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In this paper, the fault detection (FD) problems of discrete-time Markov jumping linear systems
(MJLSs) are studied. We first focus on the stationary MJLS. The proposed FD system consists of
two steps: residual generation and residual evaluation. A new reference model strategy is applied
to construct a residual generator, such that it is robust against disturbances and sensitive to system
faults. The generated residual signals are then evaluated according to their stochastic properties,
and a threshold is computed for detecting the occurrences of faults. The upper bound of the
corresponding false alarm rate (FAR) is also given. For the nonstationary MJLS, similar results
are also obtained. All the solutions are presented in the form of linear matrix inequalities (LMIs).
Finally, a numerical example is used to illustrate the results.

1. Introduction

The complexity and automation degree of modern technical systems are continuously in-
creasing. In order to guarantee the system safety and reliability, the model-based fault detec-
tion and isolation (FDI) technology has been developed since the early 1970s [1–3]. It is fully
integrated into many industrial processes and automatic control systems, which can provide
valuable information about system faults. The basic idea of model-based FDI is to generate a
residual signal based on the system model and measurements and to determine a residual
evaluation function to compare with a threshold regarding to all possible model uncertainties
and unknown inputs. Exceeding the threshold indicates a fault in the system. Hence the FDI
technology consists of two steps: residual generation and residual evaluation. As mentioned
in the survey papers [4, 5] and book [2], the robustness issues have been studied in the
purpose of designing of the FDI system under a cost function that expresses a tradeoff
between the system robustness against unknown inputs as well as model uncertainties and
the system sensitivity to faults. A unified solution for the fault detection system design was
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presented in [5, 6] for continuous and discrete time linear systems, respectively. In [7, 8], an
H∞-filtering formulation of the robust FDI design for uncertain system has been proposed
and widely accepted, which tries to make the difference between residual and so-called
weighted fault as small as possible by considering model uncertainties and unknown inputs.

Markov jump linear systems have also attracted a great deal of attention. The MJLS is
one of the hybrid systems in which a state takes values in a countably finite set, referred
to as the state. It can be used to represent a class of linear systems subjects to abrupt chan-
ges in their structures due to random components failures, repairs, sudden environment dis-
turbance, change of the operation point of a linearized model of nonlinear systems, for exam-
ple, electric power systems, aircraft flight control and especially networked control systems
(for reasonable model of the packet delivery characteristic in communication channels).
There are many theoretical works contributed in the field of MJLS. In [9, 10] the results on
stability of MJLS were presented. The linear quadratic Gaussian control problem was studied
in [11, 12]. The bounded real lemma for MJLS has been fully developed by [13] in the form
of LMIs. The H∞-control problems were discussed in [14, 15], where a controller stabilizing
a linear system ensures that the l2 induced norm from unknown inputs to the outputs is
bounded. In [16, 17], the H∞ filtering for MJLS was studied as the dual problem of control.
For networked systems, recently there were also many new results obtained by applying the
MJLS theorem, for example, in [18–20].

Although there is intensive research in FD andMJLS, the design of FD system forMJLS
has just begun. In [21], the packet loss in networked control systems was modeled as Markov
process, and an FD system has been designed in terms of LMIs. In [22], the fault detection
system over noisy communication channels was also described via aMJLS. In [23], the design
of FD for MJLS was formulated as a H∞-filtering problem. In those works, observer-based
fault detection filters were designed to minimize the influence of unknown inputs [21, 22]
or to minimize the difference between residual signals and (weighted) faults [23], and the
threshold is simply computed based on the expectation of the norm of residual signals.
However, by only considering the unknown inputs or faults in the design, the residual
generator usually cannot achieve an optimal performance in sense of the tradeoff between
the system robustness and the fault sensitivity [2]. Besides, further statistic properties of
residual signals were not analyzed and considered in the system design, and a proper residual
evaluation scheme for MJLS is still missing to the best of the authors’ knowledge. We will
show that the usual norm-based residual evaluation method, in which the norm of residual
signals is used as evaluation function and compared with the threshold, cannot be directly
applied in FD of MJLS. Without taking the variance of residual signals into account, the
evaluation will result in a possible high FAR.

In this paper, the fault detection system design of MJLS is formulated as a set
of optimization problems. The residual generator is designed to stochastically match an
deterministic reference residual model which can achieve an optimal tradeoff between the
system robustness and the fault sensitivity. The reference residual model is selected according
to the statistic properties of the MJLS. For the stationary MJLS, in which the distributions
of Markov state at different time instances remain the same, a new bounded real lemma
is also derived, and the constraints of the expectation and variance of residual signals are
considered in the residual generator design. The stochastic model matching problem is then
solved by optimizing the H∞-norm of an MJLS in terms of LMIs. In the residual evaluation,
the absolute value of each residual signals is selected as the evaluation functions, and the
corresponding threshold is computed by considering their expectations and variances. Those
statistic properties of evaluated residual signals are calculated with the help of LMIs based on
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convex optimization problems. An upper bound of the FAR is also derived for this evaluation
scheme. The FD problem of nonstationary MJLS is then addressed in a similar way. Finally
a numerical example is given to illustrate the feasibility and effectiveness of the proposed
design approach.

The rest of this paper is organized as follows. The problem of fault detection of MJLS
is formulated in Section 2. Section 3 presents the design of residual generator and the new
residual evaluation approach. In Section 4 the FD system design for nonstationary MJLS is
discussed. An example is given in Section 5 and we conclude the paper in Section 6.

Notation. The notation used throughout the paper is fairly standard. The superscript “T”
stands for transposition. Rn denotes the n-dimensional Euclidean space and the notation
S > 0 means that S is real symmetric and positive definite. diag stands for a block-diagonal
matrix. E[ϑ] means the expectation of ϑ. For convenience we denote ϑ = E[ς]. The notation
[·]j is used to represent the jth row of a matrix or a vector. When w(k) ∈ l2 space, its norm is
given by

‖w(k)‖2 =
√
√
√
√

∞∑

i=0

w(k)Tw(k) (1.1)

and if w(k) is a stochastic value and its expectation is in l2 space, then we denote

‖w(k)‖E =

√
√
√
√

∞∑

i=0

E
[

w(k)Tw(k)
]

. (1.2)

2. Problem Formulation

The considered MJLS is defined as follows:

x(k + 1) = A(θk)x(k) + B(θk)u(k) + Ed(θk)d(k)

+ Ef(θk)f(k),

y(k) = C(θk)x(k) +D(θk)u(k) + Fd(θk)d(k)

+ Ff(θk)f(k),

(2.1)

where x ∈ Rn denotes the state vector, u ∈ Rp denotes the control inputs, y ∈ Rm denotes the
measured output vector, d ∈ Rnd denotes the unknown inputs, and f ∈ Rnf is the fault to be
detected. {θk} is a discrete homogeneous Markov chain taking values in a finite state space
ψ = {1, 2, . . . ,N}with transition probability matrix Φ = [λij]i,j∈ψ , and λij is defined as

λij = Pr
{

θ(k + 1) = j | θ(k) = i} (2.2)
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which are subjected to the restriction λij ≥ 0,
∑N

j=1 λij = 1 for any i ∈ ψ. For notation, define
Θ(k) := {θ1, . . . , θk} as a sample of possible sequences of Markov states and P(k) as the vector
of state probabilities

P(k) =
[

p1(k) p2(k) · · · pN(k)
]T
,

pi(k) = Prob{θk = i}, i ∈ ψ.
(2.3)

In this paper we consider the Markov chain with the following assumption.

(A1) {θk} is homogeneous and λij > 0.

This assumption means that, in such a Markov chain, it is possible to get to any state from
any state.

2.1. Residual Generator Design

Residual generation is the first step of FD. We propose the following residual generator for
the system (2.1):

x̂(k + 1) = A(θk)x̂(k) + B(θk)u(k) + L(θk)
(

y(k) − ŷ(k)),
ŷ(k) = C(θk)x̂(k) +D(θk)u(k),

r(k) =W(θk)
(

y(k) − ŷ(k)),
(2.4)

where x̂(k) and ŷ(k) are the estimated state vector and output vector, respectively. r(k) is the
residual vector. The matrices L(θk) and W(θk) are to be designed. For the convenience, we
denote the matrices associated with θk = i ∈ ψ by

Ai = A(θk), Bi = B(θk), Ed,i = Ed(θk), Ef,i = Ef(θk) ,

Ci = C(θk), Di = D(θk), Fd,i = Fd(θk), Ff,i = Ff(θk),

Li = L(θk), Wi =W(θk).

(2.5)

With e(k) = x(k) − x̂(k), the residual dynamics of (2.4) can be written as

e(k + 1) = AL(θk)e(k) + Ed,L(θk)d(k) + Ef,L(θk)f(k),

r(k) =W(θk)
(

C(θk)e(k) + Fd(θk)d(k) + Ff(θk)f(k)
) (2.6)

with

AL(θk) = A(θk) − L(θk)C(θk),
Ed,L(θk) = Ed(θk) − L(θk)Fd(θk),
Ef,L(θk) = Ef(θk) − L(θk)Ff(θk).

(2.7)
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The objective of the design is to generate the residual signals which is robust to
unknown inputs and sensitive to faults. It is clear that (2.7) itself can be an MJLS instead of a
deterministic one. TheMarkov state θk is not known as a perquisite, while only its probability
is known. Hence we propose a reference residual model which achieves an optimal tradeoff
between system robustness and fault sensitivity, and then the residual generator is designed
to match the reference residual model. In this approach the matrices L(θk) andW(θk) in (2.4)
should be selected such that

min
L(θk),W(θk)

sup
f,d

‖rref − r‖E
∥
∥
∥

[
d
f

]∥
∥
∥
2

(2.8)

subject to

‖(rref − r) − E[rref − r]‖2E = E
∞∑

k=0

{

(r(k) − r(k))T (r(k) − r(k))
}

< α2, (2.9)

where α > 0 and rref denotes the residual vector of a reference residual model in the form of

eref(k + 1) = (Aref − LoCref)eref(k) + (Ed,ref − LoFd,ref)d(k) +
(

Ef,ref − LoFf,ref
)

f(k),

rref(k) =WoCreferef(k) +WoFd,refd(k) +WoFf,reff(k).
(2.10)

Here Lo andWo are chosen by applying the unified solution proposed in [6], such that

sup
f,d

‖rref‖2/‖d‖2
‖rref‖2/

∥
∥f

∥
∥
2

. (2.11)

Since r(k) is stochastic vector, usually the expectation, ‖rref−r‖E, is not enough to characterize
its behavior. Hence the constraint (2.9) is applied to ensure that the summation of variances
of each residual signal is boundedwith an expected value α2. In this approach the expectation
and variance of r(k) are both considered in the model matching problem for MJLS, such that
the stochastic r(k) could approach a deterministic rref(k).

Remark 2.1. A significant difference between the reference model for the purpose of FD
adopted here and the one in most of the literatures is that unknown inputs d(k) are
included in our model, such that an optimal tradeoff between system robustness against
unknown inputs and sensitivity to faults can be achieved. Simply reducing the influence
of d(k) or increasing the sensitivity to system faults f(k) does not automatically lead to an
optimal tradeoff between system robustness and fault sensitivity. For instance, with a residual
generator which decouples d(k) from r(k), some f(k) may also be decoupled from r(k) and
thus cannot be detected. Hence it is necessary to take unknown inputs into account in the
reference model.
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It is well known that

Φk −→ constant, P(k) −→ P(∞), when k −→ ∞, (2.12)

where P(∞) is a unique constant vector called the stationary state distribution of a Markov
chain with the assumption (A1), and P∞ can be computed according to

P∞ = ΦP∞. (2.13)

This means that as time goes by, the Markov chain forgets its initial condition and converges
to its stationary distribution. Hence it is reasonable to set the following matrices:

Aref =
N∑

i=1

Aipi(∞), Ed,ref =
N∑

i=1

Ed,ipi(∞),

Ef,ref =
N∑

i=1

Ef,ipi(∞), Cref =
N∑

i=1

Cipi(∞),

Fd,ref =
N∑

i=1

Fd,ipi(∞), Ff,ref =
N∑

i=1

Ff,ipi(∞)

(2.14)

so that the reference residual model describes the optimal stationary expected behavior of the
MJLS (2.7).

In fact, the MJLS (2.7) consists of two groups of system state: e(k) and θk. In the robust
control system design, the initial condition of system state is usually assumed to be zeros (so-
called zero initial condition). Comparably, we make three assumptions in MJLS for the rest
of the paper:

(A2) P(0) = P∞,

(A3) e(0) is deterministic and e(0) = 0,

(A4) θk is independent of e(0).

Assumption (A2) can be regarded as the “zeros” initial condition of θ0. It is worthy to
mention that, with assumption (A2), we have P(0) = P(1) = · · · = P∞. That means the state
probabilities is independent of time, that is, the Markov chain is in the stationary state. We
call MJLSs with assumption (2.4) as stationary MJLSs. For the FD purpose, we can generally
assume that the MJLS under consideration is operating in its stationary state before a fault
occurs. We denote pi(k) = pi for all k for later use.

The problem of residual generator design of a stationary MJLS is summarized as
follows.

Problem RGFD [Residual Generator for Fault Detection]

Consider system (2.1). Given the reference residual model (2.10), determine the matrices Li
andWi, i ∈ ψ of the residual generator in the form of (2.4) under assumption (A1)–(A4), such
that the residual dynamics described by (2.7) satisfy (2.8) and (2.9).
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2.2. Residual Evaluation Design

The second step in FD is the evaluation of residual signals, where r(k) is evaluated and
compared with a threshold. The following logic is applied to detect the occurrences of faults

‖r‖e ≤ Jth =⇒ fault-free,

‖r‖e > Jth =⇒ fault alarm,
(2.15)

where ‖r‖e denotes the evaluated residual signals and Jth denotes a threshold. The residual
evaluation problem of deterministic systems has been extensively studied. One important
evaluation strategy is the so-called norm-based residual evaluation [2]. Assume the dynamics
of a residual generator for some deterministic systems are governed by the following time
invariant system

e(k + 1) = Ae(k) + Edd(k) + Eff(k),

r(k) = Ce(k) + Fdd(k) + Fff(k),
(2.16)

where d(k) is unknown inputs, and f(k) the system faults. Then the residual evaluation
function is chosen as

‖r(k)‖e =
√
√
√
√

k∑

j=k−s+1
r(k)T r(k) (2.17)

with s being the length of the evaluation window. It is clear that the residual signals r(k)
are corrupted with d(k). Hence threshold is set to distinguish the faults from the unknown
inputs. As widely accepted in the literatures, the threshold is set as

Jth = γ‖d(k)‖2, γ > sup
d∈l2

‖r‖2
‖d‖2

, (2.18)

such that false fault alarms can be prevented and meanwhile missing detection of faults can
be reduced as much as possible.

The residual signals of MJLS are stochastic values. Their statistic properties are
associated with the Markov process, and they are determined by the dynamics of the system
(2.4). It is possible to compute γ such that

γ > sup
η∈l2

‖r(k)‖E
∥
∥η(k)

∥
∥
2

(2.19)

in a similar way as stated in [13] for deterministic systems and to set Jth = γ‖η(k)‖2 as
in many literatures. In this case only the expectation of the l2-norm of r(k) is considered
for the computation of Jth. Due to the variance of r(k), there could be false fault alarms
and the probability of those false alarms (also called false alarm rate (FAR)) is not known.
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Even a fault is detected, it is difficult to say with how large percentages the fault alarm is
correct. Therefore, we apply the residual evaluation approach proposed in [24]. Define a set
of residual evaluation functions as follows:

∥
∥rj(k)

∥
∥
e
= | rj(k) |, (2.20)

where j = 1, . . . , m and rj(k) is the jth measurement. That means the absolute value of each
residual signal is selected as the evaluation function. For the evaluation function (2.20), we
suggest the following threshold:

Jj,th = sup
k

(| rj(k) |
)

+ β sup
k

(

σj(r(k))
)

, (2.21)

where rj(k) is the absolute value of the expectation of rj(k) and

σ2
j (r(k)) = E

[
(

rj(k) − rj(k)
)T(

rj(k) − rj(k)
)
]

(2.22)

is its variance, where β > 0 is some constant.
The residual evaluation problem is summarized as follows.

Problem REFD [Residual Evaluation for Fault Detection]

Consider system (2.1). Given the residual generator (2.4) and assumptions (A1)–(A4),
determine the threshold Jj,th, j = 1, . . . , m for each residual signal, that is, supk(| rj(k) |),
supk(σj(r(k))) and β > 0, such that FAR is smaller than a given constant.

3. Main Results

3.1. Residual Generation

In this section the dynamics of r(k) − rref(k) are described at first. Then the existing bound-
ed real lemma (BRL) forMJLS is reviewed, and a new BRL is derived forMJLS under assump-
tion (A2). Based on those lemmas, the solution of RGFD is presented.

According to (2.4) and (2.10), the dynamics of r(k) − rref(k) can be written as

xo(k + 1) = Ao(θk)xo(k) + Eo(θk)d̃(k),

r(k) − rref(k) = Co(θk)xo(k) + Fo(θk)d̃(k),
(3.1)

where

xo =

[

e

eref

]

, d̃ =

[

d

f

]

, (3.2)
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and we denote the matrices associated with θk = i ∈ ψ by

Ao,i =

[

Ai − LiCi 0

0 Aref − LoCref

]

,

Co,i = [WiCi −WoCref],

Eo,i =

[

Ed,i − LiFd,i Ef,i − LiFf,i
Ed,ref − LoFd,ref Ef,ref − LoFf,ref

]

,

Fo,i =

⎡

⎣

(WiFd,i −WoFd,ref)T

(

WiFf,i −WoFd,ref
)T

⎤

⎦

T

.

(3.3)

Before giving the solution, we first introduce the following useful lemmas. The first
one is the standard BRL for MJLS given in [13].

Lemma 3.1. Consider the system

x(k + 1) = A(θk)x(k) + B(θk)d(k),

y(k) = C(θk)x(k) +D(θk)d(k),
(3.4)

for k = 0, 1, . . ., where x(k), y(k), A(θk), B(θk), C(θk), D(θk), and θk are defined as in (2.1),
d(k) ∈ Rm is the l2-norm bounded input sequence. Given a constant γ > 0, x(0) = 0 and any θ0 ∈ Ψ,
then

sup
f,d

E
∥
∥y

∥
∥
2

‖d‖2
< γ (3.5)

if there exist Qi > 0, i ∈ ψ satisfying the following LMIs:

[

Ai Bi

Ci Di

]T[
Qi 0

0 I

][

Ai Bi

Ci Di

]

−
[

Qi 0

0 γ2I

]

< 0, (3.6)

where

Qi =
N∑

j=1

λijQj . (3.7)

Proof. Here we give a short proof which is slightly different from the one in [13]. Define the
function

V (i, k) = x(k)TQix(k). (3.8)
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Given x(0) = 0, V (θ0, 0) = 0 for any initial mode θ0 ∈ Ψ, we have

∞∑

k=0

E[V (θk+1, k + 1) − V (θk, k)] = E[(θ∞,∞)]. (3.9)

Then,

E
[

‖r(k)‖2
]

− γ2‖d(k)‖2

≤ E
∞∑

k=0

r(k)T r(k) − γ2d(k)Td(k) + V (θk+1, k + 1) − V (θk, k)

=
∞∑

k=0

E

⎡

⎣

[

e(k)

d(k)

]T

R(θk)

[

e(k)

d(k)

]
⎤

⎦,

(3.10)

where

R(θk) =

[

A(θk) B(θk)

C(θk) D(θk)

]T[
E
[

Qθ(k+1)
]

0

0 I

]

×
[

A(θk) B(θk)

C(θk) D(θk)

]

−
[

E[Qθk] 0

0 γ2I

]

.
(3.11)

With R(θk) < 0, for any θ(0) ∈ Ψ and d(k) ∈ l2, we have Ee(0),θ(0)‖y‖2 < γ‖d‖2.
Recall thatΘ(k) is any possible sequences of Markov state. By taking expectation over

Θ(k), we can obtain (3.6)which implies R(θk) < 0 for each k. Thus the lemma is proved.

Remark 3.2. Lemma 3.1 assumed that θ0 is deterministic. However, it can also be used when
there is no assumption made on θ0 as shown in the proof.

The second lemma gives an equivalent expression of (3.6).

Lemma 3.3. Consider the system (3.4). Given a constant γ > 0, x(0) = 0 and any θ(0) ∈ ψ, then
(3.6) withQi > 0, i ∈ ψ are feasible, if and only if there exist matricesQi > 0 and Gi > 0 such that the
following LMIs

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Pi −
(

Gi +GT
i

)

GT
i Ai G

T
i Bi 0

∗ −Pi 0 CT
i

∗ ∗ −γ2I DT
i

∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3.12)

hold for i ∈ ψ.

By observing that θk is independent of θk−1 under assumption (A2), we can obtain the
following bounded real lemma.
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Lemma 3.4. Consider the system (3.4), where x(k), y(k), A(θk), B(θk), C(θk), D(θk), and θk are
defined as in (2.1), d(k) ∈ Rm is the l2-norm bounded input sequence. Given a constant γ > 0,
x(0) = 0 and under assumption (A2), then (3.5) is satisfied, if there exist S > 0 satisfying the
following LMIs:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
p1
S SA1 SB1

− 1
p1
I C1 D1

. . .
...

...

− 1
pN

S SAN SBN

− 1
pN

I CN DN

∗ ∗ ∗ ∗ ∗ −S 0

∗ ∗ ∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (3.13)

Proof. Under the assumption (A2), the expectation terms in (3.10) are

E
[

Qθ(k+1)
]

= E
[

Qθ(k+1)
]

=
N∑

i=1

piQi. (3.14)

Hence R(θk) in (3.10) can be rewritten as

R =
N∑

i=1

pi

[

Ai Bi

Ci Di

]T[
S 0

0 I

][

Ai Bi

Ci Di

]

−
[

S 0

0 γ2I

]

(3.15)

with S =
∑N

i=1 piQi, i ∈ ψ.
If R < 0, then for any θ0 ∈ Ψ and d(k) ∈ l2, we have E‖y‖2 < γ‖d‖2. Applying

Shur complement and congruence transformation with diag{S, I, . . . , S, I, I, I}, R < 0 can be
formulated as (3.13).

Remark 3.5. When the number of modes of {θk} is 1, Lemmas 3.1 and 3.4 reduce to the
standard bounded real lemma for deterministic systems [25]. It is clear that inequality (3.6)
in Lemma 3.1 implies (3.13). But Lemma 3.4 not only requires less computational efforts, but
also provides less conservative results as shown in the following example.
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Example 3.6. Given ψ = {1, 2}, λ11 = λ21 = 0.2, λ12 = λ22 = 0.8 and

A1 =

[

0.2 1

0 0.1

]

, A2 =

[

0.8 1

0 0.5

]

,

B1 =

[

1 0

0 1

]

, B2 =

[

0.5 0

0 0.1

]

,

C1 = C2 =

[

1 0

0 1

]

, D1 = D2 =

[

0 0

0 0

]

,

(3.16)

we have p1(∞) = 0.2, p2(∞) = 0.8 and minQi>0γ
2 = 12.88 according to Lemma 3.1, and

minS>0γ2 = 6.17 according to Lemma 3.4.

The fourth lemma is given to compute the bound of variances for a stationary MJLS.

Lemma 3.7. Consider the system (3.4), where x(k), y(k), A(θk), B(θk), C(θk), D(θk), and θk are
defined as in (2.1), d(k) ∈ Rm is the l2-norm bounded input sequence. Given a constant γ > 0,
x(0) = 0, γ > 0 and under assumption (A2), then

∞∑

j=0

E
{
(

y
(

j
) − y(j))T(y(j) − y(j))

}

< α2‖d(k)‖22 (3.17)

if there exist S > 0 satisfying the following LMI:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
p1
S SAσ,1 SBσ,1

− 1
p1
I Cσ,1 Dσ,1

. . .
...

...

− 1
pN

S SAσ,N SBσ,N

− 1
pN

I Cσ,N Dσ,N

∗ ∗ ∗ ∗ ∗ −S 0

∗ ∗ ∗ ∗ ∗ −α2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3.18)

with

Aσ,i =

⎡

⎢
⎢
⎣

Ai 0

0
N∑

i=1

piAi

⎤

⎥
⎥
⎦
, Bσ,i =

⎡

⎢
⎢
⎣

Bi

N∑

i=1

piBi

⎤

⎥
⎥
⎦
,

Cσ,i =

[

Ci

N∑

i=1

piCi

]

, Dσ,i = D(θk) −
N∑

i=1

piDi.

(3.19)
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Proof. The expected behavior of (3.4) under assumption (A2) is described by

x(k + 1) =

(
N∑

i=1

piAi

)

x(k) +

(
N∑

i=1

piBi

)

d(k),

y(k) =

(
N∑

i=1

piCi

)

x(k) +

(
N∑

i=1

piDi

)

d(k).

(3.20)

Then the dynamics of r(k) − r(k) can be written as

[

x(k + 1)

x(k + 1)

]

= Aσ(θk)

[

x(k)

x(k)

]

+ Bσ(θk)d(k),

y(k) − y(k) = Cσ(θk)

[

x(k)

x(k)

]

+Dσ(θk)d(k).

(3.21)

Following the similar procedure in Lemma 3.4, the result can be obtained.

Now we are in the position to give the theorem for the solving RGFD.

Theorem 3.8. Given the system (2.1), a constant α and under assumptions (A1)–(A4), the optimal
L(θk) andW(θk) in the residual generator (2.4) in the sense of minimizing (2.8) and satisfying (2.9)
can be obtained by solving the following optimization problem

min
Yi,Wi,S1>0,S2>0

γ2 (3.22)

subject to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

. . .
...

...

Πii Πi4 Πi5

. . .
...

...

∗ ∗ ∗ ΠN+1,N+1 0

∗ ∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 ,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

. . .
...

...

Πii Γi4 Γi5

. . .
...

...

∗ ∗ ∗ ΠN+1,N+1 0

∗ ∗ ∗ ∗ −α2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(3.23)
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where

Πii =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
pi
S1 0 0

0 − 1
pi
S2 0

0 0 − 1
pi
I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Πi4 =

⎡

⎢
⎢
⎣

S1Ai − YiCi 0

0 S2
(

Aref − LoCref
)

WiCi −WoCref

⎤

⎥
⎥
⎦
,

Πi5 =

⎡

⎢
⎢
⎣

S1Ed,i − YiFd,i S1Ef,i − YiFf,i
S2
(

Ed,ref − LoFd,ref
)

S2
(

Ef,ref − LoFf,ref
)

WiFd,i −WoFd,ref WiFf,i −WoFf,ref

⎤

⎥
⎥
⎦
,

(3.24)

Γii =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
pi
S1 0 0

0 − 1
pi
S1 0

0 0 − 1
pi
I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Γi4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1Ai − YiCi 0

0 S1

N∑

j=1

pjAj −
N∑

j=1

pjYjCj

WiCi −
N∑

j=1

pjWjCj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Γi5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1Ed,i − YiFd,i S1Ef,i − YiFf,i
N∑

j=1

pj
(

S1Ed,j − YjFd,j
)

N∑

j=1

pj
(

S1Ef,j − YiFf,j
)

WiFd,i −
N∑

j=1

pjWjFd,j WiFf,i −
N∑

j=1

pjWjFf,j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.25)

for i ∈ ψ and

ΠN+1,N+1 =

[−S1 0

0 −S2

]

,

ΓN+1,N+1 =

[−S1 0

0 −S1

]

.

(3.26)

The optimal Li is then given by S−1
1 Yi.
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Proof. With Lemmas 3.4 and 3.7, the proof is straightforward, and thus omitted.

3.2. Residual Evaluation

In this section, the solution of REFD is given. The bounds of the expectation and variance of
(2.20) are firstly computed by using the peak-norm and l2-norm of unknown inputs. Then
the threshold is determined, and the upper bound of the guaranteed FAR is obtained.

The following lemma gives the computation of | rj(k) | in terms of norm.

Lemma 3.9. Given system (2.7), a constant γj,1 > 0 and assumption (A1)–(A4), then

∣
∣rj(k)

∣
∣ < γj,1‖d(k)‖peak (3.27)

if there exist S > 0, μ > 0 and 0 < κ < 1 satisfying the following LMIs:

⎡

⎢
⎢
⎢
⎢
⎣

−S S
N∑

i=1

pi(Ai − LiCi) S
N∑

i=1

pi(Ed,i − LiFd,i)
∗ (κ − 1)S 0

∗ ∗ −μI

⎤

⎥
⎥
⎥
⎥
⎦

< 0, (3.28)

⎡

⎢
⎢
⎢
⎢
⎣

−γj,1
N∑

i=1

pi[WiCi]j
N∑

i=1

pi[WiFd,i]j

∗ −κS 0

∗ ∗ (

μ − γj,1
)

I

⎤

⎥
⎥
⎥
⎥
⎦

< 0. (3.29)

Proof. The expected behavior of (2.7) is just described by

e(k + 1) = Ae(k) + Ed(k),

r(k) = Ce(k) + Fd(k)
(3.30)

with

A =
N∑

i=1

pi(Ai − LiCi), E =
N∑

i=1

pi(Ed,i − LiFd,i),

C =
N∑

i=1

piWiCi, F =
N∑

i=1

piWiFd,i.

(3.31)

The expected residual dynamics are governed by (3.30), which is time invariant system. The
results can be easily obtained following the idea in [25]. Thus the rest of the proof is omitted.

The variance of rj(k) can be computed in terms of peak-norm using the following
lemma.
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Lemma 3.10. Given system (2.7), a constant γj,2, and assumption (A1)–(A4), then

σj(k) < γj,2‖d(k)‖peak (3.32)

if there exist S > 0, i ∈ ψ satisfying the following LMIs:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
p1
S SAσ,1 SEd,σ,1

. . .
...

...

− 1
pN

S SAσ,N SEd,σ,N

∗ ∗ ∗ (κ − 1)S 0

∗ ∗ ∗ ∗ −μI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.33)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−γj,2
p1

[Cσ,1]j [Dσ,1]j
. . .

...
...

−γj,2
pN

I [Cσ,N]j [Cσ,N]j

∗ ∗ ∗ −κS 0

∗ ∗ ∗ ∗ (

μ − γj,2
)

I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3.34)

with

Aσ,i =

⎡

⎢
⎢
⎣

AL,i 0

0
N∑

l=1

AL,l

⎤

⎥
⎥
⎦
, Eσ,i =

⎡

⎢
⎢
⎣

Ed,L,i

−
N∑

l=1

Ed,L,l

⎤

⎥
⎥
⎦
,

Cσ,i =

[

WiCi −
N∑

l=1

WlCl

]

, Dσ,i =WiFd,i −
N∑

l=1

WlFd,l.

(3.35)

Proof. From (2.7) and (3.30), we have

[

e(k + 1)

e(k + 1)

]

= Aσ(θk)

[

e(k)

e(k)

]

+ Eσ(θk)d(k),

rj(k) − rj(k) = Cσ(θk)

[

e(k)

e(k)

]

+Dσ(θk)d(k).

(3.36)

Define

χ(k) =

[

e(k)

e(k)

]

, V
(

χ, i
)

= χTQiχ (3.37)
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for some Qi > 0 and assume that

E
[

V
(

χ(k), θk
)]

<
μθk
κ

(3.38)

for 0 < κ < 1 and μθk > 0. Note that E[V (χ(k), θk)] satisfying

E
[

V
(

χ(k + 1), θk+1
) − (κ − 1)V

(

χ(k), θk
)]

< μθk , (3.39)

V
(

χ(0), θ0
)

= 0 (3.40)

is bounded by (3.38). By denoting θk = i, the inequality

E

⎡

⎣

[

χ(k)

d(k)

]T

R1

[

χ(k)

d(k)

]
⎤

⎦ < 0 (3.41)

with

R1 =
N∑

i=1

pi

[

AT
σ,i

ETσ,i

]

S

[

AT
σ,i

ETσ,i

]T

−
[

(1 − κ)S 0

0 μI

]

, (3.42)

S =
N∑

i=1

piQi, μ =
N∑

i=1

piμi, (3.43)

ensures (3.39) and thus (3.38). Noticing that

σj(k)
2 =

[

χ(k + 1)

d(k + 1)

]T

R2

[

χ(k + 1)

d(k + 1)

]

(3.44)

with

R2 =
N∑

l=1

pl

⎡

⎣

[Cσ]Tj

[Dσ]Tj

⎤

⎦

[

[Cσ]j [Dσ]j
]

, (3.45)

and E[V (χ(k), θk)] = χ(k)
TSχ(k), then the inequality

γ−1j,1R2 <

[

κS 0

0
(

γj,2 − μ
)

I

]

(3.46)
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can be obtained which implies

σj(k)
2 < γj,2

(

γj,2d(k)
Td(k) + κE

[

V
(

χ(k + 1), θk+1
)] − μ

)

< γ2j,2‖d(k)‖2peak.
(3.47)

Applying Shur complement and congruence transformation, (3.41) and (3.46) can be
reformulated as (3.33) and (3.34), respectively.

We propose also methods to compute the expectation and variance of r(k) based on
l2-norm. The following lemma gives the computation of |rj(k)|.

Lemma 3.11. Given system (2.7), γj,1 > 0, γj,2 > 0 and under assumption (A1)–(A4), then

∣
∣rj(k)

∣
∣ <

√
√
√
√γ2j,1

k−1∑

i=0

d(i)Td(i) +
√

γ2j,2d(k)
Td(k) (3.48)

if there exist S > 0, i ∈ ψ satisfying the following LMIs:

⎡

⎢
⎢
⎢
⎢
⎣

−S S
N∑

i=1

pi(Ai − LiCi) S
N∑

i=1

pi(Ed,i − LiFd,i)
∗ −S 0

∗ ∗ −γ2j,1I

⎤

⎥
⎥
⎥
⎥
⎦

< 0, (3.49)

⎡

⎢
⎣

−I
N∑

i=1

pi[WiCi]j

∗ −S

⎤

⎥
⎦ < 0, (3.50)

⎡

⎢
⎣

−I
N∑

i=1

pi[WiFd,i]j

∗ −γ2j,2I

⎤

⎥
⎦ < 0. (3.51)

Proof. The proof is similar with Lemma 3.9.

The computation of σj(k) based on l2-norm is given in the following lemma.

Lemma 3.12. Given system (2.7), γj,3 > 0, γj,4 > 0 and assumption (A1)–(A4), then

σj(k) <

√
√
√
√γ2j,3

k−1∑

i=0

d(i)Td(i) +
√

γ2j,3d(k)
Td(k) (3.52)
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if there exist S > 0, i ∈ ψ satisfying the following LMIs:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
p1
S Aσ,1 Ed,σ,1

. . .
...

...

− 1
pN

S Aσ,N Ed,σ,N

∗ ∗ ∗ −S 0

∗ ∗ ∗ ∗ −γ2j,3I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.53)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
p1

[Cσ,1]j
. . .

...

− 1
pN

I [Cσ,N]j

∗ ∗ ∗ −S

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.54)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
p1

[Cσ,1]j
. . .

...

− 1
pN

I [Cσ,N]j

∗ ∗ ∗ −γ2j,4I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3.55)

with Aσ,i,Ed,σ,i,Cσ,i,Dσ,i defined in (3.35).

Proof. The dynamics of rj(k) − rj(k)are governed by (3.36). Define

χ(k) =

[

e(k)

e(k)

]

, V
(

χ
)

= χTQiχ (3.56)

for some Qi > 0, i ∈ ψ. Consider that

E
[

V
(

χ(k + 1), θk+1
) − V (χ(k), θk

)]

< γ2j,3d(k)
Td(k) (3.57)

implies

EV
(

χ(k), θk
)

= EχT
N∑

i=1

piQiχ < γ
2
j,1

k∑

i=0

d(i)Td(i). (3.58)
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By denoting θk = i, the inequality (3.57) is equivalent with

E

⎡

⎣

[

e(k)

d(k)

]T

R

[

e(k)

d(k)

]
⎤

⎦ < 0 (3.59)

with

R =
N∑

i=1

pi

[

AT
σ,i

ETσ,i

]

S

[

AT
σ,i

ETσ,i

]T

−
[
S 0

0 γ2j,3I

]

,

S =
N∑

i=1
piQi.

(3.60)

Then (3.52) is guaranteed, if

N∑

i=1

pi[Cσ,i]Tj [Cσ,i]j < S, (3.61)

N∑

i=1

pi[Cσ,i]Tj [Cσ,i]j < γ
2
j,4I. (3.62)

Applying Shur complement and congruence transformation, (3.59)–(3.62) can be reformu-
lated as (3.53)–(3.55), respectively.

Based on above results, the following theorem gives the solution of REFD.

Theorem 3.13. Given system (2.7), a constant β, assumption (A1)–(A4),

(i) and ‖d‖peak < δd,∞, then the threshold can be set as

Jj,th =
(

γ̌j,1 + βγ̌j,2
)

δd,∞, (3.63)

where γ̌j,1, γ̌j,2 are the optimum of the constrained optimization problem

min γj,1 subject to (3.28)-(3.29),

min γj,2 subject to (3.33)-(3.34);
(3.64)

(ii) ‖d‖2 < δd,2, ‖d‖peak < δd,∞, then the threshold can be set as

Jj,th =
(

γ̌j,1 + βγ̌j,3
)

δd,2 +
(

γ̌j,2 + βγ̌j,4
)

δd,∞, (3.65)
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where γ̌j,1, γ̌j,2, γ̌j,3 and γ̌j,4 are the optimum of the constrained optimization problem:

min γj,1, γj,2 subject to (3.49)–(3.51),

min γj,3, γj,4 subject to (3.53)–(3.55).
(3.66)

The false alarm rate is upper bounded as

FAR ≤ 1
β2
. (3.67)

Proof. The theorem can be proved in a similar way as in [24].

Now we have the threshold for each residual signal. The fault can be detected if one
evaluated residual exceeds its threshold, for example,

∣
∣rj(k)

∣
∣ ≤ Jj,th =⇒ fault-free,

∣
∣rj(k)

∣
∣ > Jj,th =⇒ fault.

(3.68)

A false alarm occurs when there is no fault but |rj(k)| > Jj,th. Its probability is upper bounded
by (3.67).

Remark 3.14. If the number of Markov state is 1, then the computed σ2
j (r(k))will be zero. The

proposed approach reduced to the standard norm-based residual evaluation methods [2].

Remark 3.15. The evaluated residual |rj(k)| is a stochastic variable. By using the expectation
and variance of |rj(k)| for the computation of the threshold, an upper bound of FAR is
obtained. Such a bound is very useful in practice, as it can provide confidential information
for a rising fault alarm. Without considering the variance in the residual evaluation, the FAR
can be very high and no bounds of FAR can be established. Since there is unknown inputs in
the system, we can only derive the upper bounds of the expectation and variance. Its higher
order moments are difficult to obtain, which is lack of physical means.

4. Discussion on FD of Nonstationary MJLS

Without the assumption (A2), the MJLS could be in nonstationary state, that is, P(k)/= p(∞).
In this case the expectation of r(k) is difficult to obtain, and (2.9) cannot be established.
Furthermore, the residual evaluation approach presented in last section cannot be applied.
Hence we propose also an FD system for nonstationary MJLS. Firstly, the residual generator
is designed to satisfy (2.8), and the solution is given in the following theorem.

Theorem 4.1. Given the system (2.1) under assumptions (A1), (A3)–(A4), the optimals L(θk) and
W(θk) in the residual generator (2.4) in the sense of minimizing (2.8) can be obtained by solving the
following optimization problem for all i ∈ ψ:

min
Yi,Wi,Qi>0

γ2 (4.1)
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subject to

[

Npq

]

7 × 7< 0, (4.2)

where the nonzero elements ofNpq are

N11 = Qi11 −Gi11 −GT
i11,N12 = Qi12,N13 = GT

i11Ai − YiCi,

N15 = GT
i11Ed,i − YiFd,i,N16 = GT

i11Ef,i − YiFf,i,

N22 = Qi22 −Gi22 −GT
i22,N24 = GT

i22

(

Aref − LoptCref
)

,

N25 = GT
i22
(

Ed,ref − LoptFd,ref
)

,

N26 = GT
i22

(

Ef,ref − LoptFf,ref
)

,

N33 = −Qi11,N34 = −Qi12,N37 = CT
i W

T
i ,

N44 = −Qi22,N47 = CT
refW

T
opt,

N55 = −γ2In×n,N57 = FTd,iW
T
i − FTd,refWT

opt,

N66 = −γ2In×n,N67 = FTf,iW
T
i − FTf,refWT

opt,

N77 = −In×n.

(4.3)

where

Qi =

[

Qi11 Qi12

QT
i12 Qi22

]

> 0, Qi =

⎡

⎣

Qi11 Qi12

Q
T

i12 Qi22

⎤

⎦ > 0, (4.4)

Qi =
N∑

j=1

λijPj , Gi =

[

Gi11 0

0 Gi22

]

. (4.5)

The optimal Li is then given by G−1
i11Yi.

Proof. By applying Lemmas 3.1 and 3.3 and setting Yi = GT
i11Li, the LMI (4.2) can be easily

obtained for system (3.1). Notice that

Qi11 −Gi11 −GT
i11 > 0 (4.6)

implies that Gi11 is nonsingular. Therefore, the feasibility of (4.2) always ensure the existence
of optimal Li andWi.

Then (2.17) is selected as the evaluation functions, and the threshold is suggested as

Jth = β2sup
d∈l2

‖r(k)‖E, β > 0, (4.7)
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where supd∈l2‖r(k)‖E can be easily obtained by applying Lemma 3.1. According to Markov
inequality [26], we have

Prob
{

‖r(k)‖22 ≥ ε2
}

≤ ‖r(k)‖2E
ε2

, ε > 0 (4.8)

which yields

Prob

{

‖r(k)‖e ≥ β sup
d∈l2

‖r(k)‖E
}

≤ ‖r(k)‖2E
β2 supd∈l2‖r(k)‖

2
E

≤ 1
β2
. (4.9)

Hence the FAR is bounded by 1/β2 with the threshold (4.7). The result is summarized as the
following theorem.

Theorem 4.2. Given the system (2.1) under assumptions (A1), (A3)–(A4), and the evaluation
function (2.17), the threshold can be set as (4.7), and then the FAR is upper bounded by 1/β2.

Remark 4.3. The evaluation method suggested in Theorem 4.2 can also be used for the MJLS
in stationary state. The variance of ‖r(k)‖E, which is difficult to obtain, is not involved in the
computation of the threshold. When the variance of is very small, this evaluation method can
be fairly conservative.

5. Numerical Example

To illustrate the proposed method, the following two-mode discrete-timeMJLS is considered:

A1 =

[

0.4 0.1

0 0.1

]

, A2 =

[−0.1 0.3

0 0.6

]

,

Ed,1 = Ed,2 =

[

0.2 0

0.2 0

]

, Ef,1 = Ef,2 =

[

0.1

0.1

]

,

B1 = B2 = 0, C1 = C2 =

[

1 0

0 1

]

, Ff,1 = Ff,2 = 0,

Fd,1 =

[

0 0.1

0 0.1

]

, Fd,2 =

[

0 0.7

0 0.7

]

.

(5.1)

The transition probability matrix is given by

Φ =

[

0.4 0.6

0.5 0.5

]

(5.2)
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Table 1: Peak-norm-based residual evaluation.

γj,1 γj,2 Jth,2 Figure

Lemmas 3.9 and 3.10 0.200 0.087 0.50 Figure 1

Table 2: l2-norm-based residual evaluation.

γj,1 γj,2 γj,3 γj,4 Jth,2 Figure

Lemmas 3.11 and 3.12 0.2991 0.1095 0.1207 0.0565 0.4 Figure 2

then

P∞ =
[

0.4545 0.5455
]T
. (5.3)

Its reference residual model has

Aref =

[

0.10 0.22

0 0.40

]

, Fd,ref =

[

0 0.4600

0 0.4600

]

,

Ed,ref = Ed, Ef,ref = Ff , Cref = C, Ff,ref = Ff

Lopt =

[−1.2456 1.2965

−1.6820 1.7456

]

,

Wopt =

[ −0.9864 −0.9902
−68.8699 68.6097

]

.

(5.4)

By Theorem 3.8, we have the following:

L1 =

[

0.566 0.215

0.235 0.263

]

, L2 =

[−0.111 0.300

−0.157 0.487

]

,

W1 =

[−0.654 −0.545
−0.223 −0.179

]

, W2 =

[−0.701 −0.574
−0.115 −0.106

]

.

(5.5)

During the simulation, assume that the unknown inputs are discrete-time random noises
with power 0.5, the fault appears at the 500th discrete time as a step function of amplitude
15. The residual signals are evaluated as in (2.20) and the thresholds are computed based
on peak-norm and l2-norm as in (2.20). We take the second residual signal of the system
as an example. The thresholds are computed according to Theorem 4.1 with β = 3, that is,
FAR < 11.1%. The results are shown in Tables 1 and 2, respectively. The simulation results
are given in the corresponding figures, where Je is the threshold calculated only based on
the expectation of residual signals. Figures show that many false alarms arise in the first 500
time steps with Je, and the number of false alarms is significantly reduced by considering the
variances in the threshold computation. The fault is detected by all four thresholds.
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Figure 1: FD of MJLS: r2(k) and σ2(k) based on peak-norm.
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Figure 2: FD of MJLS: r2(k) and σ2(k) based on l2-norm.

6. Conclusion

In this paper a complete design approach of FD system for stationary and nonstationaryMJLS
was proposed. The main focus was how to deal with the stochastic properties of MJLS. First
the residual generator was designed to stochastically match an optimal reference residual
model in order to achieve the best tradeoff between robustness against system unknown



26 Mathematical Problems in Engineering

inputs and sensitivity to faults, where the reference residual model was selected based on
the stationary expected behavior of the MJLS. Then novel residual evaluation methods based
on peak-norm and l2-norm were presented for MJLS, which can guarantee an expected FAR
and meanwhile reduce missing detection of faults. In those evaluation methods, not only the
expectation of evaluated residuals but also their variances were taken into account for the
computation of thresholds. The proposed FD system can provide confidential information of
occurring faults, which allows a practical application in real physical systems.
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