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We introduce a vision-based arm gesture recognition (AGR) system using Kinect. The AGR system learns the discrete Hidden
Markov Model (HMM), an effective probabilistic graph model for gesture recognition, from the dynamic pose of the arm joints
provided by theKinect API. BecauseKinect’s viewpoint and the subject’s arm length can substantially affect the estimated 3Dpose of
each joint, it is difficult to recognize gestures reliably with these features.The proposed system performs the feature transformation
that changes the 3D Cartesian coordinates of each joint into the 2D spherical angles of the corresponding arm part to obtain view-
invariant and more discriminative features. We confirmed high recognition performance of the proposed AGR system through
experiments with two different datasets.

1. Introduction

Gestures are a powerful human-to-human communication
modality and the expressiveness of gestures also allows for the
altering of perceptions in human-computer interaction [1].
Vision-based gesture recognition technology can be applied
to multiple fields including human-robot interaction [2],
computer game [3], sign language understanding for the
hearing-impaired [4], and other fields [5–7]. Kinect, recently
released byMicrosoft, provides not only RGB images but also
depth images at a low cost.Therefore, with the release of low-
cost 3D sensors like Kinect, the dynamic gesture recognition
technology has gained increased attention.

In this paper, we introduce a Kinect-based arm gesture
recognition (AGR) system design. The AGR system learns
the discrete Hidden Markov Model (HMM), an effective
probabilistic graphical model for gesture recognition, from
the dynamic pose of the arm joints provided by the Kinect
API. Because the variance of Kinect’s viewpoints and the
different length of the subject arms can significantly affect the
estimated 3D pose of each arm joint, it is difficult to recognize
gestures reliably with these features. In order to overcome
this problem and obtain view-invariant features, the AGR
system performs the feature transformation that changes the

3D Cartesian coordinates of each joint into the 2D spherical
angles of the corresponding arm part. For evaluating the
performance of the AGR system, we conduct experiments
with two different datasets and then introduce the results.

2. Related Works

Major approaches to vision-based gesture recognition
include support vector machine (SVM), Dynamic Time
Warping (DTW), and Hidden Markov Models (HMMs).
The work of [8] uses discrete HMMs to analyze spatial
and temporal patterns of 2D hand gestures. In this work, a
gesture is described as a spatial-temporal sequence of feature
vectors that consist of the direction of hand movement.
For each gesture, one HMM is built to learn the temporal
characteristics of gesture signals. Gesture spotting is the task
of locating the start point and the end point of a gesture
pattern. In this work, an additional HMM is built as a
threshold model for gesture spotting.

In the work of [9], a method is presented to recognize
3D human body gestures from sequences of depth images. It
uses 3Dmotion trailmodel (3D-MTM) to explicitly represent
the dynamics and statics of gestures in 3D space. And then,
the Histogram of Oriented Gradient (HOG) feature vector
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Figure 1: Overall process of arm gesture recognition.

is extracted from the 3D-MTM as the representation of a
gesture sequence. In this work, SVM is adopted to classify the
gestures.

Dynamic Time Warping (DTW) is a template matching
algorithm and is one of the techniques used in gesture
recognition. To recognize a gesture, DTW warps a time
sequence of joint positions to reference time sequences and
produces a similarity value. However, all body joints are
not equally important in computing the similarity of two
sequences. In the work of [10], a weighted DTW method is
proposed that weights joints by optimizing a discriminant
ratio.

Affinity propagation (AP) is a clustering algorithmwhich,
unlike all other clustering techniques, simultaneously con-
siders all data points as potential exemplars and recursively
transmits real-valued messages until a good set of exemplars
and clusters emerge. The work of [11] proposes a gesture
recognition system based on a single 3-axis accelerometer.
In order to improve the efficiency of DTW-based gesture
recognition, the system reduces the number of exemplars for
each gesture class by employingAP andDTWalgorithms (AP
+ DTW) in the training phase. As a result, the output of the
training phase is a finite set of exemplars, one for each class.

3. Arm Gesture Recognition System

3.1. System Overview. The arm gesture recognition system
proposed herein admits the input stream of 3D position
coordinates of the arm joints from depth images of Kinect
when a user makes one of the predefined dynamic gestures
with his arms in front of Kinect. And then, using the learned
HMMs, the system determines what gesture is being made.

The overall process of the AGR system consists of three
steps: the preprocessing step, learning step, and recognition
step, as shown in Figure 1. The preprocessing step extracts

the feature vectors, which of each consists of the 3D position
coordinates of the arm joints including the shoulders, elbows,
and wrists, from Kinect’s depth images using Kinect API at
20 frames per second. The joint coordinate features are then
transformed into the joint angle features that are insensitive
to the length of the arms and Kinect’s view. Then, the
transformed high-dimensional real-number feature vectors
are replaced with the index number of the corresponding
cluster through 𝑘-means clustering. At the final stage of
preprocessing, the training or testing sequence data are
constructed for each gesture by collecting series of such index
numbers.

In the learning step, multiple training sequence data
are used to learn the HMM for each gesture. The HMM
used in our system is a discrete and left-right model that
allows state transition only from left to right and one of 𝑘
different observations for each state. The algorithm used for
learning each HMM is the Baum-Welch algorithm, an EM
(Expectation and Maximization) algorithm. Finally, in the
recognition step, the HMM for each gesture is applied to
the testing sequence data that are input in real-time through
Kinect to determine the maximum log likelihood gesture.

3.2. Preprocessing. Figure 2 shows the process of prepro-
cessing in the arm gesture recognition system. The Kinect
API from Microsoft presents the position of the arm joints
including two shoulders, elbows, and wrists of the subject
as 3D Cartesian coordinate vectors in the form of (𝑥, 𝑦, 𝑧)
from the depth images. For example, the 3D position of the
right shoulder joint 𝑗RS is given as a vector (𝑥RS, 𝑦RS, 𝑧RS).
As mentioned before, this 3D position of each arm joint in
Cartesian coordinate system, the origin of which (0, 0, 0) is
placed on the center of Kinect, is sensitive to the variance
of Kinect’s viewpoints and the different length of the subject
arms. For this reason, In this study, we perform the feature
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Figure 2: The preprocessing step.
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Figure 3: Pose vectors of four arm parts.

transformation that changes the 3D Cartesian coordinate
vectors representing the joint positions, 𝑗RS, 𝑗RE, 𝑗RW, 𝑗LS,
𝑗LE, and 𝑗LW, into the set of 2D spherical angle vectors (𝜃, 𝜑)
representing the directions of the corresponding arm parts.

First, we consider the four parts of both arms: the upper
and the lower part of the right arm and the upper and the
lower part of the left arm. Real-time pose vectors of these four
arm parts, VRS RE, VRE RW, VLS LE, and VLE LW, are derived from
3D position vectors of six arm joints, 𝑗RS, 𝑗RE, 𝑗RW, 𝑗LS, 𝑗LE,
and 𝑗LW, as shown in Figure 3. For example, the pose vector
of the upper part of the right arm, VRS RE, is computed from
two 3D position vectors of the right shoulder joint and the
right elbow joint, 𝑗RS and 𝑗RE.

Next, the 3D pose vectors of arm parts in the form of V =
(V
𝑥
, V
𝑦
, V
𝑧
) are transformed into the set of 2D spherical angle

vectors in the form of (𝜃, 𝜑), as shown in Figure 4.
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Figure 4: Transformation of pose vector (V
𝑥
, V
𝑦
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𝑧
) into spherical

angle vector (𝜃, 𝜑).

The transformation is performed based upon

𝜃 = cos−1 (
V
𝑧

‖V‖
) ,

𝜑 = tan−1 (
V
𝑦

V
𝑥

) ,

(1)

where 𝜃 and 𝜑 are the polar and the azimuthal angle of
the pose vector V, respectively. Note that the radial distance
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Figure 5: HiddenMarkovModels (HMMs) learned for arm gesture
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𝑟 = ‖V‖ is omitted in the spherical angle representation.
This means that the resulting feature set excludes features
sensitive to the length of arm parts but instead includes only
the direction of them. The final feature vector 𝑋

𝑡
of time 𝑡

is built by combining 2D spherical angle vectors of 4 arm
parts into a single vector, as described by (2). For example,
𝜃RS RE represents the polar angle of the upper part of the right
arm. Through feature transformation, therefore, we obtain
the stream of 8D spherical angle vectors to be used to train
or test gesture models

𝑋
𝑡
= (𝜃RS RE, 𝜑RS RE, 𝜃RE RW, 𝜑RE RW, 𝜃LS LE, 𝜑LS LE,

𝜃LE LW, 𝜑LE LW) .
(2)

However, if the transformed high-dimensional feature vec-
tors were applied directly to the HMM-based gesture recog-
nition, it would overload the computational complexity on
model learning and also delay the response time of the gesture
recognition. To resolve this problem, in the preprocessing
step of the proposed system, the eight-dimensional (8D) real-
number feature vectors are clustered into 𝑘number of clusters
through 𝑘-means clustering. And then, whenever each vector
is met from the stream of 8D feature vectors, it is replaced
with the index number of the cluster that this vector belongs
to. At the final stage of preprocessing, the training or testing
sequence data are constructed for each gesture by collecting
series of such index numbers.

3.3. Model Learning. In the learning step, the training dataset
for each gesture is used to learn the Hidden Markov Model
(HMM) for this gesture.TheHMM is a generative probabilis-
tic graphical model, in which the target system to bemodeled
is assumed to be a Markov Process. This model contains the
observation variable and the hidden state variable.TheHMM
assumes that the conditional probability distribution of the
hidden state variable 𝑥

𝑡
at time 𝑡 depends only on the value

of the hidden variable𝑥
𝑡−1

. Similarly, it assumes that the value
of the observation variable𝑦

𝑡
only depends on the value of the

hidden variable 𝑥
𝑡
.TheHMMused in our system is a discrete

and left-right model that allows state transition only from left
to right, as shown in Figure 5.
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Figure 6: Baum-Welch algorithm for learning HMMs.

In this work, the hidden state variable of the HMM
is allowed to have 3∼5 different states depending on the
complexity of the corresponding gesture. However, the obser-
vation variable of everyHMMcanhave only the fixednumber
of 𝑘 different values, due to the vector quantization using
𝑘-means clustering in the preprocessing step as explained
before. A HMM has three parameters: the initial state
probability distribution 𝜋, the state transition probability dis-
tribution𝐴, and the observation probability distribution𝐵. In
the learning step, the system finds the optimal parameters of
the HMM for each gesture using the training datasets. The
Baum-Welch algorithm shown in Figure 6 is used to learn
the HMM for each gesture. The Baum-Welch algorithm is an
EM (Expectation and Maximization) learning algorithm and
learns the optimal parameters of the HMM for each gesture
by repeating the E step, the estimation of the hidden variables
𝛾(𝑖) and 𝜅(𝑖, 𝑗), and theM step, the improvement of themodel
parameters 𝜆 = (𝐴, 𝐵, 𝜋).

3.4. Gesture Recognition. In the gesture recognition step, the
learned HMMs for individual gestures are applied to the
testing sequence data to compute the log likelihood of the
testing data for each HMM. Then, the best HMM with the
maximum log likelihood is found to recognize the testing
data as the corresponding gesture, as formulated in

𝑔
∗

= argmax
𝑔𝑘∈𝐺

{𝑃 (𝑋 | 𝜆
𝑔𝑘
)} . (3)

Equation (3) uses the trained HMM with parameters 𝜆
𝑔𝑘

for
each gesture 𝑔

𝑘
∈ 𝐺, to compute the log likelihood 𝑃(𝑋 |

𝜆
𝑔𝑘
) of the testing data 𝑋, to find the best matching HMM

with the maximum log likelihood, and to recognize it as the
corresponding gesture 𝑔∗.

4. Experiments

Based on the design explained in the previous section, we
implemented an arm gesture recognition system (AGR) on
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Figure 7: Screenshot of the UT game.

Table 1: Experimental result for Kyonggi dataset.

Gestures # of clusters
10 20 30

Alterfire 9/10 10/10 10/10
Backward 10/10 10/10 10/10
Fire 9/10 8/10 10/10
Forward 10/10 10/10 10/10
Left 8/10 9/10 10/10
Nextweapon 10/10 10/10 10/10
Preweapon 10/10 10/10 10/10
Right 9/10 10/10 10/10
Accuracy (%) 93.7 96.2 100

Windows 7 using Java andMatlab.We tested the performance
of the AGR system with the Kyonggi dataset, a dataset we
collected for this study, and the Cornell dataset [12], an open
source dataset for research.

The Kyonggi dataset includes eight dynamic arm gestures
to be used when playing the Unreal Tournament (UT) game
[13] as shown in Figure 7. The gestures included in the
Kyonggi dataset are presented in Figure 8. The Kyonggi
dataset contains a total of 240 gesture data that were collected
from three test subjects who made eight gestures, ten times
each, at 1.5∼2m from Kinect. The gesture data were change
sequences of the 3D positions (𝑥, 𝑦, and 𝑧) of the six joints
(right/left shoulders, right/left elbows, and right/left wrists)
that were collected from Jnect API that taped the gestures for
five seconds at 20 frames per second.

The Cornell dataset includes fifteen static arm gestures
and fifteen dynamic arm gestures. The dynamic gestures
included in the Cornell dataset are presented in Figure 9.
The Cornell dataset contains a total of 900 gesture data
mainly for aircraft guidance. For our experiments, we used
450 data representing the dynamic arm gestures.TheKyonggi
dataset and the Cornell dataset were divided into 20 pieces of
training data and 10 pieces of test data for each gesture in our
experiments.

Table 1 shows the test results of the proposed gesture
recognition system with the Kyonggi dataset. The number
of clusters used in 𝑘-means clustering to discretize high-
dimensional feature vectors may affect the performance
of the HMM-based gesture recognition system. Thus, the
recognition accuracy of the proposed system was measured

for each gesture when the number of clusters 𝑘was 10, 20, and
30. As a result, our proposed system showed high accuracies,
ranging from 93.7% to 100%. In addition, as the number of
clusters 𝑘 increased, the recognition accuracy improved.

Figures 10(a) and 10(b) show the average recognition
performance of the proposed gesture recognition system on
the Kyonggi and Cornell datasets. The bar graphs in the
figures represent the average recognition accuracies when
the number of clusters 𝑘 was 10, 20, and 30. As shown in
Figure 10(a), the recognition accuracy of the Kyonggi dataset
improved as the number of clusters 𝑘 increased. However, as
shown in Figure 10(b), the recognition accuracy of the Cor-
nell dataset did not improve in proportion to the number of
clusters. In our experiment, the highest recognition accuracy
was 98.2% when the number of clusters 𝑘 was 20.

Figure 11 shows a comparison of the proposed gesture
recognition system, which uses the HMM, with a system (AP
+DTW) that uses AP clustering andDynamic TimeWarping
(DTW). The AP + DTW system, one of the representative
gesture recognition systems, presets a few exemplars that can
present each gesture by applying AP (Affinity Propagation)
clustering to the given training dataset in the model-learning
step.

In the gesture recognition step, the system calculates sim-
ilarity between the new test data and the exemplar data using
Dynamic Time Warping (DTW), recognizing the gesture of
the test data. As shown in Figures 11(a) and 11(b), the AP +
DTWgesture recognition system showed 86% and 95% accu-
racies on the Kyonggi dataset and the Cornell dataset, while
the proposedHMM-based recognition system showedhigher
than 99% accuracy on both datasets. That is, the proposed
HMM-based system showed recognition performance 4∼15%
better than the AP + DTW-based recognition system.

5. Conclusions

In this work, we introduced an effective arm gesture recog-
nition system using Kinect. The proposed system performs
the feature transformation that changes the 3D Cartesian
coordinates of each joint into the 2D spherical angles of
the corresponding arm part to obtain view-invariant and
more discriminative features. In order to represent the unique
temporal pattern of each dynamic gesture, the system uses
a discrete HMM which is a kind of probabilistic graphical
models. Through experiments with two different datasets,
the Kyonggi and Cornell datasets, we confirmed the high
recognition performance of the proposed system.
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