
should be considered when different methods are used for
specific applications. One should optimize the complication
and cost of the method itself (the required instrumentation,
like vibrational spectroscopies); the size of the device and
the sample quantity; the response to be fast, reversible, and
reproducible; the possibility of online, real-time detection;
the sensitivity, selectivity and, cross-reactions or parallel
reactions of the analytes.

The development of H,0, sensors with low detection
limit and wide responding range has become a rich research
field these days. There are two main directions of strategies
for the fabrication of sensitive and specific H,O, detectors.
One direction is a nonenzymatic platform which provides
very rapid, high sensitivity detection of H,O, and does
not suffer from limitations which are inherently present
in biological materials, like in enzyme proteins. These are
usually related to the reduced stability when isolated from
their natural (biological) environment due to high sensitivity
to environmental factors and/or to autocatalytic degradation
processes [22-25]. In addition, the nonenzymatic biosensors
are usually simpler and of low cost, and thanks to recent
developments their selectivity and sensitivity are increasing
in recent publications [24, 26].

Another direction is the fabrication of enzyme protein
activity based biosensors. Besides the difficulties in using
biological materials (usually complicated and sometimes
high cost immobilization procedures are required) it is a real
challenge to use them in new generation technologies (like
in optoelectronics, nanobionics, and biosensor technologies)
because their function is extremely specific, sensitive, and
selective. The definite advantage of enzymatic biosensors is
that these are less sensitive to cross-reactions with electro-
chemical processes, which can modify the electrode surfaces
and/or are reflected in kinetic limitations and overpotential.
The most commonly used enzyme for the construction of
electrochemical H,O, biosensors is horseradish peroxidase
(HRP), which catalyses the H,O,-dependent one-electron
oxidation of suitable hydrogen donors efficiently [27, 28].

Thanks to the intensive research (see, e.g., crystallo-
graphic [29, 30] and spectroscopy [31-34] investigations and
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model calculations [35, 36]) combined with site directed
mutagenesis studies [37] we have quite solid knowledge
about the molecular mechanism of catalytic processes of
peroxidases with different reaction routes and substrates
[38]. The structural, kinetic, and energetic details together
with the known reaction stoichiometry allow using HRPs in
promising applications in biosensor technology.

Transparent conducting metal oxide (TCO) electrodes
are widely used in many fields of modern electronics (see [39],
and the references in it) because these offer the combination
of optical and electric methods in biosensor applications. The
oxidized, coloured product of the enzyme reaction is usually
very specific and its accumulation can be easily detected
by optical spectroscopy, while the electric method offers
good sensitivity [40, 41]. The direct electron transfer between
the HRP and the electrode is relatively slow and hardly
detectable; however, in the presence of a suitable mediator
(e.g., carbon nanotubes (CNTs)), it can be facilitated while
the enzyme’s bioactivity is largely retained [42].

Recently, we have fabricated an ITO/f-MCWNT°%H/
HRP electrode, which was able to reduce H,0,, as proved by
electrochemical (cyclic voltammetry) and optical (absorption
change and fluorescence) measurements. The results showed
that electron transfer can be facilitated between the active
sites of the enzyme and the surface of the electrode and that
the enzyme remains accessible for the substrate. The enzyme
reaction was followed by measuring the fluorescence change
of the coloured product of the guaiacol [43]. After optimizing
the enzyme electrode preparation protocol and the fluores-
cence detection system the sensitivity of our measurement
increased by several orders of magnitude which allowed
monitoring the H,O, concentration in real time. Introducing
a sensitive C'* radioassay in determining the amount of
bound enzyme the absolute enzyme activity was determined
and compared to the one measured in solution. In addition,
besides the guaiacol, another sensitive fluorescence probe,
amplex red, was introduced and the enzyme activity and LOD
of H,0, detection are introduced.

2. Materials and Methods

2.1. Sample Preparation. The functional groups of car-
boxyl-functionalized multiwalled carbon nanotubes (f-
MCWNTC9°H) (0.14 mg/mL) were activated by using cross-
linkers N-hydroxysuccinimide (NHS, Sigma-Aldrich) and 1-
[3-dimethylaminopropyl]-3-ethyl-carbodiimide (EDC, Sig-
ma-Aldrich). After the activation procedure, the mixture was
dialysed in potassium phosphate buffer (PBS, 0.1 M, pH 7.0)
to remove the excess amount of the crosslinkers. Then the
HRP enzyme solution (1 uM, salt free, Reanal) was added to
the activated f-MCWNT®H suspension and it was stirred
intensively at 4°C for 2 h. At the end, the sample was washed
until the supernatant did not show enzyme activity and then
separated by ultracentrifuge.

2.2. Absorption Kinetics and Enzyme Activity. Absorption
change was measured at 470 nm (guaiacol, Sigma-Aldrich)
and 570 nm (amplex red (AR), Sigma-Aldrich) by a single-
beam kinetic spectrophotometer of local design [44]. The
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good signal/noise ratio made it possible to measure even
107*-107° optical density change. By following the accumu-
lation of the coloured products the amount and the rate of
the H,0, decomposition was calculated from the reaction
stoichiometry. The enzyme reactions follow the reaction
stoichiometry according to the following equations:

4H,0, + 4 guaiacol R AN 8H,O + 1 tetraguaiacol
@

1H,0, + 1 amplex red LN 1H,0O + 1resofurin.

The enzyme activity was determined from the absorp-
tion and fluorescence kinetics. By measuring the concen-
tration change of the enzyme reaction’s coloured product,
the concentration change of H,0, can be determined by
the known molar extinction coefficients (£(A)etraguaiacol =

26611M 'cm™ and €(A),eqorusn = 58000M'cm™'). The
absorption change was calculated by measuring the voltage
of the detector after current/voltage conversion, which is
proportional with the light intensity:

U,

_ 0
AE (t) = log —Uo AU /A

2)

Here U is the DC level of the detector (typically 100 mV)
and AU(#) is the voltage change in time accompanying the
enzyme reaction and A is the amplification. Applying the
Beer-Lambert’s law the amount of the reduced H,O, can be
calculated from the measured E(t).

E(t)

[H,0,] (1) = ne) I

(3)

Here [ is the optical path and 7 refers to the stoichiometric
ratio of H,O, and tetraguaiacol or resorufin, which was 4:1
or 1:1, respectively.

2.3. Fluorescence Measurements. Fluorescence was measured
by a spectrofluorimeter (Perkin Elmer MPF44A) in a sensi-
tive way with one hundred times amplification. The reaction
was initiated by the addition of H,O, to the mixture of
the -MCWNT“°°H/HRP bionanocomposite and the gua-
iacol/amplex red hydrogen donors whose reagents can be
simply oxidized and theirs oxidation results in coloured prod-
uct (tetraguaiacol/resorufin). The excitation and the emission
wavelengths were 300 nm and 355 nm or 545 nm and 585 nm
in the case of guaiacol and amplex red, respectively.

On the one hand, measuring fluorescence change assures
a more sensitive way of detection than measuring absorption
change; on the other hand, the presence of carbon nanotubes
makes the analysis more difficult because of the light scatter-
ing characteristics of the nanotubes.

The change in the fluorescence can be approximated by
the following equation:

I;(t)=K I-ct)-e(D)-1-Q (4)

Here I, is the incident light intensity; I () is the fluores-
cence intensity as a function of time; c(¢) is the concentration

change of the coloured product as a function of time; &(A)
is the extinction coeflicient; / is the optical path; Q is the
quantum yield of fluorescence; and K' is the instrumental
constant [43]. By knowing the amount of the enzyme, the
enzyme activity can be determined in My, o, /(Mepsymes)
unit. Measurement of the fluorescence with high sensitivity
allows us to determine the H,O, concentration in real time
without large incubation and integration time. The integra-
tion time for the measurement was typically one second.

2.4. Scanning Electron Microscopy. In order to visualize the
surface coverage of ITO by the carbon nanotubes scanning
electron microscopy (SEM) investigations were performed.
SEM images were taken by a Hitachi S-4700 type II FE-SEM
operating in the range of 3-5kV. Prior to the measurement
the samples were mounted on a conductive carbon tape.

2.5. Cyclic Voltammetry. The electrochemical activity of the
enzyme electrode was checked by cyclic voltammetry as well.
Cyclic voltammograms were measured using a PGSTAT10
potentiostat/galvanostat at ambient temperature. A three-
electrode cell containing 50 mL potassium phosphate buffer
(0.1M, pH 7.0) and 20 mM KCl was used. The cell was purged
with high purity N, prior to each measurement. The working
electrode was the enzyme electrode fabricated from ITO,
carboxyl-functionalized MWCNTs, and HRP. The counter
and reference electrodes were platinum and Ag/AgCl, respec-
tively. The scan rate was 50 mV s! [40].

2.6. Preparation of the ITO/-MWCNT®°/HRP Enzyme
Electrode. First the surface of ITO covered glass (CEC020B,
Praezisions Glas & Optik GmbH, Iserlohn, Germany) was
cleaned by oxygen plasma cleaner and then silanized ((3-
aminopropyl) triethoxysilane) to create amino-functional
groups on it. After silanization, the carboxyl groups of the
functionalized MWCNTs (0.14 mg/mL) were activated by
the addition of crosslinkers NHS (0.15mg/mL) and EDC
(0.5mg/mL) solved in distilled water and deposited on the
top of the ITO for 2 h and then washed intensively.

HRP was bound to the ITO/f-MCWNT“°“H electrode by
the same crosslinkers as used before by depositing the acti-
vated enzyme on the surface for 2 h at 4°C. Then the electrode
was washed intensively with phosphate buffer (0.1 M, pH 7.0)
and distilled water several times [45]. Schematic arrangement
of the multilayer structure of the ITO/f-MCWNT“°°H/HRP
electrode is presented by Figure 1.

2.7. Measuring the Carbon Quantity. In order to determine
the enzyme activity, the amount of the enzyme bound to
the -MCWNTCCOH \yas determined. Since, the contribution
of modern carbon (percent of modern carbon, pMC; [46])
should be different in MWCNTs and HRP, measuring the
pMC of different samples offers sensitive detection of the
sample quantity. The procedure was carried out shortly as
follows.

The carbon content of the samples was liberated by sealed
tube combustion method. The sample and the MnO, oxidant
were weighted into a glass tube. The tubes were evacuated
to <5 - 107> mbar and sealed by a torch. The samples were
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FIGURE 1: Schematic representation of the multilayer structure of the ITO/f-MCWNT“C¥/HRP electrode. The structure of the enzyme was
downloaded from the Brookhaven Protein Data Bank (http://www.rcsb.org/) by using the 1H58.pdb data file and prepared by Jsmol program.

combusted to CO, in a muffle furnace at 550°C for 24
hours. The gained CO, was purified using a dedicated gas
handling system equipped with cryogenic traps in order
to remove the other combusted gas components [47]. The
quantity of the pure CO, was determined in a known volume
by high-precision pressure sensor [48]. The yield of the
carbon extraction can be calculated from the quantity of the
pure CO, gases. The trapped and cleaned CO, gases have
been converted to graphite by zinc reduction sealed tube
graphitization method [49].

The measurements of the radiocarbon contents were car-
ried out on a MICADAS (MIni CArbon DAting System [50,
51] type accelerator mass spectrometer in Institute for Nuclear
Research, Debrecen, Hungary) [52]. In order to monitor and
to take the possible modern carbon contamination during the
pretreatment and combustion process into account, we have
extracted chemical standards with well-known radiocarbon
activity (IAEA C7 and C8, [53]) on the same treatment
line and measured them together with the samples in the
same magazines. The pMC (5) unit was used to compare the
radiocarbon contents of the samples. All of the radiocarbon
results were processed using the BATS AMS data evaluation
software developed by Wacker et al., ETH Zurich [54].

3. Results and Discussions

3.1. Preparation of the Enzyme Electrode. Figure 2 shows the
SEM image of f-MCWNT?°" bound to the surface of
ITO which serves as a base for the immobilization of the
HRP enzyme. The image indicates that the coverage is not
homogenous, but dense enough with f-MCWNT%H for
the further steps of the preparation. Conducting mechanisms
of the transparent conducting oxides (TCOs) also of the
ITO depend strongly on the grain and layer structure,

FIGURE 2: Scanning electron microscopy image of carboxyl-
functionalized MWCNT attached to the surface of ITO. Insert shows
the SEM image of the bare ITO, for comparison.

consequently, on the deposition technique, on the quality,
and on prehistory of the oxide film [55-58]. The SEM image
of the bare ITO shows that the surface morphology (i.e.,
the homogenous surface coverage and the organization of
the rain structure) of the ITO in the biohybrid sample is
essentially the same as before the treatment (cf. with insert
of Figure 2).

3.2. Enzyme Activity in Solution. Our aim was to design an
ITO/f-MCWNT °H/HRP electrode in order to determine
the concentration of H,0, in real time in a sensitive way.
Measuring fluorescence instead of light absorption of the
product of the enzyme reaction is more advantageous in this
system because of two reasons. On the one hand, fluorescence
measurement is more sensitive and, on the other hand,
because of the light scattering of the f-MCWNT“?°"/HRP
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FIGURE 3: The amount of H,0, reduced by 20nM HRP (with
guaiacol and amplex red as indicated) as a function of time. Figure
was made by the absorption change of guaiacol and AR in PBS buffer
solution (0.1 M, pH 7.0). Figure shows the initial slopes and theirs
straight-line equations with the goodness-of-fits (R*).

complex Beer-Lambert’s law of absorption cannot be applied
directly.

First, the kinetics of the absorption change of tetraguaia-
col and resorufin due to the enzyme reaction (see Materials
and Methods) was measured and the rate of the H,0, decom-
position was calculated at different enzyme concentrations
without MWCNT in PBS buffer solution; then the initial rate
of the decomposition was determined in each case. Figure 3
shows results of typical measurements at the concentration
of 20nM HRP after the addition of guaiacol (3.5mM) and
amplex red (6.5 uM), as indicated.

In the set of second experiment the conversion of guaiacol
to tetraguaiacol and amplex red to resorufin was followed
by measuring the fluorescence change with different enzyme
concentrations (same as used for measuring the absorption
change) and the initial rate of the fluorescence change was cal-
culated (Figure 4). These instrumental conditions were used
for determining the enzyme activity of the f-MCWNT<O°H/
HRP complex.

The initial slopes of the fluorescence changes were cal-
ibrated to the initial rates of the absorption measurements
for H,0O, decomposition (Figure 5). This way, by using the
same instrumental conditions, the rate of the H,0, decom-
position can be determined from the fluorescence change
measurements belonging to certain complexes and electrodes
containing the HRP enzyme.

Using the initial slope of the fluorescence change the
rate of the decomposition of H,0,, consequently, the
enzyme activity of 5M H,0O,/(M HRP:-sec) (R* = 0.99) and
2MH,0,/(M HRP:-sec) (R* = 0.99) was determined and
used for further calibrations of the fluorescence measurement
in case of guaiacol and AR, respectively. By using the
calibrations the limit of detection of H,O, by the HRP
itself was calculated in both cases and it was found to be

5
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y = 0.306x °
34 2
R” =0.97
2.5 4
)
g 2
E °
= 154
=
14
y =0.149x
0.5 ° )
R” =0.99
0 T T T T )
0 2 4 6 8 10
HRP concentration (pM)
® Guaiacol

® Amplex red

FIGURE 4: The initial rate of the fluorescence change as a function
of the enzyme concentration. Figure was made by the fluorescence
change of guaiacol (3.5 mM) and AR (6.5 uM) in PBS buffer solution
(0.1M, pH 7.0). Figure shows the straight-line equations with the
goodness-of-fits (R?).
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F1GURE 5: The initial rate of the H,O, decomposition as a function
of the initial slope of the fluorescence change of tetraguaiacol
and resorufin. Figure shows the straight-line equations with the
goodness-of-fits (R%).

124nM H,0, s™" in case of guaiacol and 59 nM H,0, s™" in
case of AR, in good agreement with the values published
earlier [43].

3.3. Enzyme Activity of the -MWCNT“"/HRP Complex.
As an introductory experiment it should be proved that (a)
the HRP binds to the CNT, (b) the active centre of the enzyme
remains accessible to the substrates (i.e., the protein keeps
the enzyme activity), and (c) there are no substantial changes
in the protein conformation after the binding which affect
the enzyme reaction. For this reason we have bound HRP to
carboxyl- and amine-functionalized MWCNT in suspension
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FIGURE 6: The fluorescence change of the tetraguaiacol produced
by the enzyme reaction of HRP bound to the f-MWCNT""*/and
f-MCWNTO°H a5 a function of time.

and the enzyme reaction was followed by fluorescence mea-
surements using guaiacol as e” -donor substrate.

3.3.1 Rate of H,0, Decomposition by the f-MWCNTO°H/
HRP Complex. Figure 6 shows that HRP bound either to
amine- or to carboxyl-functionalized MWCNTs showed
enzyme activity. The smaller yield of the amine-function-
alized sample can probably be explained by the smaller
amount of enzyme bound to the MWCNT. This can be due
to the glutaraldehyde (GTA) crosslinker, which crosslinks the
amine groups. In order to avoid this inherent crosslinkings of
the MWCNTs in the sample we used carboxyl-functionalized
MWCNTs for further experiments.

Figure 7 shows the emission spectra of the tetraguaiacol
produced by the f-MCWNT“°"/HRP complex added at
different concentrations, at the rate of the enzyme reaction’s
saturation (after fifteen minutes of starting the reaction, when
the reaction rate is maximal). The excitation wavelength was
300nm. The increase of the fluorescence clearly indicates
that the f-MCWNT“®°"/HRP complex possesses consid-
erable enzyme activity; that is, the HRP was bound to f-
MCWNT %% and the active centre remained accessible
to the substrates after the binding. f-MCWNT“?°" suspen-
sion alone did not show fluorescence increase indicating
that the illumination of the carbon nanotube without the
enzyme does not contribute to the guaiacol oxidation. The f-
MCWNTCC°H/HRP complex in the presence of guaiacol—
and in the absence of H,0,—also did not show change in the
fluorescence indicating that HRP alone does not oxidize the
guaiacol.

After measuring the fluorescence change accompanying
the enzyme reaction of the guaiacol or amplex red added
to the -MCWNT®OH/HRP complex, the initial rate of
the enzyme reaction was determined (Figure 8). Under our
experimental conditions, based on the calibrations (see
Section 3.2), our complex was able to reduce H,O, with the
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FIGURE 7: The emission spectra of tetraguaiacol produced by the
enzyme reaction of f-MCWNT“°"/HRP complex before (guaia-
col) and after the reaction at different HRP incubation concentra-
tions (as indicated) and the carboxyl-functionalized MWCNT as
a reference. Measurement was done as described in Materials and
Methods.
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FIGURE 8: The fluorescence change of the coloured products
of guaiacol and amplex red substrates oxidized by 0.5uM f-
MCWNTCH/HRP complex as a function of time. Figure also
shows the best fits of the initial changes of the signals and their
equations. R?, the goodness-of-fit, is also indicated.

rate of 9.6pM H,0,s ™" and 12pM H,0, s in the case of
guaiacol and AR, respectively. These resolutions were better
than the ones measured in solution by about 6-4 orders of
magnitudes (cf. Section 3.2).

3.3.2. Enzyme Activity of the f-MWCNT““°"/HRP Com-
plex. In order to determine the enzyme activity of the f-
MCWNTCO°"/HRP complex the amount of the protein
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bound to the MWCNT was determined. For this reason the
pMC (5) unit was determined for the HRP, f-MCWNTCOOH,
and f-MCWNT“C°H/HRP samples.

The percent of modern carbon is defined as

AsN o
pMC =~ - 100%, (5)
ON

where A gy is the specific activity of the sample normalized for
fractionation and Ay is the specific activity of NIST-SRM-
4990c oxalic acid standard normalized for fractionation.

The HRP fraction of the f-MCWNT“?°"/HRP complex
is obtained by '*C balance equation. Radiocarbon content of
the two-component mixture is defined as

PMCe pwent<ooH mrp = Frrp - PMCrigp + (1 = Fyyrp) ©)

- PMCg \ryenreoons

where pMCpyp, PMCy prownreoon, and pMCy yrownrcoon jgp
are the measured radiocarbon content of the HRP f-
MCWNT®O°H and f-MCWNT ?°"/HRP complex, respec-
tively. Fyygp is the HRP fraction of the radiocarbon content of
the f-MCWNT<O°H/HRP complex. The HRP fraction of the
mixture is obtained after the rearrangement of (6):

PMC \yyenreoon JHRP — PMCy \pyenreoon

PMCprp — PMCy pyyenreoon (7)
- 100%.

HRP —

Finally, the total HRP/f-MCWNT " ratio and the amount
of HRP by the known molecular weight (MW: 44 kDa, 45%
carbon content) can be calculated using the HRP fraction
constant and the carbon extraction yields of the appropriate
components. The data obtained during the determination of
radiocarbon quantity are summarized in Table 1.

By using the (5)-(7) under oversaturating enzyme con-
centration during the preparation procedure the w/w ratio
of the HRP/f-MWNT 9" is 2.7 Using the rates of H,0,
decompositions (cf. Figures 5 and 8) the enzyme activity of 1.3
10> M H,0,/(M HRP-sec) and 1.0 10~ M H,0,/(HRP-sec)
was calculated for AR and guaiacol, respectively. It is interest-
ing to note that these values after the binding in the composite
complex are about two orders of magnitudes smaller than the
ones found in solution (cf. Section 3.2); however, the LOD
is reduced to the concentration of pM. This probably is due
to the fact that the reduced accessibility/functionality of the
active centre is compensated by the larger local concentration
of the enzyme after the binding. The reduced catalytic activity
of the enzymes after the binding to CNTs is known in the
literature and is already demonstrated by other groups as
well [59-61]. However, we do not have experimental evidence
until now for the larger sensitivity for LOD. If it is related to
the larger local concentration of the enzyme after the binding
it should be sensitive to the concentration of the reactants,
which requires systematic sets of experiments. The investi-
gation of this possibility is under progress in our labora-
tory.
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FIGURE 9: The fluorescence change of the coloured products
of guaiacol and amplex red substrates oxidized by the ITO/f-
MCWNTCH/HRP electrode as a function of time. Figure also
shows the best fits of the initial changes of the signals and their
equations. R?, the goodness-of-fit, is also indicated.

3.4. Rate of H,0, Decomposition by the ITO/f-MWCNT%°H/
HRP Electrode. First, the fluorescence of the substrates oxi-
dized by the HRP was measured in the well-known system
(Figure 9). The ITO/f-MCWNTCC°H/HRP electrode was
placed in a 1cm cuvette containing the guaiacol (or AR) in
PBS bufter solution (0.1 M; pH 7.0); then the H,O, was added
to initiate the enzyme reaction. Based on the calibrations,
the rate of the H,0O, decomposition can be calculated from
the slope of the fluorescence change of our samples. The
initial rate of the H,O, decomposition was found to be
10 pM H,0,/sec and 6 pM H,O,/sec for guaiacol and AR,
respectively.

3.5. Cyclic Voltammetry. Our principal aim is to design a
device which can be a base for the detection of H,0, in a
sensitive way. One classical way is the detection of lumines-
cence (fluorescence) of the coloured product of the enzyme
reaction; however, the sensitive detection usually requires
sophisticated instrumentation (photomultiplier, high volt-
age power supply, amplifiers, etc). However, measuring the
electric signal accompanying the redox transitions of the
enzyme reactions offers large sensitivity and relatively simple
instrumentation. It should be noted that the interpretation of
the data is sometimes difficult and requires careful consider-
ations. It can be a successful strategy to combine measure-
ments of the optical and electric signals accompanying the
enzyme reaction parallel.

In order to do this we have bound the f-MCWNT“H/
HRP complex to ITO which can be applied as a work-
ing electrode in a classical electrochemical cell. After the
construction of this special enzyme electrode the cyclic
voltammograms were recorded in the absence and in the
presence of the H,O, substrate. Figure 10 shows that thereisa
catalytic transition at around —350 mV [62] when the enzyme
electrode is used in the electrochemical cell in the presence
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TABLE 1: Summary of data obtained during determination of the radiocarbon quantity.
Sample Sample quantity (mg) Measured carbon (mg) Yield (%) pMC
HRP 3.0 1.3 43.1 1452+ 0.4
F-MWCNTH 11 1.0 88.6 46.5+ 8.3
F-MWCNT°°"/HRP 32 0.5 16.4 100.1+0.5

Finp 54.0 +2.0
E (V) versus SHE E (V) versus SHE
0 0.5 1 0.5 1

— ITO
- -~ ITO/Silane

— ITO/MWCNT
- -~ ITO/MWCNT/HRP

()

— ITO + H,0,
- -~ ITO/Silane + H,0,

—— ITO/MWCNT + H,0,
- -~ ITO/MWCNT/HRP + H,0,

(®)

FIGURE 10: Cyclic voltammograms of ITO, silanized ITO (ITO/silane), ITO/f-MCWNTH (as references), and the enzyme electrode
fabricated with HRP immobilized on f-MCWNT " deposited on ITO (ITO/MWCNT/HRP), before (a) and after the addition 5 mM H,0,

(b).

of H,0,, indicating that the electrode is capable of catalysing
the decomposition of H,O,. Neither the bare ITO electrode
nor the silanized ITO or the f-MCWNT®H alone facilitates
electrochemical transition at this potential in the presence of
H,0, [43].

3.6. Reliability, Reproducibility, and Specificity. When new
biohybrid material is designed for a successful application
(e.g., using them for biosensors) special attention should be
paid to the reliability and reproducibility of the measurement
and the specificity and stability of the device. The reliability
and reproducibility in our case are highly dependent on the
successful enzyme binding procedure, which can be moni-
tored essentially by SEM. The sample which did not show
sufficient coverage (by visual observation) was not used for
further experiment. However, after finding the most appro-
priate preparation procedure (physico-/chemical parameters
and incubation times) the reliability and sensitivity of the
measurements increased significantly.

The investigation of specificity is a difficult, however,
important issue and should be a topic for further measure-
ments. There can be alternative substrates for HRP (like
ascorbate, SH-substrates, etc.) or other enzymes (like cata-
lases) which can be in competition with HRP, specially, under
real tissue conditions. The possibilities for cross-reactions,
for over- or underestimation of determination of H,0O, and
advantages or disadvantages of using HRP electrodes are

summarized by Maghzal et al. and Grisham [63, 64]. These
investigations are under progress in our laboratory.

4. Summary

Our aim was to create a system suitable for detecting H,O, in
a sensitive way. We applied two kinds of substrates (guaiacol
and amplex red), whose reagents can be oxidized in a multi-
step cation radical mechanism and theirs oxidation results in
coloured products (tetraguaiacol and resorufin). The accu-
mulation of these products can then be easily detected
by specific light absorption or emission (fluorescence)
spectroscopy. By determining the concentration of the
products, the concentration change of the hydrogen peroxide
can be calculated in absolute value. By using the calibration
made from the absorption kinetic and fluorescence measure-
ments belonging to the same enzyme concentrations, we
determined the enzyme activity of horseradish peroxidase,
which were 5M H,0,/(M HRP-sec) and 2 M H,0,/(M HRP
-sec) for guaiacol and amplex red, respectively, and the
limit of detection of H,0,, which was 124 nM H,0, s™' and
59nM H,0, s™" for guaiacol and amplex red, respectively.
We bound the enzyme to carboxyl-functionalized carbon
nanotubes, and then an electrode was prepared by
immobilizing the complex on the surface of the silanized
ITO. Although the enzyme activity was smaller by about
two orders of magnitude when the enzyme was bound
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to the f-MWCNTs (131072 M H,0,/(M HRP-sec) and
1.010> M H,0,/(M HRP-sec) for AR and guaiacol, resp.)
the LOD of the H,0, decomposition was in the range of
picomole. Morphological characterization (SEM) of the
electrode showed that the binding was successful and it was
able to reduce H,0, as proved by electrochemical (cyclic
voltammetry) measurements. By using the calibration made
from the absorption kinetic and fluorescence measurements
we determined the limit of detection of H,O, of the complex
and the electrode: f-MCWNT“O°"/HRP with guaiacol
9.6 pM H,0, s™'; with amplex red 12pM H,0, s '; ITO/f-
MCWNTC°H/HRP with guaiacol 10pMH,0,s"; with
amplex red 6 pM H,0, s,
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