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We present the dynamic model of global coupled neuronal population subject to external stimulus by the use of phase sensitivity
function. We investigate the effect of time-varying coupling strength on the synchronized phase response of neural population
subjected to external harmonic stimulus. For a time-periodic coupling strength, we found that the stimuluswith increasing intensity
or frequency can reinforce the phase response synchronization in neuronal population of the weakly coupled neural oscillators,
and the neuronal population with stronger coupling strength has good adaptability to stimulus. When we consider the dynamics
of coupling strength, we found that a strong stimulus can quickly cause the synchronization in the neuronal population, the degree
of synchronization grows with the increasing stimulus intensity, and the period of synchronized oscillation induced by external
stimulation is related to stimulus frequency.

1. Introduction

A nervous system’s response to external stimulus can provide
crucial information about its dynamical properties. The
quantitative description of neuronal response to external
stimulus has attracted great attention. The phase sensitivity
function can quantitatively illuminate how an external stimu-
lus affects the timing of spikes immediately after the stimulus
in repetitively firing neurons, and it is also an important
and effective method to study the dynamic behavior of
synchronous activity in nervous system [1–5]. Moreover,
neuronal synchronization plays a very important role in
visual cortex [6], memory [7], and epilepsy [8]. It is known
that neurons are coupled to each other via synapses and
form neuronal networks. The synchronization of coupling
neurons is the result of collective activity between neurons,
which is considered as an essential mechanism to processing
information in the neuronal population. To understand
synchronized oscillation in the neuronal population, neurons
can bemodeled as neuronal oscillators.TheKuramotomodel
of coupled phase oscillators would provide a basis to mod-
eling such synchronized oscillation [9–11]. In most studies,

the Kuramoto models describe oscillators of fixed natural
frequencies, fixed coupling strength. However, experimental
studies have shown that synapses are plastic, that is, the cou-
pling strengths among neurons can vary with time so that the
neurons can instantly adjust their firing behavior and achieve
new synchronization. Many complex behaviors induced by
coupling types or coupling strengths have been found [12–
16]. Moreover, rhythmic events are common in our sensory
world; the biological rhythms constitute a natural forcing
for neuronal oscillators. Hasselmo et al. have suggested
that synaptic strengths onto pyramidal neurons from hip-
pocampal region CA3 vary periodically with the theta cycle
rhythm [17]. This intrinsic dynamics causes an additional
periodic forcing [18]. Bı̂rzu and Krischer have investigated
the dynamics of a population of globally coupled FitzHugh-
Nagumo oscillators with a time-periodic coupling strength
and have observed rich oscillatory and resonant behavior
[19].Themultiple coherence resonances induced by the time-
periodic coupling strength have been observed in scale-free
networks of bursting neurons [20]. The brain permanently
receives natural sensory stimulation, whereas experimental
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electrical or magnetic stimulation of the nervous system is
used for analyzing the dynamical interaction of different
brain areas.Therefore, it is of great importance to understand
how a stimulus influences synchronized neuronal activity.
The effects of periodic stimuli on rhythmic biological activity
were experimentally studied in a variety of physiological
paradigms. Mathewson et al. have reported that rhythmic
visual stimuli can entrain ongoing neural oscillations in
humans [21].Will and Berg have found that periodic auditory
stimulation can produce brainwave synchronizations that are
likely to affect various cognitive functions [22]. In present
paper, we investigate the effect of time-periodic coupling
strength on the synchronized behaviors of neuronal popula-
tion subjected to external harmonic stimulus by the use of
phase sensitivity function.

The stimulation paradigm leads to a persistent increase
of the synaptic transmission efficacy; the effect is called long-
term potentiation of synapses. Long-term potentiation (LTP)
is an important form of the synaptic plasticity [23] and
is an important mechanism to learning and memory. LTP
affects the transmission of information and coupling strength
between neurons in the presence of stimulus, thus affecting
the efficiency of synaptic learning. In this paper, based on
phase response model of population of coupled neuronal
oscillators, we consider the dynamics of the coupling strength
in order to explore the effect of external stimulus on synchro-
nized oscillation in neuronal population.

2. Model Equations

Neuronal synchronization in the brain has often been inves-
tigated by Kuramoto model [9–11]
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Reference [9] describes how synchrony occurs when𝐾 is
above a critical value.
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between the 𝑖th and 𝑗th neuronal oscillators.
We consider a population of𝑁 globally coupled neuronal

oscillators subject to harmonic stimulus; the dynamical
equations is as follows:
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(2)

where 𝐹(𝑡) is an external harmonic stimulus; sin 𝜃
𝑖
is a phase

sensitivity function.
In order to study the synchronized behavior of neuronal

population, we introduce time-varying order parameter as
[9]
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where 𝑟(𝑡) and 𝜙(𝑡)measure time-varying average amplitude
and phase, respectively, 𝑟(𝑡) describes synchronization degree
of neuronal population, 0 ≤ 𝑟(𝑡) ≤ 1, and the higher 𝑟(𝑡)
indicates the stronger synchronization.

Substituting (3) into (2), it yields
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𝑓(𝑤, 𝜃, 𝑡) is continuous distribution function of phase 𝜃

with natural frequency 𝑤, that is, a probability distribution
function (PDF) with phase 𝜃 at time 𝑡; ∗ represents the
complex conjugate. Therefore, the arithmetic mean value of
(3) becomes the average of the phase and frequency; namely,
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In the dynamic systems, 𝑓(𝜃, 𝑤, 𝑡) is 2𝜋-period function,
so it can be expanded as Fourier model. In general, in order
to simplify (6), we apply the Ott and Antonsen ansatz [24]:
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where c.c. denotes complex conjugate. Substituting (6) into
(4), we obtain an evolution equation about 𝛼:
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The order parameter in (5) can be written as
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𝛼(𝑤, 𝑡) in the complex plane is continuous, and natural
frequency 𝑤 in (10) follows a Lorentzian distribution 𝑔(𝑤),
which can be written as [25]
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Figure 1:The evolution of the amplitude of the order parameter with respect to time in time-periodic coupling strength. Parameters: 𝛾 = 0.5,
Ω = 0.8, 𝑤

0
= 1.5, 𝜀 = 0.8, and 𝑐 = 0.2; (a) 𝑘 = 0.05, and (b) 𝑘 = 2.5.
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3. Numerical Simulations

As the natural frequency of a neuronal oscillator subject to
a Lorentzian distribution, we investigate the effect of time-
varying coupling strength on the phase response synchro-
nization. Let 𝐹(𝑡) = 𝐼 sin(𝑐𝑡); here 𝐼 is stimulus intensity; 𝑐 is
stimulus frequency. We first consider time-periodic coupling
strength𝐾(𝑡) = 𝑘+𝜀 cos(Ω𝑡), where 𝜀 is the amplitude andΩ
is the frequency of the time-periodic coupling strength; 𝑘 is
the inherent coupling strength between neuronal oscillators.
When the coupling is weak (e.g., 𝑘 = 0.05), a stimulation
with small intensity can not cause significant synchronized
activity, but there is a periodic synchronization in the
neuronal population with strong stimulation; the stronger
stimulation leads to the higher degree of synchronization
(Figure 1(a)). When the coupling is strong (e.g., 𝑘 = 2.5),
an external stimulus always causes periodically synchronized
activity regardless of whether the stimulus intensity is weak
or strong (Figure 1(b)). To understand the dependence of the
synchronization in the neuronal population on the stimula-
tion frequency, we also compute the amplitude of the order
parameter in Figure 2. When the coupling is weak (e.g., 𝑘 =

0.05), there is no synchronization in the neuronal population
for low-frequency stimulation. However, when the stimula-
tion frequency increases, the neuronal population becomes
periodically synchronized oscillation, and the oscillatory

frequency is higher for the higher stimulation frequency
(Figure 2(a)). When the coupling is strong (e.g., 𝑘 = 2.5),
the variation of stimulus frequency has little influence on
synchronization behavior (Figure 2(b)). This shows that the
neuronal population with stronger coupling strength has
good adaptability to stimulus.

We also consider the dynamics of coupling strength ̇

𝐾 =

−𝜏𝐾+𝐷∑

𝑘
𝛿(𝑡−𝑡

𝑘
), 𝜏 is the attenuation constant of coupling

strength,𝐷∑

𝑘
𝛿(𝑡− 𝑡

𝑘
) is the spiking input, which modulates

synaptic coupling strength, and𝐷 is a constant parameter that
determines the amplitude of the postsynaptic response to an
incoming spiking.

The evolution of the amplitudes of the order parameter of
the neuronal population for different frequency stimulation
is shown in Figure 3. As the stimulation strength is moderate
(e.g., 𝐼 = 5), the low-frequency stimulation can cause long-
term complete phase synchronization in the neuronal popu-
lation. However, when the stimulation frequency increases,
the neuronal population has a quick response to a high-
frequency stimulus, and the synchronization becomes peri-
odic oscillation. The high-frequency stimulation can induce
high-frequency synchronized oscillation. This shows that
the frequency of synchronized oscillation depends on the
stimulation frequency.

Figure 4 illustrates the evolution of the order parameter
for different intensity stimulations. When the stimulation
frequency is low, there is no synchronized activity in the
neuronal population for a weak stimulation (Figure 4(a)).
However, when the stimulation intensity increases, the com-
plete synchronization in the neuronal population is observed,
and the stronger stimulation quickly causes phase synchro-
nization (Figure 4(a)). This means that the synchronized
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Figure 2:The evolution of the amplitude of the order parameter with respect to time in time-periodic coupling strength. Parameters: 𝛾 = 0.5,
Ω = 0.8, 𝑤

0
= 1.5, 𝜀 = 0.8, and 𝐼 = 1; (a) 𝑘 = 0.05, (b) 𝑘 = 2.5.
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Figure 3: The evolution of the amplitude of the order parameter
with respect to time in the presence of stimulation with different
frequency. Parameters: 𝐼 = 5, 𝛾 = 0.1, 𝑤

0
= 1.5, 𝜏 = 0.005, and

𝐷 = 0.001.

response time is related to the stimulation intensity in neu-
ronal population for a low stimulation frequency. For higher
frequency stimulation, a weak stimulation can only cause
low synchronized oscillation; as the stimulation intensity
increases, periodically synchronized oscillation occurs in the
neuronal population, and there is an explicit tendency that
the degree of synchronization increases when the stimulation

intensity increases. Moreover, there is no change of the fre-
quency of the synchronized oscillation when the stimulation
intensities are deferent (Figure 4(b)). This result shows that
the degree of synchronization can be used to encode the
information of the stimulation intensity for high-frequency
stimulation.

4. Conclusions

The synchronization of oscillatory neuronal activity is a
fundamental mechanism for combining related neuronal
information. The dynamic models of globally coupled phase
oscillators have been proposed for the study of neuronal syn-
chronization in the brain [10–14]. In the brain, the synaptic
coupling between neurons is plastic.The dynamics of globally
coupled neuronal oscillators with varying coupling strengths
have been investigated in recent years [15, 16, 18–20]. The
effect of external stimulation is often not considered in the
studies mentioned above. We suggested that the quantitative
description of neuronal response to external stimulation is
of great importance in understanding neuronal dynamics in
the presence of external stimulation. Therefore, the phase
sensitivity function is used to describe neuronal response.
The dynamic model of globally coupled neuronal population
with time-varying coupling strengths was developed by
introducing phase sensitivity function in the presence of
external stimulation.The synaptic strengths vary periodically
with the biological rhythms; we assumed that the coupling
strength is time-periodic. Numerical simulations have shown
that when the coupling is weak, the periodically synchro-
nized oscillation is induced by the external stimulation with
stronger intensity or higher stimulation frequency. When
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Figure 4: The evolution of the amplitude of the order parameter with respect to time in the presence of stimulation with different intensity.
Parameters: 𝛾 = 0.1, 𝑤

0
= 1.5, 𝜏 = 0.005, and 𝐷 = 0.001; (a) 𝑐 = 0.01, (b) 𝑐 = 0.1.

we considered long-term potentiation in the synaptic trans-
mission efficacy, the synaptic dynamics was introduced in
the model. We have found that the synchronized response
time is related to the stimulation intensity. Our results
suggest the stimulation intensity is relevant for the degree
of synchronization; the stimulation frequency is relevant for
the frequency of synchronized oscillation in the neuronal
population.
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