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Artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligence techniques, which is widely utilized for
optimization purposes. Triaxial accelerometer error coefficients are relatively unstable with the environmental disturbances and
aging of the instrument. Therefore, identifying triaxial accelerometer error coefficients accurately and being with lower costs are
of great importance to improve the overall performance of triaxial accelerometer-based strapdown inertial navigation system
(SINS). In this study, a novel artificial fish swarm algorithm (NAFSA) that eliminated the demerits (lack of using artificial fishes’
previous experiences, lack of existing balance between exploration and exploitation, and high computational cost) of AFSA is
introduced at first. In NAFSA, functional behaviors and overall procedure of AFSA have been improved with some parameters
variations. Second, a hybrid accelerometer error coefficients identification algorithm has been proposed based on NAFSA and
Monte Carlo simulation (MCS) approaches. This combination leads to maximum utilization of the involved approaches for
triaxial accelerometer error coefficients identification. Furthermore, theNAFSA-identified coefficients are testifiedwith 24-position
verification experiment and triaxial accelerometer-based SINS navigation experiment.The priorities ofMCS-NAFSA are compared
with that of conventional calibration method and optimal AFSA. Finally, both experiments results demonstrate high efficiency of
MCS-NAFSA on triaxial accelerometer error coefficients identification.

1. Introduction

Artificial fish swarm algorithm (AFSA) is one of the state-of-
the-art swarm intelligence approaches, which was proposed
by Li et al. [1]. AFSA is inspired by the autonomous collective
movement of the fishes and their various social behaviors. It
has characteristics of global search, quick convergence rate,
and efficient search based on modern elicitation methods.
After the AFSA appears, it offers new ideas to solve the
optimization problems in signal processing [2, 3], neural
network classifiers [4, 5], data mining and clustering [6, 7],
multiobjective optimization [8], PID controller parameters
optimization [9], and so forth.

Nevertheless, the standard AFSA (SAFSA) has not been
extensively considered by researchers, due to its complexity

in comparison with other swarm intelligence algorithms
in this domain. Particularly, concerning particle swarm
optimization (PSO), the results of SAFSA are not better
than those of PSO [10]. PSO is another swarm intelligence
algorithm that simulates natural evolutionary processes to
solve complex optimization problems. It has been success-
fully utilized in optimization problems, such as the multidi-
mensional knapsack problem, the economic and economic
statical designs, and the complex network reliability problem
[11–16]. However, the reasons for SAFSA’s inefficiency are
high structural and computational complexities, lack of using
previous experiences of the swarm individuals, and lack of
appropriate balance between exploration and exploitation
during optimization process [17–20]. According to these
issues, a novel AFSA, calledNAFSA, is introduced to conquer
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the weaknesses of SAFSA. For this purpose, different stages
of AFSA are modified to eliminate the demerits and thus
improve the efficiency of AFSA. The modifications include
reducing the structural complexity as well as the computa-
tional complexity of SAFSA, determining a balance between
the exploration and exploitation during optimization process,
and adopting previous experiences of the swarm individuals
to improve the optimization performance.

Triaxial accelerometer is widely utilized in military and
civilian fields [21]. It is used for measuring the carrier’s accel-
eration in three-dimensional (3D) space. Meanwhile, com-
bined with the angular rate sensor-gyroscope, accelerometer-
based strapdown inertial navigation system (SINS) could cal-
culate high-resolution 3D navigation information (position,
velocity, and attitude) [22, 23]. However, the accelerometer
error coefficients have to be identified accurately before it
is adopted in SINS mechanization. Otherwise, the overall
performance of accelerometer-based SINS would deteriorate
greatly. So it is of great importance to calibrate the accelerom-
eter error coefficients accurately [24, 25]. Traditionally, high-
precision turntable, which is relatively expensive for civilian
fields, is utilized to identify the accelerometer error parame-
ters. Therefore, study on the accelerometer error coefficients
without the aid of turntable becomes a hot research topic in
recent years.

At present, the optimal AFSA (OAFSA) with improve-
ment on 𝑉𝑖𝑠𝑢𝑎𝑙 and 𝑆𝑡𝑒𝑝 parameters has been utilized for
fiber optical gyroscope random drift modeling by Wang et
al. [26]. Meanwhile, the OAFSA is used for the real-time ring
laser gyroscope bias temperature error compensation by Yu
et al. [27]. Moreover, Gao et al. [18–20] have successfully
adopted the OAFSA to calibrate the error parameters of
accelerometer and fiber optical gyroscope (FOG) and verified
the feasibility of the OAFSA on the accelerometer and
FOG error coefficients recalibration. However, the OAFSA
only makes the modification on the artificial fishes (AFs)
𝑉𝑖𝑠𝑢𝑎𝑙 and 𝑆𝑡𝑒𝑝 parameters to balance the exploration and
exploitation during optimization process and also adopts the
secondary initialization method after certain times of AFSA
optimization manually. But the structural and computational
complexities of the algorithm remain and the AFs previous
experiences are not utilized for improving the convergence
rate. Therefore, solving these issues and letting the NAFSA
recalibrate the accelerometer error coefficients are of great
importance to improve the overall navigation performance of
accelerometer-based SINS.

Monte Carlo simulation (MCS) is a broad class of com-
putational algorithms that relies on repeated random sam-
pling to obtain numerical results [28]. With MCS method,
the computational results are closer to real conditions. So
we adopt the MCS method to increase the credibility of
the accelerometer error coefficients, which are optimized
by NAFSA. Moreover, it also has the priority of reduc-
ing workload and costs over conventional high-precision
turntable calibration method. Therefore, the hybrid MCS-
NAFSA technique that is based on MCS and NAFSA is the
main contribution to the research on the recalibration of the
accelerometer error parameters.

In conclusion, the advantages of the MCS-NAFSA for
accelerometer error parameters identification are (1) that
the algorithm’s computational complexity is decreased to
release the high computational cost, (2) that the algorithm’s
convergence rate is improved by adopting AFs’ previous
experiences during AFs optimization process, (3) that no
external reference information is introduced during the
identification process, and (4) that the high workload and
costs in conventional calibration method are reduced greatly.

The rest of this paper is organized as follows. In Section 2,
the SAFSA and its disadvantages on triaxial accelerometer
error parameters identification are presented. Section 3 is
briefly dedicated to the OAFSA and the secondary ini-
tialization method on triaxial accelerometer error parame-
ters identification. The NAFSA’s parameters and behaviors
are described in detail in Section 4. Section 5 explains the
triaxial accelerometer error parameters with MCS-NAFSA
implementation procedures. After that, the simulation of
triaxial accelerometer error parameters by MCS-NAFSA
is conducted, and the results are discussed in Section 6.
Next, the static 24-position triaxial accelerometer verification
experiment and the accelerometer-based SINS navigation
experiment with accelerometer error parameters identified
by MCS-NAFSA are demonstrated in Section 7. Section 8
concludes this paper.

2. Standard Artificial Fish Swarm
Algorithm (SAFSA)

2.1. Parameters of SAFSA. AFSA is one of the swarm intel-
ligence methodologies and evolutionary optimization tech-
niques and its framework is based on functions that are
inspired by social behaviors of fishes in the nature. Generally,
fishes move to the areas that have more food by AFs individ-
ual or swarm search. AF model is depicted by prey, swarm,
free move, and following behaviors. AFs food consistency
degree in a specific area is the AFSA objective function.
Finally, the AFs approach the maximum food density point.

The state of AF 𝑖 is denoted as vector𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛),
and 𝑥

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are the optimization variables.

Current food consistency degree of AF 𝑖 in position 𝑋 can
be expressed as objective function 𝑌 = 𝑓(𝑋). 𝑉𝑖𝑠𝑢𝑎𝑙 is the
sight field of AFs and 𝑆𝑡𝑒𝑝 denotes the maximum length of
each AFmovement.The distance between two AFs in𝑋

𝑖
and

𝑋
𝑗
positions is represented by Euclidean Distance Dis

𝑖𝑗
=

|𝑋
𝑖
−𝑋
𝑗
|. Moreover, the best AF position is loaded in 𝑏𝑢𝑙𝑙𝑒𝑡𝑖𝑛

and crowd factor 𝛿 (0 < 𝛿 < 1) is AFs’ crowd degree within
their 𝑉𝑖𝑠𝑢𝑎𝑙 range. In the following subsection, behaviors of
AFs will be described in detail.

2.2. Behaviors of SAFSA

2.2.1. Prey Behavior. In nature, fishes search for food or
position with more food. Normally, we choose the position
𝑋
𝑗
that is within the 𝑉𝑖𝑠𝑢𝑎𝑙 range of AF 𝑖 randomly. Then,

position𝑋
𝑗
is calculated by

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑖
(𝑡) +𝑉𝑖𝑠𝑢𝑎𝑙 × 𝑅𝑎𝑛𝑑 (−1, 1) . (1)
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Afterward, the food consistency degree 𝑓(𝑋) in positions
𝑋
𝑖
and 𝑋

𝑗
is calculated, respectively. If 𝑓(𝑋

𝑗
) > 𝑓(𝑋

𝑖
), AF 𝑖

moves one 𝑆𝑡𝑒𝑝 forward from its current position𝑋
𝑖
towards

𝑋
𝑗
, which is performed by

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑖
(𝑡) +

𝑋
𝑗
(𝑡) − 𝑋

𝑖
(𝑡)

Dis
𝑖,𝑗

× [𝑆𝑡𝑒𝑝 ×𝑅𝑎𝑛𝑑 (0, 1)] ,

(2)

where 𝑋
𝑖
is a 𝐷-dimensional vector and �⃗�

𝑗
− �⃗�
𝑖
represents

a transfer vector from 𝑋
𝑖
to 𝑋
𝑗
and when divided by Dis

𝑖,𝑗
,

a unit vector is generated from 𝑋
𝑖
towards 𝑋

𝑗
. Random

function generates a random number which causes AF 𝑖 to
move towards position𝑋

𝑗
with a random percentage of 𝑆𝑡𝑒𝑝.

Nevertheless, if 𝑓(𝑋
𝑖
) > 𝑓(𝑋

𝑗
), we choose another position

𝑋
𝑖
by (1) and evaluate its food density, whether forwardmove

condition is satisfied or not. After 𝑡𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 times, AF does
not succeed in satisfying forward condition.TheAF performs
free move behavior and moves one 𝑆𝑡𝑒𝑝 in searching space
randomly.

2.2.2. Swarm Behavior. One of the features of fishes as a
swarm is that they always try to move along other swarm
members, which causes fish swarm to scatter, and the gen-
erality of the swarm is kept. In AFSA, in order to maintain
the swarm generality, AFs try to move to the center position
of the searching space in each of the iterations. The central
position of swarm is expressed as

𝑋Center =
1
𝑁

𝑁

∑

𝑖=1
𝑋
𝑖
. (3)

In (3), 𝑋Center vector represents the arithmetic average of
all the AFs swarm. Suppose 𝑁 is the population size and 𝑛𝑐

is the number of AFs in 𝑉𝑖𝑠𝑢𝑎𝑙 field (i.e., Dis
𝑖,𝑗

< 𝑉𝑖𝑠𝑢𝑎𝑙)
around𝑋Center position; if 𝑓(𝑋Center) ≥ 𝑓(𝑋

𝑖
) and 𝛿 > 𝑛𝑐/𝑁,

center position has better food density than current position
and the population crowd degree in its neighborhood is not
crowded, so AF 𝑖moves towards central position:

𝑋
𝑖+1 (𝑡 + 1) = 𝑋

𝑖
(𝑡) +

𝑋Center − 𝑋
𝑖
(𝑡)

Dis
𝑖,Center

× [𝑉𝑖𝑠𝑢𝑎𝑙 ×𝑅𝑎𝑛𝑑 (0, 1)] .
(4)

If 𝑛𝑐 = 0 or the movement condition towards central
position is not satisfied, prey behavior is performed by AF 𝑖

alternatively.

2.2.3. Following Behavior. During the AFs moving process,
when the fishes find food, neighbor fishes follow them to
search for food. When the current AF in position 𝑋

𝑖
checks

its neighbor 𝑋
𝑘
, if 𝑘𝑛 is the number of AFs in 𝑉𝑖𝑠𝑢𝑎𝑙 field

(i.e., Dis
𝑖,𝑗

< 𝑉𝑖𝑠𝑢𝑎𝑙) around 𝑋
𝑘
, and if 𝑓(𝑋

𝑘
) ≥ 𝑓(𝑋

𝑖
) and

𝛿 > 𝑘𝑛/𝑁 (i.e., AF 𝑖 in position 𝑋
𝑘
has better food density

than current position and the population density around its

neighborhood is not crowded), AF 𝑖moves one 𝑆𝑡𝑒𝑝 towards
𝑋
𝑘
by the following equation:

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑖
(𝑡) +

𝑋
𝑘
− 𝑋
𝑖
(𝑡)

Dis
𝑖,𝑘

× [𝑉𝑖𝑠𝑢𝑎𝑙 × 𝑅𝑎𝑛𝑑 (0, 1)] .
(5)

If AF 𝑖 has no neighbors or none of its neighbors satisfy
the following conditions, prey behavior would be performed
by AF 𝑖 optionally.

2.2.4. Free Move Behavior. AFs wouldmove freely when they
are not successful in finding food. In AFSA, the AFs would
move a random 𝑆𝑡𝑒𝑝 in search space in this no-more-food
condition, so it could be represented as

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑖
(𝑡) + 𝑆𝑡𝑒𝑝 ×𝑅𝑎𝑛𝑑 (−1, 1) . (6)

The free move behavior is necessary to maintain the
diversity of AFs swarm when the AFs search for a better
position in problem space.

2.3. Demerits of SAFSA in Accelerometer Error Coefficients
Identification. According to the characteristics of SAFSA,
there are some demerits for its application to the recalibration
of accelerometer error parameters [18–20]. The first one is
that the AFs are lacking the application of previous experi-
ences, which would lead the AFs to falling into local extreme
during optimization process. Consequently, the SAFSA-
identified accelerometer error parameters are not the optimal
values. The second one is that the SAFSA lacks the balance
between exploration and exploitation during optimization
process, which deteriorates the convergence rate and accu-
racy of the AFs. Hence, it decelerates the accelerometer error
coefficients optimization process and reduces the optimal
precision. The last demerit is that the computational cost of
SAFSA is high, which will cost more memory loads during
optimization process. So it is unsuitable for accelerometer-
based SINS with high real-time computational requirements.
Therefore, these disadvantages should be eliminated before
the AFSA is applied to the accelerometer error coefficients
identification.

3. Optimal Artificial Fish Swarm
Algorithm (OAFSA)

According to the AFSA for accelerometer error coeffi-
cients identification, the mentioned drawbacks in Section 2.3
should be avoided. At present, the varied 𝑉𝑖𝑠𝑢𝑎𝑙 and 𝑆𝑡𝑒𝑝

parameters are used to improve the algorithm’s precision and
convergence rate [29]. Moreover, the secondary initialization
method is also utilized for higher precision accelerometer
error parameters identification [18, 20].

3.1. Parameters Variation on AFSA. The SAFSA has fixed
value on both 𝑉𝑖𝑠𝑢𝑎𝑙 and 𝑆𝑡𝑒𝑝 parameters, which restrict
AFSA’s precision and convergence rate in accelerometer error
parameters identification greatly. When the initialization
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value of parameters 𝑉𝑖𝑠𝑢𝑎𝑙 and 𝑆𝑡𝑒𝑝 is relatively large, the
exploration ability of AFSA is enhanced while the exploita-
tion ability is weakened. Conversely, if the 𝑉𝑖𝑠𝑢𝑎𝑙 and 𝑆𝑡𝑒𝑝

parameters are relatively small, AFSA’s exploration ability is
weakened and the exploitation ability of the algorithm is
enhanced during the optimization process [18–20]. There-
fore, varied 𝑉𝑖𝑠𝑢𝑎𝑙 and 𝑆𝑡𝑒𝑝 parameters are adopted:

𝑉𝑖𝑠𝑢𝑎𝑙 = 𝑉𝑖𝑠𝑢𝑎𝑙 ⋅ 𝜆 +𝑉𝑖𝑠𝑢𝑎𝑙min,

𝑆𝑡𝑒𝑝 = 𝑆𝑡𝑒𝑝 ⋅ 𝜆 + 𝑆𝑡𝑒𝑝min,

𝜆 = exp(−3×( 𝐺

𝐺max
)) ,

(7)

where 𝐺 and 𝐺max denote the current iteration times and
the maximum iteration times during the optimization pro-
cess. And 𝜆 denotes the attenuation function, which could
balance the exploration and exploitation abilities during the
overall optimization process. At the beginning stage of the
optimization process, the 𝑉𝑖𝑠𝑢𝑎𝑙 and 𝑆𝑡𝑒𝑝 parameters are
relatively large. So the AFs exploration ability is greater
than the exploitation ability and the AFs could find a better
position in a relatively large space, while, with the increase
of the iterations, the 𝜆 parameter is less than ever; both
𝑉𝑖𝑠𝑢𝑎𝑙 and 𝑆𝑡𝑒𝑝 parameters become less with the increase of
iterations. Therefore, the AFs exploration ability is weakened
and exploitation ability is enhanced, and the AFs could
implement higher precision with more local optimization
time.

3.2. The Secondary Initialization Method. After dozens of
iterations, the objective or indicator function starts to present
divergence tendency because the AFs fall into the local
extreme by unsuccessful prey behavior [26]. The former AFs
parameters and the optimized accelerometer error parame-
ters have reached their limits to implement higher precision
during optimization process. In this case, the secondary
initialization method is utilized to the AFs swarm and the
related accelerometer error parameters identification proce-
dures [18–20]. Firstly, observe the variation tendency of indi-
cator function until it presents divergence tendency, which
is caused by unsuccessful prey behavior. And then, store all
the AFs parameters and the corresponding accelerometer
error coefficients when the indicator function reaches the
lowest point. After that, reload the changed AFs parameters
and former saved accelerometer error coefficients manually,
which were obtained from the former optimization process.
Finally, execute the AFSA optimization process again and
let the optimal indicator function reach higher optimization
precision. However, in secondary initialization method, the
selection of the lowest indicator function point at first stage
is artificially aided.The reload process of AFs parameters and
accelerometer error coefficients are also completed manually.
This means the method is nonautonomous during optimiza-
tion process.

3.3. Demerits of OAFSA in Accelerometer Error Coefficients
Identification. When OAFSA is used for accelerometer error

parameters identification, only the second drawback of
SAFSA is eliminated, but the other two drawbacks are not
avoidedduring the optimization process.Moreover, by induc-
ing the secondary initialization method, the lowest indi-
cator function point selection at the first stage is artificially
aided. The reload process of AF parameters and accelerome-
ter error coefficients are completed manually. This means the
method is nonautonomous during the optimization process.
Therefore, there are also some shortcomings when OAFSA is
applied to accelerometer error parameters identification.

4. Novel Artificial Fish Swarm
Algorithm (NAFSA)

4.1. Parameters of NAFSA. In order to solve the abovemen-
tioned demerits of SAFSA and the OAFSA when they are
applied in accelerometer error coefficients identification, a
novel artificial fish swarm algorithm is proposed. At first, the
Contraction Factor (CF) parameter is adopted to substitute
the parameters of 𝑆𝑡𝑒𝑝 and crowd factor. Moreover, the
simplification on fish swarm behaviors is also elucidated,
and prey and free move behaviors are combined with some
changes in a specific behavior, which is called individual
behavior. And also there is another behavior called group
behavior, which substitutes the following and swarm behav-
iors.

Suppose that there are 𝑁 artificial fishes in 𝐷-dimen-
sional space, and the position of AF 𝑖 could be expressed
as 𝑋
𝑖
= (𝑥
𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐷). AFs’ 𝑉𝑖𝑠𝑢𝑎𝑙 could be denoted

as vector (V1, V2, . . . , V𝐷), and the dimension of every 𝑉𝑖𝑠𝑢𝑎𝑙
vector is determined by the inner coverage of searching space
dimension. Therefore, the NAFSA could use different 𝑉𝑖𝑠𝑢𝑎𝑙
in various space ranges. The components of vector 𝑉𝑖𝑠𝑢𝑎𝑙
are divided into many parts which make the AFs perform
better global optimization ability. So the NAFSA has higher
precision in global extreme optimal ranges.TheCFparameter
is introduced to NAFSA for choosing different 𝑉𝑖𝑠𝑢𝑎𝑙 values
in different optimal phases, which is an integer less than
1, whether a constant or a function. Previously, the inertial
weight parameter was presented in particle swarm optimiza-
tion (PSO) for balancing the exploration and exploitation
ability during optimization process [30]. The CF in NAFSA
has the similar function to inertial weight in PSO. Here,
we use random function to generate the CF in all iteration
process, which is expressed as

CF = CFmin + (CFmax −CFmin) × 𝑅𝑎𝑛𝑑 (0, 1) . (8)

The above equation generates a random CF in range
[CFmin,CFmax]. Therefore, the 𝑖th element of vector 𝑉𝑖𝑠𝑢𝑎𝑙
in each iteration process could be expressed as

𝑉𝑖𝑠𝑢𝑎𝑙
𝑖
(𝑡 + 1) = 𝑉𝑖𝑠𝑢𝑎𝑙

𝑖
(𝑡) ×CF. (9)

Next, the NAFSA behaviors will be discussed.

4.2. Behaviors of NAFSA

4.2.1. Individual Behavior. The individual behavior is made
up of prey and freemove behaviors.TheAF 𝑖 in position𝑋

𝑖
(𝑡)
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tries several times of movement to a better position. In each
iteration process, AF 𝑖 will occupy the position 𝑋

𝑗
(𝑡) by (1)

and then evaluate its food density. If 𝑓(𝑋
𝑖
) ≥ 𝑓(𝑋

𝑗
), then the

next position of AF 𝑖 is represented as

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑗
. (10)

Because the position 𝑋
𝑗
(𝑡) is within the 𝑉𝑖𝑠𝑢𝑎𝑙 range of

AF 𝑖, the movement distance of AF 𝑖 would be less than or
equal to 𝑉𝑖𝑠𝑢𝑎𝑙 vector in the same dimension. If 𝑓(𝑋

𝑖
) ≥

𝑓(𝑋
𝑗
), the AF 𝑖 will move to better positions with several

times’ iteration by (10) or (1) and (10). However, if 𝑓(𝑋
𝑖
) <

𝑓(𝑋
𝑗
) is satisfied, the AF would not move towards 𝑋

𝑗
(𝑡)

and it will find a better position from its previous position.
Therefore, when performing single individual behavior, the
AF could find a better position by trying several times.
Otherwise, if AF 𝑖 could not find a better position after all
attempts, the AF could move a 𝑆𝑡𝑒𝑝 randomly within its
𝑉𝑖𝑠𝑢𝑎𝑙 range:

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑖
(𝑡) +𝑉𝑖𝑠𝑢𝑎𝑙 ×𝑅𝑎𝑛𝑑 (−1, 1) . (11)

In NAFSA, each AF moves towards a better position
by individual behavior. But when it failed, it will perform
random behavior within its 𝑉𝑖𝑠𝑢𝑎𝑙 range and may discard
its previous position, which may find a worse position in
searching space. Nevertheless, in order to keep the AF swarm
diversity and find a better position in later optimal behavior,
performing the random behavior is necessary for the AF.
Moreover, the AF position searched by random behavior
would not be used in the best AF position, so the best AF
position would not be lost even if the AF could not find better
position. In this case, the best AF position is what has been
searched for previously.Therefore, in NAFSA, the current AF
position is the best position, so the 𝑏𝑢𝑙𝑙𝑒𝑡𝑖𝑛 parameter is no
longer a necessity.

4.2.2. Group Behavior. To keep the swarm characteristics
of all the fishes and make the moving of AF to the best
position are the two main targets in group behavior. The
center position ofAF swarm is obtained by (3). If𝑓(𝑋Center) >
𝑓(𝑋
𝑖
) is satisfied, then the next position of AF 𝑖 is

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑖
(𝑡) +

𝑋Center − 𝑋
𝑖
(𝑡)

Dis
𝑖,Center

× [𝑉𝑖𝑠𝑢𝑎𝑙 × 𝑅𝑎𝑛𝑑 (0, 1)] .
(12)

𝑉𝑖𝑠𝑢𝑎𝑙 in (12) is a vector, and the random function
generates a 𝐷-dimensional random number. If 𝑓(𝑋Center) ≤
𝑓(𝑋
𝑖
), the AF 𝑖 could notmove towards center position, while

it could move towards the best position in searching space:

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑖
(𝑡) +

𝑋Best − 𝑋
𝑖
(𝑡)

Dis
𝑖,Best

× [𝑉𝑖𝑠𝑢𝑎𝑙 × 𝑅𝑎𝑛𝑑 (0, 1)] .
(13)

Therefore, the AFs in a worse position would move
towards center position by comparing with center position.

When the position is better than center position, it will move
towards best AF swarm position. Therefore, all the AFs will
reach the best position by performing a group behavior.
Consequently, in NAFSA, the best position searched by fish
swarm would be adopted to accelerate the convergence rate
with all AFs’ movement. So the group behavior is used to
maintain the fishes swarm characteristics and avoid reducing
in swarm diversity.

In group behavior, the center positionAFmay have better
food density (indicator function) than best AF position. AF
moves towards center position by (12), but worse position
may exist between current position and center position.Then
theAF positionmay get worse or even lose its best position by
executing (12). Therefore, if the indicator function of center
position is better than best AF position, the best AF position
is determined by the following equation:

𝑋Best (𝑡 + 1) = 𝑋Center. (14)

The above equation is executed only when 𝑓(𝑋Center) <

𝑓(𝑋Best), while the other AFs’ movement by using (12) helps
to maintain the diversity of the fish swarm.

5. Triaxial Accelerometer Error Coefficients
Identification by NAFSA

In this section, the triaxial accelerometer static error model
will be demonstrated at first. And then the optimization indi-
cator function derivation process is given in detail. Finally,
the triaxial accelerometer error coefficients identification
procedures with NAFSA will be provided specifically.

5.1. Static Error Model of Triaxial Accelerometer. The purpose
of the error coefficients identification is to identify accelerom-
eter error parameters quickly and accurately. There are var-
ious identification methodologies for triaxial accelerometer
error parameters [31–35]. The static error model for triaxial
accelerometer is shown as follows [35]:

[
[
[
[
[
[
[
[

[

𝑁
𝑎𝑥

𝐾
𝑎𝑥

𝑁
𝑎𝑦

𝐾
𝑎𝑦

𝑁
𝑎𝑧

𝐾
𝑎𝑧

]
]
]
]
]
]
]
]

]

=
[
[
[

[

1 𝐸
𝑎𝑥𝑧

𝐸
𝑎𝑥𝑦

𝐸
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𝐸
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𝐸
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]
]
]

]

[
[

[

𝐴
𝑥

𝐴
𝑦

𝐴
𝑧

]
]

]

+
[
[

[

𝐴0𝑥

𝐴0𝑦

𝐴0𝑧

]
]

]

+

[
[
[
[
[
[
[
[
[
[

[

𝐾2𝑥𝐴
2
𝑥

𝐾
𝑎𝑥

𝐾2𝑦𝐴
2
𝑦

𝐾
𝑎𝑦

𝐾2𝑧𝐴
2
𝑧

𝐾
𝑎𝑧
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]
]
]
]
]
]
]
]
]

]

,

(15)

where 𝐾
𝑎𝑖
(𝑖 = 𝑥, 𝑦, z) denote the triaxial accelerometer

scale factors, 𝐸
𝑎𝑖𝑗

(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝑖 ̸= 𝑗) denote the triaxial
accelerometer axis misalignment errors during installation,
𝑁
𝑔𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) denote the triaxial accelerometers output

data, 𝐴
𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) denote the turntable alignment axis
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input linear accelerations, 𝐾2𝑖 (𝑖 = 𝑥, 𝑦, z) denote the
quadratic nonlinear coefficients of triaxial accelerometer, and
𝐴
𝑜𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) denote the triaxial accelerometer biases.

Therefore, there are totally 15 static error parameters for
triaxial accelerometer to be identified by NAFSA.

5.2. Determining of the Optimization Indicator. The NAFSA
is terminated in one of the three conditions.The first is when
the preset maximum iteration times are reached. The second
condition is when the optimization indicator function during
optimization process is below predefined threshold.The third
condition is that when performing the next iteration, the
deviation of current iteration result and the next iteration
result is within an acceptable range. Therefore, the optimiza-
tion indicator is a key factor for the termination condition of
NAFSA optimization process.The following part will present
an optimization indicator function for triaxial accelerometer
error parameters identification based on NAFSA.

Theoretically, when the static triaxial accelerometer is at
arbitrary space position, the accelerometer measured linear
accelerations would satisfy the following equation:

∑

𝑖=𝑥,𝑦,𝑧

𝐴
2
𝑖
= 𝑔

2
. (16)

In (16), 𝐴
𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) are the theoretical input linear

accelerations sensed by triaxial accelerometer in each axis and
𝑔 denotes the Earth gravity vector, which is related to the
position on Earth surface.

Actually, because of the errors caused by accelerometer
itself, the calculated linear accelerations are different from
theoretical values. Therefore, the linear acceleration mode
square error (MSE) is adopted to represent the deviation,
which is derived from (16), and it is expressed as

𝛿𝑔 = ∑

𝑖=𝑥,𝑦,𝑧

𝐴
2
𝑖
−𝑔

2
, (17)

where 𝐴
𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) denote the accelerations calculated

from (15) with the stored triaxial accelerometer output data
𝑁
𝑎𝑖
(𝑖 = 𝑥, 𝑦, 𝑧).
Our target by using the NAFSA is to identify the error

coefficients of accelerometer precisely and make the linear
acceleration MSE as stable as possible. So the standard
deviation function is used to evaluate the discrete degree of
the accelerometer error coefficients:

𝜎 =
√
∑
𝑚

𝑗=1 (∑𝑖=𝑥,𝑦,𝑧 𝐴
2
𝑖
− 𝑔

2
)

𝑚 − 1
.

(18)

In (18), 𝑚 denotes the number of positions during
optimization process.

5.3. MCS-NAFSA Implementation Procedures. In this sub-
section, the implementation procedures of accelerometer
error coefficients identification will be explained. Two main
steps are conducted to illustrate the NAFSA optimization
process. At the beginning, the variation characteristics of the
15 error coefficients in triaxial accelerometer are discussed

and a clustering process is described on different triaxial
accelerometer error parameters. After that, the specificMCS-
NAFSA accelerometer error coefficients identification proce-
dures are presented step by step.

5.3.1. Accelerometer Error Coefficients Clustering. In 15 triax-
ial accelerometer error coefficients’ identification, different
error coefficients have different influences on the linear
acceleration MSE and also the NAFSA requires all the AFs
to have similar characteristics during optimization process.
Therefore, the clustering on accelerometer error coefficients
is a necessity before the accelerometer error coefficients
identified by NAFSA.

Thinking about the different error coefficients’ influences
on linear acceleration MSE and based on our previous
experiences, the accelerometer scale factors have the highest
impacts on linear acceleration MSE, followed by the biases,
and then the accelerometer axis misalignment errors, and
the last parameters are accelerometer quadratic nonlinear
coefficients. So accelerometer error coefficients are divided
into four different categories. They are 3 accelerometer scale
factors 𝐾

𝑎𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) as category one, 3 accelerometer

biases 𝐴
𝑜𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) as category two, 6 accelerometer

misalignment errors 𝐸
𝑎𝑖𝑗

(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝑖 ̸= 𝑗) as category
three, and 3 accelerometer quadratic nonlinear coefficients
𝐾2𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) as category four. Therefore, when adopting
MCS-NAFSA to identify the accelerometer error parameters,
there are four main steps of optimization process that should
be conducted to implement the highest precision.

5.3.2. MCS-NAFSA Accelerometer Procedures. Through the
discussion in Section 5.3.1, within NAFSA accelerometer
procedures, the accelerometer error coefficients identified
by NAFSA is mutually independent in different categories.
Hence, pseudocode of four phases of optimization process is
shown in Algorithm 1, accelerometer NAFSA.

In the first phase, accelerometer scale factors 𝐾
𝑎𝑖
(𝑖 =

𝑥, 𝑦, 𝑧) identification is optimized by NAFSA. Firstly, the
AFs parameters, category two parameters 𝐴

𝑜𝑖
(𝑖 = 𝑥, 𝑦, 𝑧),

category three parameters 𝐸
𝑎𝑖𝑗

(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝑖 ̸= 𝑗), and
category four parameters 𝐾2𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) are all initialized.
After that, each AF 𝑖 performs individual behavior andmoves
to a better position based on the optimization outcome.
Subsequently, each AF 𝑖 executes group behavior with respect
to its new position. Finally, repeat this process for 𝑁 times,
and we could obtain the mean value �̂�

𝑎𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) as the

accelerometer scale factors.
In the second phase, accelerometer biases𝐴

𝑜𝑖
(𝑖 = 𝑥, 𝑦, 𝑧)

identification is presented by NAFSA. At the beginning,
the AFs parameters, category three parameters 𝐸

𝑎𝑖𝑗
(𝑖, 𝑗 =

𝑥, 𝑦, 𝑧; 𝑖 ̸= 𝑗), category four parameters𝐾2𝑖 (𝑖 = 𝑥, 𝑦, 𝑧), and
accelerometer scale factors �̂�

𝑎𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) are all loaded.

Next, all the AFs execute individual behavior and group
behavior, respectively. At last, repeat this process for𝑁 times,
and we could obtain the mean value 𝐴

𝑜𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) as the

accelerometer biases.
In the third phase, accelerometer axismisalignment errors

𝐸
𝑎𝑖𝑗

(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝑖 ̸= 𝑗) identification is demonstrated
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Begin
for each AF 𝑖 do
initialize AFs parameters, category two, category three and category four

end
bulletin = argmin𝑓(𝑋

𝑖
) repeat

for each AF 𝑖 do
Perform Individual behavior

end
for each AF 𝑖 do

Perform Group behavior
end

Update 𝑉𝑖𝑠𝑢𝑎𝑙 by (9)
for each AF 𝑖 do
initialize AFs parameters, category one, category three and category four

end
bulletin = argmin𝑓(𝑋

𝑖
) repeat

for each AF 𝑖 do
Perform Individual behavior

end
for each AF 𝑖 do

Perform Group behavior
end

Update 𝑉𝑖𝑠𝑢𝑎𝑙 by (9)
for each AF 𝑖 do
initialize AFs parameters, category one, category two and category four

end
bulletin = argmin𝑓(𝑋

𝑖
) repeat

for each AF 𝑖 do
Perform Individual behavior

end
for each AF 𝑖 do

Perform Group behavior
end

Update 𝑉𝑖𝑠𝑢𝑎𝑙 by (9)
for each AF 𝑖 do
initialize AFs parameters, category one, category two and category three

end
bulletin= argmin𝑓(𝑋

𝑖
) repeat

for each AF 𝑖 do
Perform Individual behavior

end
for each AF 𝑖 do

Perform Group behavior
end

Update 𝑉𝑖𝑠𝑢𝑎𝑙 by (9)
Until terminate condition is meet

End

Algorithm 1: Accelerometer NAFSA.

by NAFSA. At first, the AFs parameters, category four
parameters 𝐾2𝑖 (𝑖 = 𝑥, 𝑦, 𝑧), accelerometer scale factors
�̂�
𝑎𝑖
(𝑖 = 𝑥, 𝑦, 𝑧), and accelerometer biases 𝐴

𝑜𝑖
(𝑖 = 𝑥, 𝑦, 𝑧)

are all loaded in initialization process. Second, all the AFs
execute individual behavior and groupbehavior, respectively.
And last, repeat this process for𝑁 times, and we could obtain
themean value 𝐸

𝑎𝑖𝑗
(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝑖 ̸= 𝑗) as the accelerometer

axis misalignment errors.
In the last phase, accelerometer quadratic nonlinear coef-

ficients𝐾2𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) identification is processed byNAFSA.

At the outset, the AFs parameters, accelerometer scale factors
�̂�
𝑎𝑖
(𝑖 = 𝑥, 𝑦, 𝑧), accelerometer axis misalignment errors

𝐸
𝑎𝑖𝑗

(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝑖 ̸= 𝑗), and accelerometer biases 𝐴
𝑜𝑖
(𝑖 =

𝑥, 𝑦, 𝑧) are all loaded in initialization process. Then, all
the AFs execute individual behavior and group behavior,
respectively. And last, repeat this process for 𝑁 times, and
we could obtain the mean value �̂�2𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) as the
accelerometer quadratic nonlinear coefficients.

Finally, repeat the above four phases until the accelerom-
eter error coefficients meet the termination conditions, when
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Table 1: NAFSA triaxial accelerometer preset AFs parameters.

Accelerometer parameter types
NAFA AFs parameters

𝑉𝑖𝑠𝑢𝑎𝑙
𝑑

AFs numbers𝑁 Maximum iteration times
𝐺max

Contraction factors
[CFmin,CFmax]

𝐾
𝑎𝑖 (5.0000, 2.0000, 0.1000) 50 60 [0.000001, 0.999999]

𝐴0𝑖 (0.0050, 0.0020, 0.0001) 50 60 [0.000001, 0.999999]

𝐸
𝑎𝑖𝑗

(0.0005, 0.0002, 0.00001,
0.000005, 0.000002,

0.000001)
50 60 [0.000001, 0.999999]

𝐾2𝑖 (0.0050, 0.0020, 0.0001) 50 60 [0.000001, 0.999999]

Table 2: Triaxial accelerometer error coefficients preset values.

Parameters
types Preset parameters

𝐾
𝑎𝑖
(𝑖 = 𝑥, 𝑦, 𝑧)

(pulse/g) [701.887 665 701.777 454 701.663 265]

𝐴0𝑖 (𝑖 = 𝑥, 𝑦, 𝑧)

(∘/h) [−0.006 662 897 0.012 276 399 0.013 897 022]

𝐸
𝑎𝑖𝑗

(𝑖, 𝑗 =
𝑥, 𝑦, 𝑧; 𝑖 ̸= 𝑗) (∘)

[
[
[
[

[

1 0.000 405 20 0.000 772 57

−0.000 57700 1 −0.000 337 73

0.000 225 93 −0.000 347 51 1

]
]
]
]

]

𝐾2𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) [0.000 113 4 0.000 176 5 0.000 176 2]

optimization indicator reaches𝜎 < 10−8 or the iteration times
to a certain preset number.

6. Simulation Experiment and Discussion

In this section, the triaxial accelerometer error coefficients
simulation experiment is conducted byMCS-NAFSA. Before
the simulation experiment, the AFs parameters and the
nonoptimized triaxial accelerometer error parameters at each
phase should be preset. Subsequently, the simulation process
on the triaxial accelerometer error parameters is shown by
MCS-NAFSA method.

6.1. Simulation Parameters Preset. Section 4.1 described all
the AFs parameters during optimization process, and all the
AFs preset parameters of triaxial accelerometer before the
accelerometer error parameters identified are listed inTable 1.

Meanwhile, in Section 5.3.2, when one-category triaxial
accelerometer parameters are identified by NAFSA, the other
three categories parameters also have influences on linear
acceleration MSE. Therefore, the triaxial accelerometer error
coefficients preset values are shown in Table 2.

It is worth noting that, in each iteration, the dimensions
of vector 𝑉𝑖𝑠𝑢𝑎𝑙

𝑑
listed in Table 1 are equal to the number of

triaxial accelerometer error parameters. So the vector dimen-
sions of 𝑉𝑖𝑠𝑢𝑎𝑙

𝑑
on triaxial accelerometer axis misalignment

errors are different from triaxial accelerometer scale factors,
biases, and quadratic nonlinear coefficients. CF is a positive
number less than 1 whose minimum value and maximum
value are preset as 0.000001 and 0.999999, respectively.

In Table 2, in order to reduce the influences of other three
categories’ triaxial accelerometer error parameters on linear
acceleration MSE during one-category triaxial accelerometer
error parameters optimization process, the preset values
of triaxial accelerometer error parameters are based on
the conventional 24-position calibration method [32, 35],
which is aided by the high-precision turntable in indoor
environments.

6.2. Simulation Results and Discussion. After all the parame-
ters preset procedure (i.e., the initialization process) is com-
pleted, the AFs start to execute the NAFSA optimization pro-
cedure. In order to increase the triaxial accelerometer error
parameters’ credibility degree during NAFSA optimization
process, 100-time MCS is conducted after the single NAFSA
to bring in the random factors. Figure 1 shows the triaxial
accelerometer scale factors NAFSA identification results with
100-time MCS. Meanwhile, Figure 2 demonstrates the triax-
ial accelerometer biases NAFSA identification results with
100-time MCS. Figure 3 presents the triaxial accelerometer
axis misalignment errors NAFSA identification results with
100-time MCS. Figure 4 displays the triaxial accelerometer
quadratic nonlinear coefficients NAFSA identification results
with 100-time MCS.

From Figures 1 to 4, all triaxial accelerometer error
parameters fluctuate with theMCS process within a relatively
small range and the results reveal that the triaxial accelerom-
eter error parameters are influenced by triaxial accelerometer
usage environment and the inherent physical properties of
the instrument. However, the precision of simulation results
is also likely to be deteriorated by random factors, such as
the algorithmic error and computer’s error, which are usually
being neglected and unable to be eliminated during single
NAFSA optimization. So in this phase, to reduce the effects
of these random factors, the data smoothing method is also
utilized to obtain themean value of theMCS-NAFSA simula-
tion results on accelerometer error coefficients identification.
All the simulation results by smoothing method and the
corresponding statistical properties are listed in Table 3.

Through the comparison of preset parameters and the
NAFSA identification results in Table 3, we can summarize
that the relative errors amplitude of each parameter is
substantially small. The triaxial accelerometer scale factors
𝐾
𝑎𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) relative error magnitude is small enough to

10−2 ∼ 10−3 ppm, which could fully meet the high-precision
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Figure 1: Triaxial accelerometer scale factors: MCS-NAFSA curves.
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Figure 2: Triaxial accelerometer biases: MCS-NAFSA curves.

navigation requirements. Meanwhile, the relative errors of
triaxial accelerometer biases 𝐴

𝑜𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) and axis mis-

alignment errors 𝐸
𝑎𝑖𝑗

(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝑖 ̸= 𝑗) could reach 10−3∼
10−4 in magnitude, which is completely enough to satisfy the
accelerometer-based SINS precision demands. Moreover, the
relative error of triaxial accelerometer quadratic nonlinear
coefficients𝐾2𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) is within 10−2∼10−3 inmagnitude
and also could meet the precision requirements of the
accelerometer-based SINS. For comparison, in OAFSA, the
triaxial accelerometer scale factors relative error magnitude

is 10−1∼10−2 ppm and the triaxial accelerometer biases and
axis misalignment errors relative error magnitudes are
10−2∼10−3, and the relative error of the triaxial accelerometer
quadratic nonlinear coefficientsis also within 10−2∼ 10−3 in
magnitude [18–20]. Therefore, theoretically, the precision of
the proposedNAFSA identification results is an order ofmag-
nitude higher than OAFSA in triaxial accelerometer error
parameters identification. Therefore, the proposed NAFSA
not only satisfies the precision requirements of the high-
precision accelerometer-based SINS, but also presents lower
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Figure 3: Triaxial accelerometer axis misalignment errors: MCS-NAFSA curves.

Table 3: Triaxial accelerometer error parameters MCS-NAFSA identification results.

Parameters Preset value MCS-NAFSA identification result Relative error Standard deviation
𝐾
𝑎𝑥

(volt/g) 701.887665 701.887542 1.752417𝑒 − 7 0.06787

𝐾
𝑎𝑦
(volt/g) 701.777454 701.777946 7.010765𝑒 − 7 0.07613

𝐾
𝑎𝑧
(volt/g) 701.663265 701.663155 1.567704𝑒 − 7 0.05935

𝐴
𝑜𝑥
(volt/g) −0.006662897 −0.006669367 9.701071𝑒 − 4 0.001124

𝐴
𝑜𝑦
(volt/g) 0.012276399 0.012272449 3.218591𝑒 − 4 0.000995

𝐴
𝑜𝑧
(volt/g) 0.013897022 0.013893412 2.598354𝑒 − 4 0.001011

𝐸
𝑎𝑥𝑧

(deg) 0.00040520 0.00040370 0.00371563 3.091𝑒 − 5

𝐸
𝑎𝑥𝑦

(deg) 0.00077257 0.00077564 0.00395802 3.058𝑒 − 5

𝐸
𝑎𝑦𝑧

(deg) −0.00057700 −0.00057029 0.01176594 3.127𝑒 − 5

𝐸
𝑎𝑦𝑥

(deg) −0.00033773 −0.00033027 0.02258758 2.892𝑒 − 5

𝐸
𝑎𝑧𝑦

(deg) 0.00022593 0.00022029 0.02560261 3.093𝑒 − 5

𝐸
𝑎𝑧𝑥

(deg) −0.00034751 −0.00034299 0.01317823 2.869𝑒 − 5

𝐾2𝑥 (volt/g
2) 0.0001134 0.0001105 0.02624434 9.393𝑒 − 5

𝐾2𝑦 (volt/g
2) 0.0001765 0.0001706 0.03458382 9.393𝑒 − 5

𝐾2𝑧 (volt/g
2) 0.0001762 0.0001728 0.01967593 9.393𝑒 − 5
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Figure 4: Triaxial accelerometer quadratic nonlinear coefficients: MCS-NAFSA curves.

relative errors than previous OAFSA in all triaxial error
coefficients identification results.

Furthermore, the standard deviation of the estimates
in the last column of Table 3 is an indicator for repre-
senting the stability of the estimates [36, 37]. In Table 3,
the standard deviations of the triaxial accelerometer scale
factors 𝐾

𝑎𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) are 0.06787 (volt/g), 0.07613 (volt/g),

and 0.05935 (volt/g), respectively. And the estimated stan-
dard deviations for the triaxial accelerometer biases errors
𝐴
𝑜𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) are 0.001124 (volt/g), 0.000995 (volt/g),

and 0.001011 (volt/g). Meanwhile, the estimated standard
deviations of the triaxial accelerometer misalignment errors
𝐸
𝑎𝑖𝑗

(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝑖 ̸= 𝑗) are 3.091𝑒 − 5 (deg), 3.058𝑒 −

5 (deg), 3.127𝑒 − 5 (deg), 2.892𝑒 − 5 (deg), 3.093𝑒 − 5 (deg),
and 2.869𝑒 − 5 (deg). Moreover, the estimated standard
deviations for the triaxial accelerometer quadratic nonlinear
errors 𝐾2𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) are all 9.393𝑒 − 5 (volt/g2). From
the standard deviations of these four categories triaxial
accelerometer error parameters, the standard deviations of
triaxial accelerometer scale factors are greater than triax-
ial accelerometer biases, and the standard deviations of
triaxial accelerometer biases are also greater than triaxial
accelerometer axis misalignment errors. This phenomenon
is corresponding to the triaxial accelerometer error coeffi-
cients clustering principle in Section 5.3.1. More importantly,
the estimated triaxial accelerometer error parameters could
satisfy the preset optimization indicator by (18).

At the same time, the variation tendency of indicator
functions among the SAFSA, the OAFSA, and the NAFSA,
when identifying the triaxial accelerometer scale factors, is
demonstrated in Figure 5, respectively.

In Figure 5, the red dotted curve denotes the SAFSA
indicator function variation tendency. After 20 times of
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Figure 5: Indicator functions tendency of AFSA, OAFSA, and
NAFSA.

iteration, the indicator function has a slight increase ten-
dency and it remains stable after 24-time iteration, with the
indicator function leveling at 0.002584 (volt/g). However, the
OAFSA’s indicator function with the blue star curve has faster
convergence rate than SAFSA, but the indicator function
begins divergence after 20 times of iteration. The secondary
initialization method is adopted in 30 times of iteration to
decrease the divergence tendency and to improve the con-
vergence precision. For comparison, the proposed NAFSA
optimization indicator function is shown with the black
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SINS Monitor

Figure 6: Triaxial accelerometer-based SINS.

Table 4: Accelerometer performance indicators.

Parameter items Performance indicators
Accelerometer dynamic range ±300 g
Accelerometer bias 10−5 g
Accelerometer linearity 30 ppm
Accelerometer scale factor 10 ppm

plus curve in Figure 5. We can conclude that the proposed
NAFSA has better convergence rate than the OAFSA and the
SAFSA because of the reduction on algorithm’s complexity.
Moreover, it is evident that the NAFSA indicator function is
always convergent during the optimization progress, which
is the usage of previous experiences of AFs. Therefore, the
proposed NAFSA has better performances in convergence
rate and reliability of the optimized results than the SAFSA
and the OAFSA.

7. Verification Experiments and Discussion

To validate the feasibility and priorities of the proposed
NAFSA on triaxial accelerometer error parameters optimiza-
tion, the static 24-position verification experiment and the
accelerometer-based SINS static navigation experiment are
conducted, respectively. Additionally, for comparison, the
experiments with conventional calibration and Section 3 that
described OAFSA on triaxial accelerometer error parameters
identification are also performed.

In both experiments, the triaxial accelerometer-based
SINS is developed by the Institute of Inertial Navigation
and Measurement & Control Technology at the Harbin
Engineering University. The main performance indicators of
triaxial accelerometer are demonstrated in Table 4. Figure 6
shows the triaxial accelerometer-based SINS in experiments.

7.1. Triaxial Accelerometer Static 24-Position Verification
Experiment. After the triaxial accelerometer error coeffi-
cients are identified by adopting the proposed MCS-NAFSA,
a static 24-position verification experiment is conducted to
testify the precision of the triaxial accelerometer error param-
eters. Meanwhile, the triaxial accelerometer error parameters
identified by the OAFSA are also testified in this experiment
to reveal the advantages of the proposed MCS-NAFSA. In
24-position high-precision turntable verification experiment,
when x-axis accelerometer points to north direction, the
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Figure 7: x-axis measurement errors in 24 positions.

other two axes of the accelerometer start from horizontal
and vertical directions, respectively. After that, rotate the
turntable axis parallel to x-axis accelerometer at every 45∘
and acquire the triaxial accelerometer output data in each
position. So we can obtain 8-position triaxial accelerometer
output data in 360∘. Similarly, we point the y- and z-axis
accelerometer at north direction, respectively, and rotate the
turntable as x-axis accelerometer, and another 16 positions’
accelerometer output data can also be obtained. Therefore,
there are totally 24 positions utilized to testify the triaxial
accelerometer measurement precision. Tables 5 and 6 list
the triaxial accelerometer measurement values with the error
model in Section 5.1, and the error parameters are identified
by the MCS-OAFSA and the MCS-NAFSA, respectively.

In Tables 5 and 6, the theoretical triaxial accelerometer
measurement values are listed from the second column
to the fourth column. Moreover, the calculated triaxial
accelerometer measurement values by 24-position verifica-
tion experiment are listed from the fifth column to the
seventh column. After that, the corresponding measurement
errors of the triaxial accelerometer are shown from the eighth
column to the tenth column.More intuitively, the comparison
results of the triaxial accelerometer measurement errors in
24 positions with the error parameters identified by MCS-
OAFSA and MCS-NAFSA are demonstrated from Figures 7
to 9. Consequently, the corresponding statistical results in
mean values and standard deviations of these measurement
errors are displayed in Table 7.

In Figure 7, the x-axis accelerometer measurement errors
in 24 positions with the error parameters identified by MCS-
OAFSA vary from −0.008930mg to 0.007561mg while the
x-axis accelerometer measurement errors in 24 positions
with the error parameters identified by MCS-NAFSA change
between −0.002243mg and 0.002855mg. In Figure 8, the y-
axis accelerometer measurement errors in 24 positions with
the error parameters identified by MCS-OAFSA vary from
−0.004454mg to 0.007663mg while the y-axis accelerometer
measurement errors in 24 positions with the error parameters
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Table 5: Triaxial accelerometer measurement values with MCS-OAFSA identified parameters.

Theoretical values (m/s2) Calculated values (m/s2) Measurement errors (mg)
𝐴
𝑇

𝑥
𝐴
𝑇

𝑦
𝐴
𝑇

𝑧
𝐴
𝑐

𝑥
𝐴
𝑐

𝑦
𝐴
𝑐

𝑧
𝛿𝐴
𝑥

𝛿𝐴
𝑦

𝛿𝐴
𝑧

𝑥-axis point
North

0 0 9.806550 0.000068 −0.000020 9.806536 0.006964 −0.002085 −0.001399

0 6.934278 6.934278 0.000074 6.934267 6.934240 0.007561 −0.001125 −0.003839

0 9.80655 0 0.000033 9.806562 −0.000048 0.003327 0.001231 −0.004862

0 6.934278 −6.934278 −0.000032 6.934313 −6.934316 −0.003256 0.003604 −0.003870

0 0 −9.806550 −0.000082 0.000045 −9.806564 −0.008333 0.004603 −0.001444

0 −6.934278 −6.934278 −0.000088 −6.934242 −6.934268 −0.008930 0.003643 0.000996

0 −9.80655 0 −0.000046 −9.806537 0.000020 −0.004696 0.001287 0.002019

0 −6.934278 6.934278 0.000019 −6.934289 6.934288 0.001887 −0.001085 0.001027

𝑦-axis point
North

0 0 9.806550 0.000068 −0.000020 9.806536 0.006964 −0.002085 −0.001399

−6.934278 0 6.934278 −6.934231 0.000029 6.934249 0.004774 0.002934 −0.002987

−9.80655 0 0 −9.806556 0.000068 −0.000036 −0.000614 0.006972 −0.003659

−6.934278 0 −6.934278 −6.934337 0.000075 −6.934308 −0.006043 0.007663 −0.003019

0 0 −9.80655 −0.000082 0.0000452 −9.8065642 −0.008333 0.004603 −0.001444

6.934278 0 −6.934278 6.934218 −0.000004 −6.934277 −0.006143 −0.000416 0.000144

9.80655 0 0 9.806543 −0.000044 0.000008 −0.000755 −0.004454 0.000815

6.934278 0 6.934278 6.934324 −0.000050 6.934280 0.004674 0.005145 −0.000176

𝑧-axis point
North

9.806550 0 0 9.806543 −0.000044 0.000008 −0.000755 −0.004454 0.000815

6.934278 6.934278 0 6.934299 6.934251 −0.000022 0.002103 −0.002800 −0.002273

0 9.80655 0 0.000033 9.806562 −0.000048 0.003327 0.001230 −0.004862

−6.934278 6.934278 0 −6.934256 6.934330 −0.000053 0.002202 0.005279 −0.005436

−9.80655 0 0 −9.806556 0.000068 −0.000036 −0.000614 0.006972 −0.003659

−6.934278 −6.934278 0 −6.934312 −6.934226 −0.000006 −0.003472 0.005319 −0.000570

0 −9.80655 0 −0.000046 −9.806537 0.000020 −0.004696 0.001287 0.002019

6.934278 −6.934278 0 6.934243 −6.934305 0.000025 −0.003571 −0.002761 0.002593
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Figure 8: y-axis measurement errors in 24 positions.

identified by MCS-NAFSA change between −0.002447mg
and 0.002651mg. In Figure 9, the z-axis accelerometer mea-
surement errors in 24 positions with the error parame-
ters identified by MCS-OAFSA vary from −0.005436mg to

z-axis accelerometer
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Figure 9: z-axis measurement errors in 24 positions.

0.002593mg while the z-axis accelerometer measurement
errors in 24 positions with the error parameters identi-
fied by MCS-NAFSA change between −0.002651mg and
0.002549mg. Therefore, the measurement errors amplitudes
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Table 6: Triaxial accelerometer measurement values with MCS-NAFSA identified parameters.

Theoretical values (m/s2) Calculated values (m/s2) Measurement errors (mg)
𝐴
𝑇

𝑥
𝐴
𝑇

𝑦
𝐴
𝑇

𝑧
𝐴
𝑐

𝑥
𝐴
𝑐

𝑦
𝐴
𝑐

𝑧
𝛿𝐴
𝑥

𝛿𝐴
𝑦

𝛿𝐴
𝑧

𝑥-axis point
North

0 0 9.806550 0.000015 −0.000020 9.806536 0.001529 −0.002039 −0.001427

0 6.934278 6.934278 0.000022 6.934267 6.934263 0.002243 −0.001122 −0.001529

0 9.806550 0 0.000013 9.806562 −0.000018 0.001325 0.001223 −0.001835

0 6.934278 −6.934278 −0.000021 6.934263 −6.934296 −0.002141 0.002039 −0.001835

0 0 −9.806550 −0.000012 0.000025 −9.806564 −0.001223 0.002549 −0.001427

0 −6.934278 −6.934278 −0.000018 −6.934252 −6.934268 −0.001835 0.002651 0.001020

0 −9.80655 0 −0.000020 −9.806547 0.000018 −0.002039 0.001835 0.001835

0 −6.934278 6.934278 0.000019 −6.934285 6.934288 0.001937 −0.001020 0.001020

𝑦-axis point
North

0 0 9.806550 0.000028 −0.000020 9.806540 0.002855 −0.002039 −0.001020

−6.934278 0 6.934278 −6.934261 0.000021 6.934269 0.001733 0.002141 −0.000917

−9.80655 0 0 −9.806556 0.000018 −0.000026 −0.000611 0.001835 −0.002651

−6.934278 0 −6.934278 −6.934307 0.000015 −6.934298 −0.001937 0.001529 −0.002039

0 0 −9.80655 −0.000022 0.000019 −9.806560 −0.002243 0.001937 −0.001020

6.934278 0 −6.934278 6.934258 −0.000014 −6.934267 −0.002039 −0.001427 0.001121

9.80655 0 0 9.806543 −0.000024 0.000008 −0.001733 −0.002447 0.000815

6.934278 0 6.934278 6.934304 −0.000021 6.934288 0.001631 0.002141 −0.001020

𝑧-axis point
North

9.806550 0 0 9.806540 −0.000024 0.000018 −0.001020 −0.002447 0.001835

6.934278 6.934278 0 6.934289 6.934261 −0.000022 0.001121 −0.001733 −0.002202

0 9.80655 0 0.000023 9.806562 −0.000020 0.002345 0.001223 −0.002039

−6.934278 6.934278 0 −6.934266 6.934360 −0.000013 0.001223 0.001835 −0.001325

−9.80655 0 0 −9.806556 0.000023 −0.000016 −0.000611 0.002345 −0.001631

−6.934278 −6.934278 0 −6.934299 −6.934256 −0.000024 −0.001223 0.001223 −0.002447

0 −9.80655 0 −0.000016 −9.806547 0.000020 −0.001631 0.000815 0.002039

6.934278 −6.934278 0 6.934265 −6.934301 0.000025 −0.001325 −0.002345 0.002549

Table 7: Triaxial accelerometer measurement errors statistical results.

Mean value (mg) Standard error (mg)
𝛿𝐴
𝑥

𝛿𝐴
𝑦

𝛿𝐴
𝑧

𝛿𝐴
𝑥

𝛿𝐴
𝑦

𝛿𝐴
𝑧

MCS-OAFSA −6.845𝑒 − 004 0.001688 −0.001436 0.005094 0.003731 0.002411

MCS-NAFSA −1.528𝑒 − 004 4.459𝑒 − 004 −5.8875𝑒 − 004 0.001764 0.001888 0.001625

in these figures show that the proposed MCS-NAFSA has
smaller measurement errors than the previous MCS-OAFSA
in triaxial accelerometer error parameters identification.

Finally, the statistical results in mean values and standard
deviations of the triaxial accelerometer measurement errors
calculated by MCS-OAFSA and MCS-NAFSA were demon-
strated in Table 7. Both mean values and standard deviations
measured by triaxial accelerometer with error parameters
identified by MCS-NAFSA are smaller than the error param-
eters identified by MCS-OAFSA. Therefore, they show the
robustness and priority of the proposed MCS-NAFSA in
triaxial accelerometer error parameters identification.

7.2. Triaxial Accelerometer-Based SINS Navigation Experi-
ment. In this subsection, a static navigation experiment is
carried out by the triaxial accelerometer-based SINS. At the
beginning, we install the triaxial accelerometer-based SINS

on the marble benchmark to eliminate external disturbances
on system positioning precision. Next, start up the SINS and
the navigation information (attitude, velocity, position, etc.)
which are shown in the monitor. Meanwhile, store the mea-
surement values of triaxial accelerometer and triaxial FOGs
and the navigation information for later data processing.
After that, make the triaxial accelerometer error parameters
identification with OAFSA and the proposed NAFSA with
the stored triaxial accelerometer data, respectively. Finally,
conduct the navigation mechanization with the OAFSA and
NAFSA optimized parameters, respectively. The positioning
error calculation formula is given by [38, 39]

𝑃error

=

√(lat − lat0)
2
∗ 𝑅2 + (long − long0)

2
∗ (𝑅 ∗ cos (lat))2

1851.8518
,

(19)
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Table 8: Static positioning results of three different methods.

Methods Conventional calibration OAFSA identification NAFSA identification
24-hour position error (nmile) 4.4895 4.4988 4.2550
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Figure 10: The comparison of positioning errors with three meth-
ods.

where long0 and lat0 are the initial longitude and latitude
of the vehicle, long and lat are the calculated longitude and
latitude, and 𝑅 denotes the radius of Earth.

Figure 10 shows a comparison of positioning errors with
the conventional calibration method and the OAFSA and
the NAFSA on triaxial accelerometer error parameters in
24-hour static navigation experiment. From Figure 10, we
can conclude that the red dotted positioning error curve
represents the OAFSA-identified triaxial accelerometer error
parameters identification results. And also the blue dotted
curve represents the conventional high-precision turntable
triaxial accelerometer calibration method. Both curves have
positioning precision of 4.5 nmiles in 24-hour static nav-
igation experiment, which shows that the OAFSA could
substitute the conventional calibrationmethod without using
high-precision turntable. Furthermore, it is worth noting
that the black solid curve in Figure 10 represents positioning
precision of the proposed NAFSA on triaxial accelerome-
ter error parameters identification. The black solid curve’s
tendency demonstrates that, after 5-hour navigation, the
positioning error is lower than the former two methods and
the positioning precision is about 0.3 nmiles better than the
OAFSA in one-day navigation experiment.

The corresponding numerical results of static positioning
errors with the three different methods are shown in Table 8.
Both the conventional calibration method and the OAFSA
have about 4.5-nmile positioning error in 24 hours. The
proposed NAFSA has 4.255-nmile positioning error at the
same time.

Therefore, we can summarize that the proposed NAFSA
has advantages in workload and costs compared to the

conventional calibration method. Moreover, the NAFSA has
better performances in long-term navigation precision and
has been more acceptable for actual engineering applications
with lower computation complexity and faster convergence
rate.

8. Conclusion

After the triaxial accelerometer-based SINS operated for a
period of time, the triaxial accelerometer would be vulnerable
by the working environmental disturbances, such as gravita-
tional field, magnetic field, and thermal field. These exterior
disturbances could influence the triaxial accelerometer error
parameters’ stability directly or indirectly. Even though some
measures are taken to eliminate these effects, high-precision
navigation application is far from enough.

The research work in this paper is based on one of
the swarm intelligence algorithms, artificial fish swarm
algorithm, mainly on its optimization and improvement
algorithm for triaxial accelerometer error parameters iden-
tification. The proposed NAFSA has the advantages of lower
computational complexity and higher convergence rate than
the OAFSA during optimization process. And it also has
lesserworkload and costs requirements than the conventional
triaxial accelerometer error parameters calibration method.
Furthermore, the proposedmethod could implement shorter
recalibration interval time with higher precision in some
harness application environment.

Both the 24-position triaxial accelerometer verification
experiment and the triaxial accelerometer-based SINS nav-
igation experiment results show that when the triaxial
accelerometer-based SINS is in navigation condition, the
proposed NAFSA on triaxial accelerometer error parameters
identification could implement the SINS navigation pro-
cess rapidly and accurately. Moreover, the NAFSA-identified
triaxial accelerometer error parameters have better envi-
ronment adaptive ability, which means higher positioning
accuracy and better tracking performance. Therefore, the
proposed NAFSA has better ability than the conventional
calibration method and the OAFSA in triaxial accelerometer
error parameters identification applications.

However, the AFSA on triaxial accelerometer error
parameters identification is only in exploration phase and all
the navigation experiments are based on the stored data. So
our work for next stage is to realize the algorithm in real-time
navigation.
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