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Based on a special matrix structure, the projective synchronization control laws of the hyperchaotic financial systems are proposed
in this paper. Put a hyperchaotic financial system as the drive system, via transformation of the system state variables, construct
its response system, and then design the controller based on the special matrix structure. The given scheme is applied to achieve
projective synchronization of the different hyperchaotic financial systems. Numerical experiments demonstrate the effectiveness of
the method.

1. Introduction

Chaos in the economy was first discovered since 1985; it
had made a tremendous impact on market economy. Chaos
theory provides new approaches and ideas for financial crisis
and other related issues. Synchronous development of the
financial system is a real problem faced by many economists,
such as how to achieve synchronous development in different
countries and areas. In 1999, Mainieri and Rehacek [1]
proposed a chaotic synchronous mapping; namely, drive-
response system can be synchronous with a desired scaling
factor. In recent decades, projective synchronization [2, 3]
of the chaotic financial system is also of concern. Schol-
ars realized projective synchronization of three-dimensional
fractional-order chaotic financial system and the integer-
order one, respectively. Hyperchaotic system has two or
more positive Lyapunov exponents. The economic system
is a high-dimensional nonlinear system, whose chaos is
mostly super chaos [4]. Achieving synchronization of hyper-
chaotic financial system is closer to the actual condition,
so some researchers have investigated the synchronization
of hyperchaotic financial system [5, 6]. In this paper, based
on a special matrix and conversion of state variables, we
will realize projective synchronization of the identical and
different hyperchaotic financial systems.

2. Projective Synchronization of Hyperchaotic
Financial Systems

Consider the financial system [7] as follows:

�̇� = 𝑧 + (𝑦 − 𝑎) 𝑥,

̇𝑦 = 1 − 𝑏𝑦 − 𝑥

2
,

�̇� = −𝑥 − 𝑐𝑧,

(1)

where 𝑥, 𝑦, and 𝑧 represent the interest rate, investment
demand, and price index, respectively.The parameter 𝑎 is the
saving, 𝑏 is the per-investment cost, and 𝑐 is the elasticity of
demands of commercials. And they are positive constants.

Based on the chaotic finance of system (1), scholars found
that the factors affecting the interest rate are related not
only to investment demand and price index, but also to the
average profit margin denoted by 𝑤. Therefore, the following
improved chaotic finance system is constructed [8]:

�̇� = 𝑧 + (𝑦 − 𝑎) 𝑥 + 𝑤,

̇𝑦 = 1 − 𝑏𝑦 − 𝑥

2
,

�̇� = −𝑥 − 𝑐𝑧,

�̇� = −𝑑𝑥𝑦 − 𝑘𝑤,

(2)
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where 𝑎, 𝑏, 𝑐, 𝑑, and 𝑘 are the parameters of the system, and
they are positive numbers.When 𝑎 = 0.9, 𝑏 = 0.2, 𝑐 = 1.5,𝑑 =
0.2, and 𝑘 = 0.17, system (2) presents hyperchaotic behavior
[8]. When the initial value of system (2) is taken as (1, 3, 2, 5)
and 𝑡 ∈ (0, 1000), the phase portraits of system (2) are shown
in Figures 1(a)–1(d).

Chaos of financial systems is mostly hyperchaos. In order
to achieve financial synchronous development of developed
and developing countries or different areas, we need to solve
more problems of synchronization of hyperchaotic financial
systems.

The projective synchronization discussed in this paper
is defined as two relative chaotic dynamical systems can be
synchronous with a desired scaling factor [2].

To discuss projective synchronization of the hyperchaotic
financial system (2), we rewrite the system (2) as follows:

(

�̇�

̇𝑦

�̇�

�̇�

) = (

−𝑎 0 1 1

0 −𝑏 0 0

−1 0 −𝑐 0

0 0 0 −𝑘

)(

𝑥

𝑦

𝑧

𝑤

)

+(

0

1

0

0

) +(

𝑥𝑦

−𝑥

2

0

−𝑑𝑥𝑦

) .

(3)

In order to facilitate design of controller, using the
thought of state transition, we construct the following
response system for the given system (3):

(

�̇�

𝑠

̇𝑦

𝑠

�̇�

𝑠

�̇�

𝑠

) = (

−𝑎 0 1 1

0 −𝑏 0 0

−1 0 −𝑐 0

0 0 0 −𝑘

)(

𝑥

𝑠

𝑦

𝑠

𝑧

𝑠

𝑤

𝑠

)

+ 𝛼

[

[

[

[

(

0

1

0

0

) +(

𝑥𝑦

−𝑥

2

0

−𝑑𝑥𝑦

)

]

]

]

]

+ u,

(4)

where 𝛼 is a scaling factor and u is the external input control
vector.

Denote x = (𝑥, 𝑦, 𝑧, 𝑤)

T, y = (𝑥

𝑠
, 𝑦

𝑠
, 𝑧

𝑠
, 𝑤

𝑠
)

T, and e =

(𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
)

T. If we define the error system as e = y − 𝛼x, we
can get the error system

ė = 𝐴e + u, (5)

where

𝐴 = (

−𝑎 0 1 1

0 −𝑏 0 0

−1 0 −𝑐 0

0 0 0 −𝑘

) . (6)

Theorem 1. If we design the controller u = 𝐵e for the error
system (5), then the system (5) is asymptotically stable at the
origin, where

𝐵 =

(

(

(

(

(

(

(

(

𝑘

1
⋅ (

𝑏

11

𝑘

1

) 𝑘

1
⋅ (−

𝑎

1

𝑘

2

) 𝑘

1
⋅ (

1

𝑘

3

−

1

𝑘

1

−

𝑎

2

𝑘

3

) 𝑘

1
⋅ (−

1

𝑘

1

−

𝑎

3

𝑘

4

)

𝑘

2
⋅ (

𝑎

1

𝑘

2

) 𝑘

2
⋅ (

𝑏

22

𝑘

2

) 𝑘

2
⋅ (−

𝑎

4

𝑘

3

) 𝑘

2
⋅ (−

𝑎

5

𝑘

4

)

𝑘

3
⋅ (

𝑎

2

𝑘

3

) 𝑘

3
⋅ (

𝑎

4

𝑘

3

) 𝑘

3
⋅ (

𝑏

33

𝑘

3

) 𝑘

3
⋅ (−

𝑎

6

𝑘

4

)

𝑘

4
⋅ (

𝑎

3

𝑘

4

) 𝑘

4
⋅ (

𝑎

5

𝑘

4

) 𝑘

4
⋅ (

𝑎

6

𝑘

4

) 𝑘

4
⋅ (

𝑏

44

𝑘

4

)

)

)

)

)

)

)

)

)

,

𝑏

11
≤ 𝑎, 𝑏

22
≤ 𝑏, 𝑏

33
≤ 𝑐, 𝑏

44
≤ 𝑘;

𝑎

𝑖
∈ 𝑅 (𝑖 = 1, 2, 3, 4, 5, 6) , 𝑘

𝑖
∈ 𝑅

+
(𝑖 = 1, 2, 3, 4) .

(7)

In order to prove Theorem 1, we introduce Lemma 2
firstly.

Lemma 2. Suppose a dynamic system can be written as

(

�̇�

1

�̇�

2

.

.

.

�̇�

𝑛

) =(

𝑘

1
𝑎

11
𝑘

1
𝑎

12
⋅ ⋅ ⋅ 𝑘

1
𝑎

1𝑛

𝑘

2
𝑎

21
𝑘

2
𝑎

22
⋅ ⋅ ⋅ 𝑘

2
𝑎

2𝑛

.

.

.

.

.

.

.

.

.

.

.

.

𝑘

𝑛
𝑎

𝑛1
𝑘

𝑛
𝑎

𝑛2
⋅ ⋅ ⋅ 𝑘

𝑛
𝑎

𝑛n

)(

𝑥

1

𝑥

2

.

.

.

𝑥

𝑛

). (8)

If the system (8) satisfies the following conditions [9]:

(1) ∀𝑎
𝑖𝑗
∈ 𝑅,

(2) 𝑎
𝑖𝑗
= −𝑎

𝑗𝑖
(𝑖 ̸= 𝑗),

(3) 𝑎
𝑖𝑖
≤ 0 (not all 𝑎

𝑖𝑖
are equal to zero),

(4) ∀𝑘
𝑖
> 0,

then the states of system (8) will decrease to zero gradually.
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Figure 1: Phase portraits of hyperchaotic finance system (2).

ProveTheorem 1 as follows.

Proof. Let controller be u = 𝐵e, where 𝐵 = (𝑏

𝑖𝑗
)

4×4
is a 4 × 4

order constant matrix to be designed; e = (𝑒
1
, 𝑒

2
, 𝑒

3
, 𝑒

4
)

T. We
rewrite the error system (5) as

ė = (𝑐 + 𝐵) e, (9)
where
𝐶 = (𝑐

𝑖𝑗
)

4×4

=

(

(

(

(

(

(

𝑘

1
⋅ (−

𝑎

𝑘

1

) 0 𝑘

1
⋅ (

1

𝑘

1

) 𝑘

1
⋅ (

1

𝑘

1

)

0 𝑘

2
⋅ (−

𝑏

𝑘

2

) 0 0

𝑘

3
⋅ (−

1

𝑘

3

) 0 𝑘

3
⋅ (−

𝑐

𝑘

3

) 0

0 0 0 𝑘

4
⋅ (−

𝑘

𝑘

4

)

)

)

)

)

)

)

.

(10)

In order to make the system (9) satisfy Lemma 2, design
matrix 𝐵 to satisfy conditions (11) and (12) as follows:

−

𝑎

𝑘

1

+

𝑏

11

𝑘

1

≤ 0,

−

𝑏

𝑘

2

+

𝑏

22

𝑘

2

≤ 0,

−

𝑐

𝑘

3

+

𝑏

33

𝑘

3

≤ 0,

−

𝑘

𝑘

4

+

𝑏

44

𝑘

4

≤ 0,

(11)

𝑏

12

𝑘

1

= −

𝑏

21

𝑘

2

,

1

𝑘

1

+

𝑏

13

𝑘

1

= −(−

1

𝑘

3

+

𝑏

31

𝑘

3

) ,

1

𝑘

1

+

𝑏

14

𝑘

1

= −

𝑏

14

𝑘

4

,

𝑏

23

𝑘

2

= −

𝑏

32

𝑘

3

,



4 Discrete Dynamics in Nature and Society

𝑏

24

𝑘

2

= −

𝑏

42

𝑘

4

,

𝑏

34

𝑘

3

= −

𝑏

43

𝑘

4

.

(12)

It can be seen from (11) that 𝑏
11
≤ 𝑎, 𝑏

22
≤ 𝑏, 𝑏

33
≤ 𝑐, and

𝑏

44
≤ 𝑘.
Let the coefficient matrix of (12) be 𝐻, and let its

augmented matrix be𝐻. After calculation, we can get 𝑟(𝐻) =
𝑟(𝐻), and the numbers of unknowns are greater than the

numbers of (12), so (12) has infinitely many solutions. Note
that all solutions of (12) are as follows:

𝜂 = (𝑏

12
, 𝑏

21
, 𝑏

13
, 𝑏

31
, 𝑏

14
, 𝑏

41
, 𝑏

23
, 𝑏

32
, 𝑏

24
, 𝑏

42
, 𝑏

34
, 𝑏

43
)

= (−

𝑎

1
𝑘

1

𝑘

2

, 𝑎

1
,

𝑘

1

𝑘

3

− 1 −

𝑎

2
𝑘

1

𝑘

3

, 𝑎

2
, −1 −

𝑎

3
𝑘

1

𝑘

4

, 𝑎

3
,

−

𝑎

4
𝑘

2

𝑘

3

, 𝑎

4
, −

𝑎

5
𝑘

2

𝑘

4

, 𝑎

5
, −

𝑎

6
𝑘

3

𝑘

4

, 𝑎

6
) ,

(13)

where 𝑎
𝑖
∈ 𝑅 (𝑖 = 1, 2, 3, 4, 5, 6); 𝑘

𝑖
∈ 𝑅

+
(𝑖 = 1, 2, 3, 4).

Therefore integrate (11) and (12) to obtain the matrix 𝐵:

𝐵 =

(

(

(

(

(

(

(

(

𝑘

1
⋅ (

𝑏

11

𝑘

1

) 𝑘

1
⋅ (−

𝑎

1

𝑘

2

) 𝑘

1
⋅ (

1

𝑘

3

−

1

𝑘

1

−

𝑎

2

𝑘

3

) 𝑘

1
⋅ (−

1

𝑘

1

−

𝑎

3

𝑘

4

)

𝑘

2
⋅ (

𝑎

1

𝑘

2

) 𝑘

2
⋅ (

𝑏

22

𝑘

2

) 𝑘

2
⋅ (−

𝑎

4

𝑘

3

) 𝑘

2
⋅ (−

𝑎

5

𝑘

4

)

𝑘

3
⋅ (

𝑎

2

𝑘

3

) 𝑘

3
⋅ (

𝑎

4

𝑘

3

) 𝑘

3
⋅ (

𝑏

33

𝑘

3

) 𝑘

3
⋅ (−

𝑎

6

𝑘

4

)

𝑘

4
⋅ (

𝑎

3

𝑘

4

) 𝑘

4
⋅ (

𝑎

5

𝑘

4

) 𝑘

4
⋅ (

𝑎

6

𝑘

4

) 𝑘

4
⋅ (

𝑏

44

𝑘

4

)

)

)

)

)

)

)

)

)

. (14)

So system (9) becomes

(

̇𝑒

1

̇𝑒

2

̇𝑒

3

̇𝑒

4

) =

(

(

(

(

(

(

(

(

𝑘

1
⋅ (−

𝑎

𝑘

1

+

𝑏

11

𝑘

1

) 𝑘

1
⋅ (−

𝑎

1

𝑘

2

) 𝑘

1
⋅ (

1

𝑘

3

−

𝑎

2

𝑘

3

) 𝑘

1
⋅ (−

𝑎

3

𝑘

4

)

𝑘

2
⋅ (

𝑎

1

𝑘

2

) 𝑘

2
⋅ (−

𝑏

𝑘

2

+

𝑏

22

𝑘

2

) 𝑘

2
⋅ (−

𝑎

4

𝑘

3

) 𝑘

2
⋅ (−

𝑎

5

𝑘

4

)

𝑘

3
⋅ (−

1

𝑘

3

+

𝑎

2

𝑘

3

) 𝑘

3
⋅ (

𝑎

4

𝑘

3

) 𝑘

3
⋅ (−

𝑐

𝑘

3

+

𝑏

33

𝑘

3

) 𝑘

3
⋅ (−

𝑎

6

𝑘

4

)

𝑘

4
⋅ (

𝑎

3

𝑘

4

) 𝑘

4
⋅ (

𝑎

5

𝑘

4

) 𝑘

4
⋅ (

𝑎

6

𝑘

4

) 𝑘

4
⋅ (−

𝑘

𝑘

4

+

𝑏

44

𝑘

4

)

)

)

)

)

)

)

)

)

(

𝑒

1

𝑒

2

𝑒

3

𝑒

4

).

(15)

According to Lemma 2, the system (15) is asymptotically
stable at the origin; namely, the system (5) is asymptotically
stable at the origin.

Remark 3. The error system (5) is asymptotically stable at
the origin; namely, the system (3) and system (4) achieve the
projective synchronization.

We take 𝑏
11

= 0.5, 𝑏
22

= 0.1, 𝑏
33

= 1, and 𝑏
44

= 0.1;
𝑎

1
= 1, 𝑎

2
= 2, 𝑎

3
= 3, 𝑎

4
= 4, 𝑎

5
= 5, and 𝑎

6
= 6; 𝑘

1
=

1, 𝑘
2
= 2, 𝑘

3
= 3, and 𝑘

4
= 4. Then if we take 𝑎 = 0.9,

𝑏 = 0.2, 𝑐 = 1.5, 𝑑 = 0.2, 𝑘 = 0.17, and 𝛼 = 1/2; the initial
values of drive system (3) and response system (4) are taken as
(1, 2, 0.5, 0.5) and (1, 3, 2, 5), respectively. So the initial value
of error system (5) is (0, 1, 1.5, 4.5), and the state variables of
system (5) varying with time 𝑡 are shown in Figures 2(a)–2(e).

Remark 4. To make the structure of the controller as simple
as possible, we take 𝑏

𝑖𝑖
= 0, 𝑖 = 1, 2, 3, 4, 𝑎

𝑖
= 0, 𝑖 = 1, 2, . . . , 6,

and 𝑘
𝑖
= 1, 𝑖 = 1, 2, 3, 4. So we can get control matrix

𝐵 =(

0 0 𝑘

1
⋅ (

1

𝑘

3

−

1

𝑘

1

) 𝑘

1
⋅ (−

1

𝑘

1

)

0 0 0 0

0 0 0 0

0 0 0 0

),

𝑘

𝑖
∈ 𝑅

+
, 𝑖 = 1, 2, 3, 4

(16)

which is a special case.

Remark 5. When 𝛼 = 1, the system (3) and system (4) are of
complete synchronization [10]; when 𝛼 = −1, the system (3)
and system (4) are antisynchronization [11].
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Figure 3: Phase portraits of hyperchaotic finance system (17).

Remark 6. When 𝑘
1
= 𝑘

2
= 𝑘

3
= 𝑘

4
= 1, the coefficient

matrix of system (15) is the antisymmetricmatrix in [12].That
is to say, they have the same control scheme.

3. Projective Synchronization of Two Different
Hyperchaotic Financial Systems

In the real world, we will not only meet synchronization
of two identical hyperchaotic financial systems, but also
encounter more often the one of two different hyperchaotic
financial systems. Here we consider the projective synchro-
nization of the system (2) and the following system (17).

Ding et al. [13] introduced a state feedback controller 𝑤
𝑡

and constructed a new hyperchaotic financial system:

�̇�

𝑡
= −𝑎


(𝑥

𝑡
+ 𝑦

𝑡
) + 𝑤

𝑡
,

𝑦



𝑡
= −𝑦

𝑡
− 𝑎


𝑥

𝑡
𝑧

𝑡
,

�̇�

𝑡
= 𝑏


+ 𝑎


𝑥

𝑡
𝑦

𝑡
,

�̇�

𝑡
= −𝑐


𝑥

𝑡
𝑧

𝑡
− 𝑑


𝑤

𝑡
,

(17)

where 𝑎 and 𝑏

 are parameters of the system (17), 𝑐 is a
constant (𝑐 = 0.2), and 𝑑 is a control parameter. And when
𝑎


= 3, 𝑏 = 15, 𝑐 = 0.2, and 𝑑 = 0.12, system (17) presents

hyperchaotic behavior [13]; the initial value of system (17) is
taken as (1.5, 3.2, 2, 3); take 𝑡 ∈ (0, 1000); the phase portraits
of system (17) are shown in Figures 3(a)–3(d).

Let the system (3) be the drive system, and let the system
(17) be response system. So the system (17) becomes

(

�̇�

𝑡

̇𝑦

𝑡

�̇�

𝑡

�̇�

𝑡

) = (

−𝑎


−𝑎


0 1

0 −1 0 0

0 0 0 0

0 0 0 −𝑑



)(

𝑥

𝑡

𝑦

𝑡

𝑧

𝑡

𝑤

𝑡

)

+(

0

−𝑎


𝑥

𝑡
𝑧

𝑡

𝑎


𝑥

𝑡
𝑦

𝑡

−𝑐


𝑥

𝑡
𝑧

𝑡

)+(

0

0

𝑏



0

) + u.

(18)

We denote

𝐴 = (

−𝑎 0 1 1

0 −𝑏 0 0

−1 0 −𝑐 0

0 0 0 −𝑘

) , h
1
= (

0

1

0

0

) ,
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Figure 4: Time evolutions of the state variables of system (3) and system (20).
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𝑓 (x) = (

𝑥𝑦

−𝑥

2

0

−𝑑𝑥𝑦

) , x = (

𝑥

𝑦

𝑧

𝑤

) ,

𝐷 = (

−𝑎


−𝑎


0 1

0 −1 0 0

0 0 0 0

0 0 0 −𝑑



), h
2
= (

0

0

𝑏



0

) ,

𝑔 (y) = (

0

−𝑎


𝑥

𝑡
𝑧

𝑡

𝑎


𝑥

𝑡
𝑦

𝑡

−𝑐


𝑥

𝑡
𝑧

𝑡

), y = (

𝑥

𝑡

𝑦

𝑡

𝑧

𝑡

𝑤

𝑡

).

(19)

Let u = (𝐴 − 𝐷)y + 𝛼(h
1
+ 𝑓(x)) − h

2
− 𝑔(y) + 𝐸e, where

𝐸 = (𝑒

𝑖𝑗
)

4×4
is a 4 × 4 order constant matrix to be designed,

and e = (𝑒
1
, 𝑒

2
, 𝑒

3
, 𝑒

4
)

Τ. So the response system (18) becomes

(

�̇�

𝑡

̇𝑦

𝑡

�̇�

𝑡

�̇�

𝑡

) = (

−𝑎 0 1 1

0 −𝑏 0 0

−1 0 −𝑐 0

0 0 0 −𝑘

)(

𝑥

𝑡

𝑦

𝑡

𝑧

𝑡

𝑤

𝑡

)

+ 𝛼

[

[

[

[

(

0

1

0

0

) +(

𝑥𝑦

−𝑥

2

0

−𝑑𝑥𝑦

)

]

]

]

]

+ 𝐸e.

(20)

We also define the error system as e = y − 𝛼x. Let the
system (20) minus the 𝛼 times of the system (3); we get the
error system

(

̇𝑒

1

̇𝑒

2

̇𝑒

3

̇𝑒

4

) =(

−𝑎 0 1 1

0 −𝑏 0 0

−1 0 −𝑐 0

0 0 0 −𝑘

)(

𝑒

1

𝑒

2

𝑒

3

𝑒

4

)+ 𝐸(

𝑒

1

𝑒

2

𝑒

3

𝑒

4

). (21)

Theorem 7. For the error system (21), let the controller be

u = (𝐴 − 𝐷) y + 𝛼 (h
1
+ 𝑓 (x)) − h

2
− 𝑔 (y) + 𝐸e, (22)

where

𝐸 =

(

(

(

(

(

(

(

(

(

𝑘

1
⋅ (

𝑒

11

𝑘

1

) 𝑘

1
⋅ (−

𝑎

1

𝑘

2

) 𝑘

1
⋅ (

1

𝑘

3

−

1

𝑘

1

−

𝑎

2

𝑘

3

) 𝑘

1
⋅ (−

1

𝑘

1

−

𝑎

3

𝑘

4

)

𝑘

2
⋅ (

𝑎

1

𝑘

2

) 𝑘

2
⋅ (

𝑒

22

𝑘

2

) 𝑘

2
⋅ (−

𝑎

4

𝑘

3

) 𝑘

2
⋅ (−

𝑎

5

𝑘

4

)

𝑘

3
⋅ (

𝑎

2

𝑘

3

) 𝑘

3
⋅ (

𝑎

4

𝑘

3

) 𝑘

3
⋅ (

𝑒

33

𝑘

3

) 𝑘

3
⋅ (−

𝑎

6

𝑘

4

)

𝑘

4
⋅ (

𝑎

3

𝑘

4

) 𝑘

4
⋅ (

𝑎

5

𝑘

4

) 𝑘

4
⋅ (

𝑎

6

𝑘

4

) 𝑘

4
⋅ (

𝑒

44

𝑘

4

)

)

)

)

)

)

)

)

)

)

,

𝑒

11
≤ 𝑎, 𝑒

22
≤ 𝑏, 𝑒

33
≤ 𝑐, 𝑒

44
≤ 𝑘,

𝑎

𝑖
∈ 𝑅, 𝑖 = 1, 2, . . . , 6; 𝑘

𝑖
∈ 𝑅

+
, 𝑖 = 1, 2, 3, 4.

(23)

Then the system (21) is asymptotically stable at the origin.

Proof. If u = (𝐴 − 𝐷)y + 𝛼(h
1
+ 𝑓(x)) − h

2
− 𝑔(y) + 𝐸e,

according to the definition of the error system, the error
system of the driven system (3) and response system (18) is

system (21); namely,

ė = (𝐶 + 𝐸) e. (24)

System (24) has the same structure with the system (9), so we
can get 𝐸 = 𝐵; namely,

𝐸 =

(

(

(

(

(

(

(

𝑘

1
⋅ (

𝑒

11

𝑘

1

) 𝑘

1
⋅ (−

𝑎

1

𝑘

2

) 𝑘

1
⋅ (

1

𝑘

3

−

1

𝑘

1

−

𝑎

2

𝑘

3

) 𝑘

1
⋅ (−

1

𝑘

1

−

𝑎

3

𝑘

4

)

𝑘

2
⋅ (

𝑎

1

𝑘

2

) 𝑘

2
⋅ (

𝑒

22

𝑘

2

) 𝑘

2
⋅ (−

𝑎

4

𝑘

3

) 𝑘

2
⋅ (−

𝑎

5

𝑘

4

)

𝑘

3
⋅ (

𝑎

2

𝑘

3

) 𝑘

3
⋅ (

𝑎

4

𝑘

3

) 𝑘

3
⋅ (

𝑒

33

𝑘

3

) 𝑘

3
⋅ (−

𝑎

6

𝑘

4

)

𝑘

4
⋅ (

𝑎

3

𝑘

4

) 𝑘

4
⋅ (

𝑎

5

𝑘

4

) 𝑘

4
⋅ (

𝑎

6

𝑘

4

) 𝑘

4
⋅ (

𝑒

44

𝑘

4

)

)

)

)

)

)

)

)

. (25)
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Therefore, the system (24) becomes

ė = (𝐶 + 𝐸) e, (26)

where

𝐶 + 𝐸 =

(

(

(

(

(

(

(

𝑘

1
⋅ (−

𝑎

𝑘

1

+

𝑒

11

𝑘

1

) 𝑘

1
⋅ (−

𝑎

1

𝑘

2

) 𝑘

1
⋅ (

1

𝑘

3

−

𝑎

2

𝑘

3

) 𝑘

1
⋅ (−

𝑎

3

𝑘

4

)

𝑘

2
⋅ (

𝑎

1

𝑘

2

) 𝑘

2
⋅ (−

𝑏

𝑘

2

+

𝑒

22

𝑘

2

) 𝑘

2
⋅ (−

𝑎

4

𝑘

3

) 𝑘

2
⋅ (−

𝑎

5

𝑘

4

)

𝑘

3
⋅ (−

1

𝑘

3

+

𝑎

2

𝑘

3

) 𝑘

3
⋅ (

𝑎

4

𝑘

3

) 𝑘

3
⋅ (−

𝑐

𝑘

3

+

𝑒

33

𝑘

3

) 𝑘

3
⋅ (−

𝑎

6

𝑘

4

)

𝑘

4
⋅ (

𝑎

3

𝑘

4

) 𝑘

4
⋅ (

𝑎

5

𝑘

4

) 𝑘

4
⋅ (

𝑎

6

𝑘

4

) 𝑘

4
⋅ (−

𝑘

𝑘

4

+

𝑒

44

𝑘

4

)

)

)

)

)

)

)

)

. (27)

According to Lemma 2, the system (26) tends to zero
gradually; namely, the system (21) is driven to the origin
gradually.

Remark 8. The system (21) tended to zero gradually; that is,
the drive system (3) and response system (18) achieve the
projective synchronization.

Generally, we take 𝑒
11
= 0.5, 𝑒

22
= 0.1, 𝑒

33
= 1, and 𝑒

44
=

0.1; 𝑎
1
= 1, 𝑎

2
= 2, 𝑎

3
= 3, 𝑎

4
= 4, 𝑎

5
= 5, and 𝑎

6
= 6;

𝑘

1
= 1, 𝑘

2
= 2, 𝑘

3
= 3, and 𝑘

4
= 4. And we take 𝑎 = 0.9,

𝑏 = 0.2, 𝑐 = 1.5, 𝑑 = 0.2, 𝑘 = 0.17, and 𝛼 = −1; the initial
values of drive system (3) and response system (17) are taken
as (0.1, −0.1, 0.1, 0.1) and (0, 1, 0.2, 0.5), respectively. So the
initial value of error system (21) is (−0.1, 1.1, 0.1, 0.4), and the
state variables of system (21) varying with time 𝑡 are shown in
Figures 4(a)–4(e).

4. Conclusions

Based on a special matrix structure and the conversion of
the state variable, we design the controllers to achieve the
projective synchronization of hyperchaotic financial systems
in this paper. And the control law is also suitable for
synchronous control of other chaotic systems. Theoretical
analysis and simulation results show the effectiveness of the
method.
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