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We focus on the energy content (including matter and fields) of the Møller energy-momentum
complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA) theory using teleparallel
gravity. We perform the required calculations for some specific charged black hole models, and we
find that total energy distributions associated with asymptotically flat black holes are proportional
to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat
black holes diverge in a limiting case.

1. Introduction

There are many interesting theories aiming to investigate gravitational effects: general
relativity and teleparallel gravity. In these theories, calculating the energy-momentum
distribution is an old and interesting problem. One can construct a teleparallel equivalent of
the general relativity by assuming that curvature and torsion give the equivalent descriptions
of the gravitational interactions.

In order to avoid the singularities in the general relativity and to give a general
definition of energy momentum, Møller obtained a new expression by using the teleparallel
gravity [1, 2]. Pellegrini and Plebanski found the Lagrangian formulation of the teleparallel
theory, and this formalism was developed further by Møller [3, 4]. The gauge theory studied
in detail by Hayashi [5] for the translational group is formulated by Hayashi and Nakano [6].
After that Hayashi [7] underlined the connection between this theory and the teleparallel
theory. Later, Hayashi and Shirafuji [8] tried to unify these two theories. Hehl et al. [9]
discussed a generalization of Einstein’s gravitational theory with spin and torsion. In the
near past Mikhail et al. [10] used the method of the superpotential in the case of the spherical
symmetry for the Møller’s energy-momentum expression in the teleparallel theory. By using
the Møller’s super potential method Shirafuji et al. [11, 12] found that energy is equivalent to
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the gravitational mass. Maluf [13] showed that the energy is equivalent to the gravitational
mass by constructing a connection between the gravitational energy related closely to the
Sparling two-forms and the teleparallel equivalence of the general relativity. de Andrade
et al. [14] obtained a teleparallel equivalence of the Kaluza-Klein theory in five dimensions.
Respectively, Pereira et al. [15] and Zhang [16] found the tetrad and torsion fields for the axial
symmetric Kerr spacetime and alternative Kerr spacetime by using the teleparallel theory. A
new interpretation for torsion in connection with the gravitational interaction is given by
Arcos and Pereira [17] as a review. It is pointed out that the teleparallel gravity successfully
was applied to describe the rotation spin effect as another application of spin and axial torsion
interaction [18]. About the spacetime torsion one can examine the work in [19]. Nashed [20]
calculated total energy for some special situations of the most general spherical symmetric
and nonsingular black hole solutions in the teleparallel gravity by using the Møller’s super
potential technique.

The study carried out by Vargas [21] for the Friedman-Robertson-Walker (FRW)
universe possessing a cartesian geometry has been a starting point for the other studies
done after that. Later, the energy densities for the Einstein, Bergman-Thomson, and Landau-
Lifshitz energy momentum expressions written in cartesian coordinates are obtained in
the teleparallel theory. Therefore the teleparallel equivalence of general relativistic case is
obtained byNashed [22] for some solutions of themodels of the universe having charged and
spherical symmetric solutions. Furthermore, the energy-momentum and angular momentum
are calculated for two different fields by using energy-momentum tensor [23]. In the
framework of Riemann’s geometry it is found that the energy density in Kerr-Nut space-
time model is proportional to the gravitational mass by using Møller’s energy-momentum
complex [24]. During the last five years it is stressed that the energy-momentum densities
calculated both in general relativity theory and teleparallel theory are equivalent. In this
point of view it is concluded that the teleparallel theory is an alternative one for the general
relativity.

This paper is organized as follows. In the next section we introduce Møller energy-
momentum complex in the teleparallel theory. In the Section 4, the total energy is found for
the EMDA theory. Last section is devoted to discussion. Throughout this paper, Latin indices
(i, j, k, . . .) denote the vector numbers and Greek indices (μ, ν, σ, . . .) represent the vector
components. All indices run from 0 to 3, and we use units in which G = 1 and c = 1.

2. The Møller Energy-Momentum Complex

The metric tensor can be written in the tetrad form:

gμν = ηijhi
μhj

ν, (2.1)

where ηij is the Minkowski metric defined by Diag{−1,+1,+1,+1}. The torsion tensor in
Møller’s theory is

Tμ
νλ = Γμλν − Γμνλ, (2.2)

and here Γμλν is Weitzenböck connection [25] given by

Γμνλ = ha
μ∂λh

a
ν. (2.3)
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A general expression for an energy-momentum complexwas found byMøller by using
the method of infinitesimal transformations in the superpotential �β

μν form [10]:

Mβ
μ ≡√−g(Tβμ + tβ

μ) = �β;ν
μν. (2.4)

Here, Tβμ, tβμ energy-momentum tensor and energy-momentum pseudotensor arise from
matter and gravitational field, respectively. �β

μν is given by

�β
μν =

√−g
2κ

Pχρσ
τμν[Φρgσχgβτ − λgτβξ

χρσ − (1 − 2λ)gτβξσρχ
]
. (2.5)

Here λ is a free dimensionless parameter. Φρ is defined by

Φρ = ξσρσ, (2.6)

and ξαβμ = hiαe
i
β;μ is the con-torsion tensor. Pχρσ

τμν is the tensor of the form

P
τμν
χρσ = δχ

τ(δρ
μδσ

ν − δσ
μδρ

ν) + δρ
τ(δσ

μδχ
ν − δχ

μδσ
ν)

− δσ
τ(δχ

μδρ
ν − δρ

μδχ
ν).

(2.7)

The total energy is given by the surface integral below

E = lim
r→∞

∫

r=const.
�0

0αηαdS, (2.8)

where dS is the surface element and ηα is the unit 3-vector normal to the surface.

3. Energy Contents of Charged Black Holes in EMDA Theory

In Einstein’s frame, Einstein-Hilbert-Maxwell action coupled with a string in four dimensions
is given [26]:

S =
∫
d4x

√−g
2κ

[
R − 1

2
∂μϕ∂

μϕ − 1
2
ω
(
ϕ
)
∂σζ∂

σζ − α
(
ϕ, ζ

)
FγηF

γη − β
(
ϕ, ζ

)
FγηF̃

γη

]
,

(3.1)

where κ is the four-dimensional gravitational coupling constant, R is the curvature scalar,
and Fμν is the field strength of the Maxwell field. Here ϕ, ζ are scalar and pseudoscalar fields,
respectively. Additionally, α and β functions describe how the Maxwell field is coupled with
ϕ and ζ. Also, the Maxwell field strength is defined as F̃γη = (1/2)εγηετFετ (ε is the fourth
Levi-Civita tensor).



4 Advances in High Energy Physics

Taking ω(ϕ) = e2aϕ, α(ϕ) = e−aϕ, and β(ζ) = bζ for the four dimensional
Einstein-Maxwell theory the generalized action coupled with massless scalar dilaton ϕ and
pseudoscalar axion ζ is given as

S =
∫
d4x

√−g
[
1
2κ

(
R − 1

2
∂μϕ∂

μϕ − 1
2
e2aϕ∂σζ∂

σζ

)
− e−aϕFγηF

γη − bζFγηF̃
γη

]
, (3.2)

where a and b are two constant-free parameters.
The general metric for this theory is written as

ds2 = −G2(r)dt2 +
1

G2(r)
dr2 + F2(r)

(
dθ2 + sin2θdφ

)
. (3.3)

For this line element, the metric tensor and its inverse are obtained as

gμν = diag
{
−G2(r),

1
G2(r)

, F2(r), F2(r)sin2θ

}
,

gμν = diag

{

− 1
G2(r)

, G2(r),
1

F2(r)
,

1

F2(r)sin2θ

}

.

(3.4)

Having spherical symmetry for the general form of the tetrad and using the coordinate
transformation, the tetrad components can be written in a matrix form as

ha
μ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
G(r)

0 0 0

0 G(r) sin θ cosφ
cos θ cosφ

F(r)
− sinφ
F(r) sin θ

0 G(r) sin θ sinφ
cos θ sinφ

F(r)
cosφ

F(r) sin θ

0 G(r) cos θ −sin θ
F(r)

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.5)

3.1. Asymptotically Flat Black Holes

For the asymptotically flat black holes, the line element (3.3) becomes [26]

ds2 = − (r − r+)(r − r−)

(r − r0)2−2n(r + r0)2n
dt2 +

(r − r0)2−2n(r + r0)2n

(r − r+)(r − r−)
dr2

+
(r + r+)2n

(r − r0)2n
dΩ2,

(3.6)

where r±, r0 are constants, 0 ≤ n ≤ 1, and dΩ2 = dθ2 + sin2θdφ.
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Case a = b = 1

Taking a = b = 1 in the action (3.2) the metric becomes [26]

ds2 = −
(
1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1
dr2 + r(r − 2r0)dΩ2. (3.7)

Taking G2(r) = (1 − (2m/r)) and F2(r) = r(r − 2r0) in (3.5) and then using it in (2.5) one can
obtain the Freud superpotential as follows:

�0
01 =

2 sin θ

κ

[
2m + r0 − 2r0

r
− r + (r − 2m)1/2(r − 2r0)1/2

]
. (3.8)

Using this result in the energy integral (2.8) the energy density is found as

E(r) = 2m +
e−ϕ0Q2

4m

(
1 − 2m

r

)
− r + (r − 2m)1/2

(

r − e−ϕ0Q2

2m

)1/2

, (3.9)

where ϕ0 is a scalar field when r → ∞. Finally the total energy when r → ∞ for the
asymptotically flat black holes (a = b = 1) is

E = m. (3.10)

Here r0 = Q2e−ϕ0/(2m), Qe is electrical charge, Qm is magnetic charge, and the Q is total
charge (Q2 = Q2

e +Q2
m).

Case a = 1, b � 1

In this case the line element is [26]

ds2 = − (r − r+)(r − r−)(
r2 − r20

) dt2 +

(
r2 − r20

)

(r − r+)(r − r−)
dr2 +

(
r2 − r20

)
dΩ2. (3.11)

If one can use G2(r) = (r − r+)(r − r−)/(r2 − r20) and F2(r) = (r2 − r20) in (3.5), is (2.5) obtained
as follows:

�0
01 =

2 sin θ
κ

[

(r − r+)(1/2)(r − r−)1/2 − r(r − r+)(r − r−)
r2 − r20

]

. (3.12)

The energy density obtained by (2.8) is

E(r) =
[
r2 − 2mr +

(
Q2

e +Q2
m

)
e−φ0 − r20

]1/2 − r

[

1 − 2mr − (Q2
e +Q2

m

)
e−φ0

r2 − r20

]

, (3.13)
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where r0 = (Q2
e − Q2

m)e
−φ0/2m and r± = m ± [m2 + r20 − (Q2

e +Q2
m)e

−φ0]1/2. One can easily
see that, for Qm = 0, Qe = Q and under the coordinate transformation r ± r0 → r, the case
transforms in to a Garfinkle-Horowitz-Strominger (GHS) dilaton black hole [27]. Therefore
the total energy for GHS dilaton black hole is [28]

E = m − Q2e−ϕ0

r
. (3.14)

The total energy obtained by taking Qe = Qm = 0 (Schwarzschild solution) for electrically or
magnetically charged black holes is Schwarzschild solution

E = m. (3.15)

Case a = b 	 1

In this case the line element is written by [26]

ds2 ≈ −
(
1 − 2m

r − 2r0

)
dt2 +

(
1 − 2m

r − 2r0

)−1
dr2 + (r − 2r0)2dΩ2. (3.16)

Using G2(r) = (1 − (2m/(r − 2r0))) and F(r) = (r − 2r0) in the (3.5), (2.5) is obtained as

�0
01 =

2 sin θ
κ

{

2m + (r − 2r0)

[(
1 − 2m

r − 2r0

)1/2

− 1

]}

. (3.17)

The energy density is obtained as

E(r) = 2m +

(

r − a2e−aφQ2

2m0

)[(
1 − 4mm0

2rm0 − a2e−aφQ2

)1/2

− 1

]

, (3.18)

and the total energy for a = b 	 1 is found as

E = m, (3.19)

where r0 ≈ a2e−aφQ2/4m0 andm0 ≈ m + r0.

3.2. Asymptotically Nonflat Black Holes

When we consider asymptotically non-flat black holes, the line element (3.3) becomes [26]

ds2 = −
(

r

2r0

)2n[
1 − 2m

(1 − n)r

]
dt2 +

(
2r0
r

)2n[
1 − 2m

(1 − n)r

]−1
dr2

+ r2
(
2r0
r

)2n

dΩ2,

(3.20)

where r+ = 2m/(1 + n), r− = 0, and n = 1/(1 + a2).
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Case a = b = 1

Now, the metric has the form [26]

ds2 = −
(
r − 4m
2r0

)
dt2 +

(
r − 4m
2r0

)−1
dr2 + 2rr0dΩ2. (3.21)

Considering G2(r) = ((r − 4m)/2r0) and F2(r) = 2rr0 in (3.5) and then using it in (2.5) one
can obtain the necessary component of the Freud superpotentials as follows:

�0
01 =

2 sin θ
κ

[
2m − r

2
+ r1/2(r − 4m)1/2

]
. (3.22)

Substituting this result into the (2.8) the energy distribution is found as

E(r) = 2m − r

2
+ r1/2(r − 4m)1/2. (3.23)

When we take the limit r → ∞, we see that the energy distribution diverges.

Case a = b � 1

At this point the metric becomes [26]

ds2 = −
(

r

2r0

)2[
1 − 2m

a2r

]
dt2 +

(
2r0
r

)2[
1 − 2m

a2r

]−1
dr2 + 4r20dΩ

2. (3.24)

If we use G2(r) = (r/2r0)
2[1 − (2m/a2r)] and F(r) = 2r0 in (3.5) and (2.5), the calculated

component of the Freud superpotentials is

�0
01 =

2r sin θ
κ

(
1 − 2m

a2r

)1/2

. (3.25)

From (2.8) the energy is found

E(r) = r

(
1 − 2m

a2r

)1/2

. (3.26)

At large distances, the total energy diverges.
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Case a = b 	 1

Here the metric becomes [26]

ds2 = −
(

r

2r0

)2/a2
[

1 − 2a2m

(a2 − 1)r

]

dt2 +
(
2r0
r

)2/a2
[

1 − 2a2m

(a2 − 1)r

]−1
dr2

+ r2
(
2r0
r

)2/a2

dΩ2.

(3.27)

If we have G(r) = (r/2r0)
1/a2[1 − (2a2m/(a2 − 1)r)]1/2 and F(r) = r(2r0/r)

1/a2 in (3.5), then
(2.5) is obtained as follows:

�0
01 =

2 sin θ
κ

r(a
2+1)/a2

(
1 − 2am

(a2 − 1)r

)1/2
⎡

⎣1 −
(

1 − 2a2m

(a2 − 1)r

)1/2

r1/a
2

⎤

⎦. (3.28)

Using Freud superpotential in the (2.8) the obtained energy distribution is

E(r) = r(a
2+1)/a2

(
1 − 2am

(a2 − 1)r

)1/2
⎡

⎣1 −
(

1 − 2a2m

(a2 − 1)r

)1/2

r1/a
2

⎤

⎦. (3.29)

When a → ∞ and r → ∞, the total energy becomes

E = m. (3.30)

Case |a|/= |b|
For this final case the metric becomes [26]

ds2 = − (r − r+)(r − r−)
2rr0

dt2 +
2rr0

(r − r+)(r − r−)
dr2 + 2rr0dΩ2. (3.31)

If we consider G2(r) = (r − r+)(r − r−)/2rr0 and F2(r) = 2rr0 the component of the Freud
superpotentials is calculated as

�0
01 =

sin θ
κ

{[
r+ + r− + 2(r − r+)1/2(r − r−)2

]
− r+r−

r
− r

}
. (3.32)

Now the energy distribution is

E(r) = 2m − q2eq
2
m

2rr20
− r

2
+

(

r2 − 4mr +
q2eq

2
m

r20

)1/2

. (3.33)
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Figure 1: The plot for the Möller energy versus radius, in the case of the asymptotically flat black holes.

It can be easily checked that, at large distances, the total energy diverges. Here, qe and qm are
electromagnetic chargeswhich are related to components of the electromagnetic field strength
given by Ftr = (1/2qe)dt ∧ dr and Fθϕ = qm sin θdθ ∧ dϕ.

4. Summary and Discussion

According to Lessner [29] perspective, the Møller energy-momentum complex can be
evaluated in any coordinate system. Hence, this framework is the most powerful one in
calculating the energy and momentum distributions associated with spacetime.

In the present work, in order to compute the energy distribution associated with some
specific black holes in the Einstein-Maxwell-Dilaton Axion theory, we focus on the Møller
energy-momentum distribution in the teleparallel gravity. For the asymptotically flat charged
black holes, for all the cases (a = b = 1, a = b 	 1, and a = 1, b � 1), it is found that the energy
distribution depends on the massm and the chargeQ. The corresponding teleparallel Møller
total energy is obtained proportional to gravitational mass (Schwarzschild mass) when

lim
r→∞

E(r) = m. (4.1)

It is given the plot for the Möller energy versus radius, in the case of the asymptotically flat
black holes in Figure 1. According to graph it is seen that the energy of the case a = b = 1
approaches to the gravitational mass faster than the others.

Considering asymptotically non-flat charged black holes, for both the cases a = b =
1 and a = b � 1 the energies diverge. Only for the case a = b 	 1 the total energy is
proportional to m. The energy distribution for the case |a|/= |b| diverges as well. For small
values of a and b it is seen that the energy distributions tend toward infinity. If the values of a
and b are large enough the corresponding teleparallel energywill be equal to the gravitational
mass.

These results agree well with the previous results [30–35] obtained by using the
general relativity version of the Møller energy-momentum complex. The energy is confined
to the region of nonvanishing energy-momentum tensor of matter and all nongravitational
fields [36]. The results are quite important in the theory of teleparallel gravity, since this
theory provides more satisfactory solution of the energy-momentum problem than general
relativity [10].
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