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The aim of this study is to evaluate the aerosol influence on LST retrieval with two algorithms (split-window (SW) method and
a four-channel based method) using simulated data under typical conditions. The results show that the root mean square error
(RMSE) decreases to approximately 2.3 K for SWmethod and 1.5 K for four channel basedmethod when VZA = 60∘ and visibility =
3 km; anRMSEwould be increased by approximately 1.0 Kwhen visibility varies from 3 km to 23 km.Moreover, a detailed sensitivity
analysis under a visibility of 3 km and 23 km is performed in terms of uncertainties of land surface emissivity (LSE), water vapor
content (WVC), and instrument noise, respectively. It is noted that the four-channel based method is more sensitive to LSE than
SW method, especially for dry atmosphere; LST error caused by a WVC uncertainty of 20% is within 1.5 K for SW method and
within 0.8 K for four-channel based method; the instrument noise would introduce LST error with a maximum standard deviation
of 0.5 K and 0.04K for the four-channel based method and SWmethod, respectively.

1. Introduction

As the direct driving force in the exchange of long-wave
radiation and turbulent heat fluxes at the surface-atmosphere
interface, land surface temperature (LST) is a key parameter
in the research of land surface processes at global or regional
scale, energy, and water cycle [1, 2]. LST has high spatial
and temporal variation [3] and the traditional in situ mea-
surement methods can only provide LST at point or local
scales [4], so that it is unreliable to acquire LST at global
scale by interpolation method. Remote sensing is a unique
way of measuring LST at regional and global scales [5], and
in the last twenty years, various infrared sensors onboard
satellite have been launched successfully, such as Moderate
Resolution Imaging Spectroradiometer (MODIS), Advanced
Very High Resolution Radiometer (AVHRR), Advanced
Along-Track Scanning Radiometer (AASTR), and Spinning
Enhanced Visible and Infrared Imager (SEVIRI), among
others. Meanwhile, the LST retrieval technology from remote

sensing data made a great progress, and various methods
have been proposed, such as single channel method [6, 7],
split-window (SW) method [8–12], temperature emissivity
separation (TES) method [13], and multichannel method [14,
15], among others. However, these algorithms just provide a
multichannel correction for attenuation arising from molec-
ular water vapor absorption under clear skies, and aerosol
effect on LST retrieval is overlooked [16].

Atmospheric aerosols comprise a dispersed system of
small solid and liquid particles suspended in air for varying
periods of time and transported by vertical and horizon-
tal wind currents, frequently to great distances. Even for
clear skies, the particulates affect the heating or cooling of
the atmosphere through scatter and absorption of energy,
depending on the chemical and physical properties of the
particles [17]. Therefore, there are some previous investiga-
tions into the problem on sea surface temperature [16, 18–23].
However, because the uncertainty of accurately determining
the land surface emissivity (LSE) is still crucial for improving
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LST retrieval algorithms, few studies have considered reduc-
ing the influences of different aerosol types and loadings on
the retrieval of LST from remote sensing data.

The transmittance for the middle infrared (MIR) channel
in atmosphere window is more stable with less change to
the surface temperature, and most values are above 0.8 [15].
In consideration of this, a four-channel based method for
LST algorithm using 2 thermal infrared (TIR) channels and 2
MIR channels has been developed [15]. Since the aerosol size
range covers more than five orders of magnitude, from 10 nm
to several hundred micrometers [17] and the aerosol effect
decreases with the increase of wavelength, MIR channels are
more sensitive to aerosol particles than TIR channels. There-
fore, in this study, a detailed analysis on the performance of
this method under typical conditions is investigated in terms
of aerosol, LSE, water vapor content (WVC), instrument
noise, using simulated airborne hyperspectral scanner (AHS)
data, which has multiple TIR and MIR channels providing
an excellent opportunity for evaluating the algorithms’ per-
formances; meanwhile, an intercomparison with a two-TIR
channel (11 𝜇m and 12 𝜇m) based SW method is performed.
In addition, in this study, to avoid the interference of solar
direct radiation, only the algorithms for nighttime LST
retrieval are analyzed.

In this paper, Section 2 shows the basic theory in infrared
spectrum. Section 3 describes the data characteristics, atmo-
spheric and aerosol characteristics in AHS channels for LST
inversion. Section 4 presents the simulated data. Section 5
gives the results and discussions. Finally, the conclusions and
summary are drawn in Section 6.

2. Methodology

2.1. Radiative Transfer Model. Based on the radiative transfer
theory and assuming a cloud-free atmosphere under local
thermodynamic equilibrium, the infrared spectral radiance
𝐿(𝜃V, 𝑇, 𝜆) at the top of atmosphere (TOA) for a viewing
zenith angle (VZA), 𝜃V, can be expressed as [24]

𝐿 (𝜃V, 𝑇, 𝜆)

= 𝑅 (𝜃V, 𝑇𝑔, 𝜆) 𝜏 (𝜃V, 𝜆) + 𝑅atm↑ (𝜃V, 𝜆) + 𝑅
𝑠

atm↑ (𝜃V, 𝜆)

(1)

with

𝑅 (𝜃V, 𝑇𝑔, 𝜆)

= 𝜀 (𝜃V, 𝜆) 𝐵 (𝑇𝑠, 𝜆) + (1 − 𝜀 (𝜃V, 𝜆))

⋅ (𝑅atm↓ (𝜆) + 𝑅
𝑠

atm↓ (𝜆)) + 𝜌 (𝜃V, 𝜃𝑠, 𝜑, 𝜆) 𝐸sun (𝜃𝑠, 𝜆) ,

(2)

where 𝑇 is the TOA brightness temperature (BT), 𝑇
𝑔
is the

BT for surface-leaving radiance, and 𝜀(𝜃V, 𝜆) and 𝜏(𝜃V, 𝜆)
are the directional spectral emissivity and the total atmo-
spheric spectral transmittance at a VZA of 𝜃V, respec-
tively; 𝑅atm↑(𝜃V, 𝜆) and 𝑅

𝑠

atm↑(𝜃V, 𝜆) represent the upwelling
atmospheric spectral radiance and the upwelling diffusion

radiance that results from the scattering of solar radiance at a
VZA of 𝜃V, respectively; 𝑇𝑠 is the LST; 𝑅atm↓(𝜆) and 𝑅

𝑠

atm↓(𝜆)
represent the downwelling hemispheric atmospheric spectral
irradiance and the downwelling diffusion irradiance that
results from the scattering of solar radiation divided by
𝜋, respectively; 𝜌(𝜃V, 𝜃𝑠, 𝜑, 𝜆) is the bidirectional spectral
reflectivity; 𝜃

𝑠
is the solar zenith angle and 𝜑 is the relative

azimuth angle between the view azimuth angle and the solar
azimuth angle; and 𝐸sun(𝜃𝑠, 𝜆) is the direct solar spectral
irradiance at ground level. For the spectral radiance in
the TIR channels and the nighttime measurements in the
MIR channels, 𝐸sun(𝜃𝑠, 𝜆), 𝑅

𝑠

atm↑(𝜃V, 𝜆), and 𝑅
𝑠

atm↓(𝜆) can be
neglected without loss of accuracy.

2.2. LST Retrieval Method. The TOA radiance measured by
infrared sensors is influenced by surface properties (LST and
LSE) and atmosphere. To retrieve LST physically, the LSE for
each channelmust be known and is acquired by classification.
Under a given VZA, the SW method and the four-channel
based method for each surface type can be expressed as
follows [15]:

(i) two-TIR channel based SW method (denoted as
Algorithm 1):

LST
𝑖
= 𝑎
0
(𝑖) + 𝑎

1
(𝑖) 𝑇
11
+ 𝑎
2
(𝑖) (𝑇
11
− 𝑇
12
)

+ 𝑎
3
(𝑖) (𝑇
11
− 𝑇
12
)
2

,

(3)

where LST
𝑖
is the LST for the 𝑖th IGBP surface types

and 𝑇
11

and 𝑇
12

are the TOA BT of the adjacent
thermal channels. These parameters 𝑎

0
(𝑖), 𝑎
1
(𝑖), 𝑎
2
(𝑖),

and 𝑎
3
(𝑖) are the regression coefficients for the 𝑖th

surface type for nighttime LST retrievals.
(ii) The four-channel based method (denoted as Algo-

rithm 2):

LST
𝑖
= 𝑏
0
(𝑖) + 𝑏

1
(𝑖) 𝑇
11
+ 𝑏
2
(𝑖) (𝑇
11
− 𝑇
12
)

+ 𝑏
3
(𝑖) (𝑇
11
− 𝑇
12
)
2

+ 𝑏
4
(𝑖) 𝑇MIR1

+ 𝑏
5
(𝑖) 𝑇MIR2 + 𝑏6 (𝑖) 𝑇

2

MIR1 + 𝑏7 (𝑖) 𝑇
2

MIR2,

(4)

where 𝑇MIR1 and 𝑇MIR2 are the TOA BT of the two
MIR channels in atmospheric window, respectively.
These parameters 𝑏

0
(𝑖)–𝑏
7
(𝑖) are the regression coef-

ficients for the 𝑖th surface type for nighttime LST
retrievals.

In this study, we mainly analyze the performances of the
two LST retrieval methods affected by aerosol for two typical
surface types (soil and grass surfaces) under dry (WVC:
0–1.5 g/cm2) and wet atmosphere (WVC: 4.0–5.5 g/cm2),
respectively.

3. Optimal Channels Selection

The main problem in surface temperature retrieval from
space is the modification of the surface radiation on its
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Figure 1: Spectral response functions for MIR and TIR channels of AHS.
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Figure 2: Atmospheric molecular (CO
2

, O
3

, H
2

O, CO, N
2

O, and CH
4

) transmittance in MIR and TIR spectrum.

way through the atmosphere and the contribution of the
atmosphere itself to the final signal measured by the sensor
[25]. The content of atmospheric constituents as water vapor,
ozone, and uniformly mixed gases (CO

2
, CO, CH

4
, N
2
O, and

O
2
) as well as the temperature profile strongly affecting the

accuracy of LST retrieval. In this section, the atmospheric
characteristics in AHS channels are analyzed for retrieving
LST with optimal channels.

3.1. AHS Description. The AHS is an imaging line-scanner
radiometer, acquiring images in 80 spectral channels cover-
ing the visible and near infrared (VNIR, 20 channels), short
wave infrared (SWIR, 43 channels), MIR (7 channels), and
TIR (10 channels) spectral ranges. AHS has an instantaneous
field of view (IFOV) of 2.5mrad and a FOV of ±45∘ [26].
The spectral characteristics for theMIR and TIR channels are
shown in Figure 1.
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3.2. Atmosphere Characteristics in AHS Channels. Absorp-
tion by atmospheric molecules is a key parameter impacting
the radiance measured by sensors; therefore, it is essential
to analyze the absorption characteristics of atmospheric
molecular inMIR andTIR spectrum for selecting the optimal
channels for LST retrieval efficiently. As an example, the
absorption properties of several atmospheric gases (H

2
O,

CO
2
, O
3
, CO, N

2
O, and CH

4
) for an US standard atmosphere

in MIR and TIR spectrum including urban aerosol are
displayed in Figure 2. It is noted that the MIR range is
divided by the several absorption subranges mainly induced
by N
2
O and CO

2
[25]. The ozone absorption splits the

thermal infrared region into two parts such that one is
more transparent than the other [25] (see Figure 2). In both
infrared ranges, water vapor is the primary absorber and
therefore substantially responsible for the shape of the total
transmission. For MIR range, it is obvious that there exist
two atmospheric windows of approximately 3.3∼4.2 𝜇m and
4.8∼5.1 𝜇m, and a strong absorption of CO

2
is presented

approximately from 4.2 𝜇m to 4.4 𝜇m, which is almost blind
to land surface; CH

4
molecular appears strong absorption

approximately from 3.2 𝜇m to 3.5 𝜇m, and less absorption can
be found in other spectrum; there exists strong absorption
of N
2
O approximately from 4.4 𝜇m to 4.6 𝜇m; COmolecular

has a relatively weak absorption approximately from 4.5 𝜇m
to 4.8 𝜇m; other atmospheric molecules have relatively high
transmittance in MTR spectrum. For TIR range, besides
O
3
absorption band ranging from 9 to 10 𝜇m, H

2
O mainly

contributes to the total transmittance.
In consideration of the locations ofAHS spectral channels

(see Figure 1) and the absorption characteristics of atmo-
spheric molecular (see Figure 2), it is noted that AHS channel
64 (CH64) and channel 65 (CH65) are affected seriously by
the strong absorption of CH

4
; AHS channel 67 (CH67) is

influenced by a strong absorption by CO
2
and N

2
O; AHS

channel 69 (CH69) and channel 70 (CH70) are strongly
affected by H

2
O. Furthermore, since AHS CH64 and AHS

CH70 are too close to the edges of 3∼5 𝜇m atmosphere
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Figure 5: Differences (ΔBT) between aerosol-contaminated TOABT (visibility = 3, 8, 13, 18 km, resp.) and that aerosol-free TOABT (visibility
= 23 km) under wet atmosphere including urban aerosol type. The deviation bars are centred on the mean of the temperature difference
(denoted by the symbols in the figure), and the half-length of each bar is equal to the standard deviation of ΔBT.

window and are usually rather noisy [26], the two channels
AHS CH66 and CH68 weakly by atmospheric absorption are
selected.

In addition, for TIR spectrum, AHS channels 71 (CH71)
and 80 (CH80) show the highest atmospheric absorption;
channels 75 (CH75) to 79 (CH79) are located in the atmo-
spheric window 10∼12.5 𝜇m; channel 74 (CH74) is located in
the region of the ozone absorption. In consideration of the
combined effects of atmospheric molecular absorption and
previous studies on LST retrieval for AHS data using SW
method [27], AHSCH75 andCH79 are excellent channels for
LST retrieval.

4. Data Simulation

In order to determine the coefficients 𝑎
0
(𝑖) ∼ 𝑎

3
(𝑖) and

𝑏
0
(𝑖) ∼ 𝑏

7
(𝑖), a serial of AHS data under different atmospheric

and surface conditions are simulated with the atmospheric
radiative transfer code MODTRAN 4. In this study, the
atmospheric profiles are extracted from theThermodynamic
Initial Guess Retrieval (TIGR) dataset at Laboratoire de
Météorologie Dynamique [28, 29], and 705 clear-sky profiles
with relative humidity at one of levels lower than 90%
are extracted from TIGR dataset, covering a wide range
of bottom atmospheric temperature (𝑇

𝑎
: 250∼310K) and

atmospheric WVC (0.06∼5.39 g/cm2).
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Figure 6: The same legend as Figure 5, but for dry atmosphere.

To make the simulation more representatives, for ana-
lyzing the aerosol effect on LST retrieval over urban area,
three types of aerosol, namely, rural, urban, and tropospheric
aerosol [30], with visibility varying from 3 to 23 km with a
step of 5 km are included, and the Mie theory is employed
for the aerosol scattering. LST varies from 𝑇

𝑎
− 15K to

𝑇
𝑎
+ 5K in step of 5 K for 𝑇

𝑎
from 250K to 310K (𝑇

𝑎
is

the atmospheric temperature in the first boundary layer of
the selected atmosphere profiles). In addition, the emissivity
from ASTER Spectral library is used in this study, which
includes spectra of rocks, minerals, lunar soils, terrestrial
soils, manmade materials, meteorites, vegetation, snow, and
ice covering the visible to thermal infrared wavelength region
(0.4∼15.4 𝜇m) (http://speclib.jpl.nasa.gov/). As an example,
the spectrum for soil and grass, used in this simulation,
is shown in Figure 3. Furthermore, to account for angular

effects, a total of 6 VZAs at a height of 100 km (0∘, 33.56∘,
44.42∘, 51.32∘, 56.25∘, and 60∘) are used in this simulation.
Therefore, for a certain type of land surface, with these
qualified atmospheric profiles, various aerosols, and VZAs
as MODTRAN input parameters, the spectral atmospheric
parameters, such as atmospheric transmittance, downwelling
radiance, and upwelling radiance, can be acquired, and then
the TOA radiance or BT is subsequently generated with the
aid of land surface parameters (LST and LSE) and the channel
spectral response function (see Figure 4).

Similar to LST retrieval schemes proposed by Wan and
Dozier [31], for each VZA, the WVC and LST are divided
into several tractable subranges for improving LST retrieval
accuracy. In this paper, the LST is divided into five subranges
with an overlap of 5 K, that is, <280K, 275∼295K, 290∼
310K, 305∼325K, and >320K, and WVC is divided into
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Figure 7: TOA BT difference caused by different aerosol type under wet atmosphere for soil surface.

five subranges with an overlap of 0.5 g/cm2, that is, 0∼
1.5 g/cm2, 1.0∼2.5 g/cm2, 2.0∼3.5 g/cm2, 3.0∼4.5 g/cm2, and
4.0∼5.5 g/cm2. For each land surface, the corresponding
coefficients 𝑎

0
(𝑖) ∼ 𝑎

3
(𝑖) and 𝑏

0
(𝑖) ∼ 𝑏

7
(𝑖) for each subrange

can therefore be determined by the statistical regression
(Levenberg-Marquardt method) with these simulated data.

5. Results

5.1. LST Retrieval under Aerosol Contaminated Condition.
For LST retrieval, it is customary to express channel-
integrated TOA radiance as BT, which is a coupling of atmo-
sphere and land surface information and could be attenuated
by the aerosol existing in the atmosphere, producing an
effect on LST retrieval. In this paper, we begin exploring
the effects of aerosol on TOA BT using radiative transfer
simulations in terms of aerosol optical depth (AOD) (it is also

expressed as visibility in this paper) and aerosol types; then
the LST retrieval accuracy and uncertainty analysis under
different AOD conditions for the two methods are analyzed
systematically, with an aim of investigating the performances
of the methods, especially under the aerosol contaminated
skies.

5.1.1. Aerosol Effect on TOA BT. The magnitude of aerosol-
induced attenuation in the IRdepends on a number of factors,
the more important ones being (1) AOD (or visibility), (2)
the effective temperatures (vertical profile) of the gaseous and
particulate absorbing layers, (3) the particle size distribution,
and (4) particle chemical composition.The latter two provide
information about the aerosol attenuation mechanism which
cannot be inferred objectively from AOD value and is
depicted as aerosol types.
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Figure 8: Continued.
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Figure 8: RMSE of LST retrieval for grass under wet and dry atmospheres with different visibility (hollow circles for Algorithm 1 and solid
circles for Algorithm 2).

To analyze the influence of AOD on TOA BT, the
simulated data with various visibilities under the six VZAs
is used. For a certain aerosol type and surface type
(grass or soil), the differences (ΔBT) between the aerosol-
contaminated (BTvisibility=3, 8, 13, 18 km) TOA BT and aerosol-
free (BTvisibility=23 km) TOA BT are calculated under dry
(WVC: 0–1.5 g/cm2) and wet (WVC: 4–5.5 g/cm2) atmo-
spheres, respectively. Generally, we can expect such factors
to affect TOA BT in different channels. As an example, for
urban aerosol type, the ΔBT caused by different visibilities
under wet and dry atmosphere for soil surface are given in
Figures 5 and 6, respectively. It is noted that theΔBT is highly
variable, and the AOD effect is much more serious in MIR
channels (AHS CH66 and CH68) than that in TIR channels
(AHSCH75 and CH79) due to the wavelength dependence of
the aerosol scattering.Moreover, AODunder dry atmosphere
causes much more TOA BT variation than that under wet
atmosphere, since in case of a wet atmosphere the spectrum

is dominated by water vapour and hence the aerosol does
not play such a dominant role. It is noted that the ΔBT for
AHS CH66 and CH68 is proportional to the increase of
VZA, while inversely for AHS CH75 and CH79; for urban
aerosol, AODmostly produce positive ΔBT under wet or dry
atmosphere.

In addition, the effect of aerosol type on TOA BT is
investigated in terms of three typical aerosol types, namely,
rural, urban, and tropospheric aerosols, under six VZAs with
a visibility of 23 km, and the TOA BT differences under two
different aerosol types are calculated. It is found that the
TOA BT variation caused by aerosol type is much lower
than that caused by AOD, especially for dry atmosphere.
As an example, BT differences for soil surface under wet
atmosphere is given in Figure 7, and an attenuation within
1.0 K is presented in channel 66, while the aerosol type almost
produce slight attenuation on TOA BT in channel 79 among
these three aerosol type. Therefore, as following, its effect on
LST retrieval is not discussed, and only AOD is focused.



10 Advances in Meteorology

1.0 1.2 1.4 1.6 1.8 2.0

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

RM
SE

 (K
)

1/cos(VZA)

Wet atmosphere
3 km visibility

1.0 1.2 1.4 1.6 1.8 2.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

RM
SE

 (K
)

1/cos(VZA)

Wet atmosphere
8 km visibility

1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

RM
SE

 (K
)

1/cos(VZA)

Wet atmosphere
13 km visibility

1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
RM

SE
 (K

)

1/cos(VZA)

Wet atmosphere
18 km visibility

1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1/cos(VZA)

RM
SE

 (K
)

Wet atmosphere
23 km visibility

295 K < LST < 315 K
280 K < LST < 300 K

255 K < LST < 285 K
255 K < LST < 315 K

1.0 1.2 1.4 1.6 1.8 2.0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

RM
SE

 (K
)

1/cos(VZA)

Dry atmosphere
3 km visibility

295 K < LST < 315 K
280 K < LST < 300 K

255 K < LST < 285 K
255 K < LST < 315 K

Figure 9: Continued.
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Figure 9: The same legend as that of Figure 8, but for soil.

5.1.2. The Effect of Aerosol on LST Retrieval. As described
above, aerosol could produce a great influence on TOA
BT, especially for MIR channels, which will directly affect
LST retrieval accuracy. However, few studies have addressed
the problem of aerosol effect in the existing LST retrieval
algorithms, even if the aerosol loading retrieval algorithms
from the remote sensing data have been developing for
many years. In this section, the LST retrieval accuracies of
Algorithm 1 and Algorithm 2 under various atmosphere and
visibility conditions are investigated with simulated data.

For urban aerosol type, the root mean square errors
(RMSEs) of LST retrieval with Algorithm 1 and Algorithm 2
are calculated under various VZAs, five visibilities (3, 8, 13, 18,
and 23 km), two types of atmosphere (wet and dry), and two
land surfaces (grass and soil) (see Figures 8 and 9). It is worth
noting that both Algorithm 1 and Algorithm 2 are affected
by aerosol when visibility is lower than 8 km; Algorithm 2

still presents lower RMSE than Algorithm 1, especially for
wet atmosphere; when the VZA is equal to 60∘ and visibility
is equal to 3 km, Algorithm 1 presents a maximal RMSE of
approximately 2.3 K, while Algorithm 2 presents 1.5 K; RMSE
of approximately 1.0 K is increasedwhen visibility varies from
3 km to 23 km; the RMSE for soil is 0.2 K higher than that for
grass.

5.2. Uncertainty Analysis under Aerosol Contaminated Con-
dition. LSE, atmospheric correction error, the instrument
noise, and the accuracy of the algorithm itself, and so
forth affect the accuracy of LST retrieval. To analyze the
uncertainty of LST retrieval under aerosol contaminated
condition, a sensitivity analysis in terms of the uncertainties
of LSE, WVC, and instrument noise under 3 km and 23 km
visibility is performed for Algorithm 1 and Algorithm 2 using
the simulated data with a VZA of 0∘ to eliminate VZA effect.
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Figure 10: Histogram of the LST error due to the uncertainty in LSE at VZA = 0∘ when visibility = 3 km and 23 km, respectively. LSTLSE1 and
LSTLSE2 are the LSTs retrieved using (3) or (4) for the cases where the soil is misclassified into grass and for the original LSE, respectively.

5.2.1. The Sensitivity to Uncertainty of LSE. The LST retrieval
algorithms depend on an accurate knowledge of land surface
types since the LSE is acquired by classification in this paper.
The largest LST uncertainty would be induced by misclassi-
fying soil into grass, and the LST with error-added LSE for
soil (denoted as LSTLSE1) is retrieved with the coefficients for
grass. Under dry and wet atmospheres, the LST error caused
by LSE uncertainty is expressed by the differences between
LSTLSE1 and the error-free LST (denoted as LSTLSE2) retrieved
with the right coefficients (see Figure 10) when the visibility
is equal to 3 km and 23 km, respectively. It is demonstrated
that the LST error caused by the uncertainty of LSE under
wet atmosphere is larger than that under dry atmosphere, and
Algorithm 2 is more sensitive to the misclassification than
Algorithm 1 due to large variation of LSE in MIR channels.
Furthermore, the standard deviation of LST error under 3 km
visibility is larger than that under 23 km visibility; under 3 km

and 23 km visibility, for Algorithm 1, the LST error caused by
the misclassification is approximately within 1.0 K under dry
atmosphere, while more than 2.0 K under wet atmosphere;
for Algorithm 2, this error is more than 2.0 K under various
atmosphere conditions.

5.2.2. The Sensitivity to Uncertainty of WVC. For some
channels in the infrared atmospheric window, the main
atmospheric effect comes from water vapor absorption and
has important effect to LST retrieval error. In this study, the
atmospheric WVC is used to select the coefficients in (3) and
(4). The WVC error may result in wrong subrange selection
and subsequently lead to a large error in the retrieved
LST. This is also one of the reasons for two consecutive
WVC subranges overlapping by 0.5 g/cm2 in the algorithm
development. For example, the WVC ∈ [1.0, 1.5 g/cm2]
falling into two subranges WVC ∈ [0, 1.5 g/cm2] and WVC



Advances in Meteorology 13

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30
Fr

eq
ue

nc
y 

(%
)

Dry atmosphere
3km visibility

Mean1 = −1.11K
Std1 = 0.41K
Mean2 = −0.21K
Std2 = 0.32K

LSTΔWVC − LSTWVC (K)

(a)

−2 −1 0 1 2
0

5

10

15

20

25
Wet atmosphere

Fr
eq

ue
nc

y 
(%

)

3km visibility

Mean2 = 0.22K

Mean1 = 0.81K
Std1 = 0.64K

Std2 = 0.60K

LSTΔWVC − LSTWVC (K)

(b)

−2 −1 0 1 2
0

2

4

6

8

10

12

14

16

18

20
Dry atmosphere

Fr
eq

ue
nc

y 
(%

)

Algorithm 1
Algorithm 2

23km visibility

Mean1 = −0.48K
Std1 = 0.34K
Mean2 = −0.37K
Std2 = 0.34K

LSTΔWVC − LSTWVC (K)

(c)

−2 −1 0 1 2
0

2

4

6

8

10

12

14

16

18
Wet atmosphere

Fr
eq

ue
nc

y 
(%

)

23km visibility

Mean1 = 0.53 K
Std1 = 0.63K
Mean2 = 0.07K
Std2 = 0.15K

Algorithm 1
Algorithm 2

LSTΔWVC − LSTWVC (K)

(d)

Figure 11: Histogram of the LST error due to the uncertainty in WVC at VZA = 0∘ when visibility = 3 km and 23 km, respectively. LST
ΔWVC

and LSTWVC are the LSTs retrieved using (3) or (4) for the case where theWVCwas increased by 20% and for the original WVC, respectively.

∈ [1.0, 2.5 g/cm2]; thus, the retrieved LSTs (LST
ΔWVC) using

the coefficients of the subrange with WVC ∈ [0, 1.5 g/cm2]
and 𝑇

𝑠
∈ [290K, 310 K] are different from the retrieved LSTs

(LSTWVC) using the coefficients of the subrange with WVC ∈
[1.0, 2.5 g/cm2], 𝑇

𝑠
∈ [290K, 310 K]. In order to characterize

the WVC error on the LST retrieval, an error of 20% is
added to original WVC to generate the error-added WVC,
which is then used to select the coefficients in (3) and (4),
and the simulated data with the overlap WVC are used to
estimate the LST with different coefficients of the two adja-
cent subranges.The histograms of the LST difference between
them (LST

ΔWVC − LSTWVC) for dry and wet atmospheres
with a visibility of 3 km and 23 km, respectively, are shown in
Figure 11. It is noted that Algorithm 1 is more sensitive to the
uncertainty of WVC than Algorithm 2; under 3 km or 23 km
visibility, LST error caused by a WVC uncertainty of 20% is

within 1.5 K for Algorithm 1, and within 0.8 K for Algorithm
2; in most cases, the LST errors under 3 km visibility is a little
larger than those under 23 km visibility.

5.2.3. The Sensitivity to Instrument Noise. The expected
radiometric noise of AHS CH66, 68, 75, and 79 is 0.33 K,
0.33, 0.2 K, and 0.2 K, respectively. In order to analyze the
instrument noise effect on LST retrieval, the corresponding
instrument radiometric noises for these channels are added
to their TOABT; then, the noised LST (LSTNEΔT) is estimated
again using Algorithm 1 and Algorithm 2, respectively. The
differences (𝛿(LST)) between noise-free (LSTnf) and LSTNEΔT
are calculated for dry and wet atmosphere with a visibility
of 3 km and 23 km, respectively, and the corresponding
histograms are shown in Figure 12. It can be found that
the 𝛿(LST) for Algorithm 2 is a little higher than that
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Figure 12: Histogram of the LST error caused by the instrument noise (NEΔT) at VZA = 0∘, where LSTNEΔT and LSTnf are the LSTs retrieved
using (3) or (4) with the instrument noise-added and for the case of noise-free brightness temperatures, respectively.

for Algorithm 1 since the higher instrument noise would
produce when more channels are used to retrieved LST; the
maximum standard deviation of 𝛿(LST) for Algorithm 2 is
approximately 0.5 K, while it is 0.04K for Algorithm 1 under
various atmosphere and visibility conditions.

6. Conclusion and Summary

This paper has addressed an analysis of aerosol effect on LST
retrieval using two methods with the data simulated with
MODTRAN model derived by cloud-free TIGR atmosphere
profiles, various land surface conditions (LSE and LST),
VZAs, and spectral response functions. The analysis results
show that, under various AOD conditions, Algorithm 2
presents higher LST retrieval accuracy thanAlgorithm 1, with
a maximal RMSE of approximately 2.3 K for Algorithm 1 and
1.5 K for Algorithm 2 when the VZA is equal to 60∘ and

visibility is equal to 3 km. Besides, LST retrieval accuracy
would be reduced by approximately 1.0 K when visibility
varying from 3 km to 23 km.

Furthermore, an analysis under two typical AOD (visibil-
ity = 3 km and 23 km) is performed in terms of uncertainties
of LSE, WVC and instrument noise with simulated data. The
analysis results show that the Algorithm 2 is more sensitive
to LSE than that for Algorithm 1 due to large variation of
LSE in MIR channel. When soil is misclassified into grass,
the LST error for Algorithm 1 is within 1.0 K, and more than
2.0 K under dry and wet atmosphere, respectively; this error
for Algorithm 2 is more than 2.0 K under various atmosphere
conditions. In addition, a WVC uncertainty of 20% would
introduce a LST error within 1.5 K for Algorithm 1 and within
0.8 K for Algorithm 2. The maximum standard deviation of
the LST error caused by the instrument noise is approximately
0.5 K for Algorithm 2, while it is 0.04K for Algorithm 1.
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In summary, aerosol indeed produces influence on LST
retrieval, and Algorithm 2 integratingMIR and TIR channels
presents lower RMSE than Algorithm 1, especially under low
visibility condition, which would be benefit to developing an
aerosol correction algorithm for LST retrieval. However, due
to the larger variation in LSE for MIR channels, Algorithm
2 is more sensitive to LSE than Algorithm 1, so Algorithm 2
could be used effectively with the accurate knowledge of LSE.
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