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Models to assist management of lowland forests in Tanzania are in most cases lacking. Using a sample of 60 trees which
were destructively harvested from both dry and wet lowland forests of Dindili in Morogoro Region (30 trees) and Rondo in
Lindi Region (30 trees), respectively, this study developed site specific and general models for estimating total tree volume and
aboveground biomass. Specifically the study developed (i) height-diameter (ht-dbh) models for trees found in the two sites, (ii)
total, merchantable, and branches volume models, and (iii) total and sectional aboveground biomass models of trees found in the
two study sites. The findings show that site specific ht-dbh model appears to be suitable in estimating tree height since the tree
allometry was found to differ significantly between studied forests. The developed general volume models yielded unbiased mean
prediction error and hence can adequately be applied to estimate tree volume in dry and wet lowland forests in Tanzania. General
aboveground biomass model appears to yield biased estimates; hence, it is not suitable when accurate results are required. In this
case, site specific biomass allometric models are recommended. Biomass allometric models which include basic wood density are
highly recommended for improved estimates accuracy when such information is available.

1. Introduction

In Tanzania, lowland forests are located close to the Indian
Ocean, and occasionally further inland up to the base of
the Eastern Arc Mountains below 1000m above sea level,
often embedded within larger areas of miombo woodlands
and Montane/humid forests [1]. The total area covered
by lowland forest in Tanzania is estimated to be about
1.7mil. ha [2]. Depending on the magnitude of precipitation,
lowland forests may be categorised into dry (<1 000mm)
and wet (>1 000mm) [3]. In the northern part of Tanzania,

the lowland forest strips are very thin but as onemoves south,
the strips expand further to the inland. Based on the National
Forest Resource Monitoring and Assessment (NAFORMA)
classification, of the eight land cover types, the lowland
forest belongs to “forest” cover [2]. Other lands classified in
these cover types include humid Montane, Mangrove, and
plantations.

Lowland forest supports the livelihood of thousands of
people directly (fuel wood, food, medicine, and construction
materials) and indirectly by offering environmental services
which include biodiversity, catchment values, and carbon
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sequestration.The latter has recently received global attention
due to climate mitigation function they offer [4]. However,
there is uncertainty of the quantities of carbon stocks in the
lowland forests in Tanzania since no local biomass allometric
model is available.

Volume models which are able to quantify merchantable
tree volume and total volume are also required when trees are
warranted for commercial purposes. Timber licensing and
pricing system in Tanzania based on volume estimation [5]
requires also that tree-sectional volume models are devel-
oped. Such models will aid in obtaining accurate quantitative
information on the amount of wood for specific uses, that
is, saw timber and fuel wood. To date there are no total or
tree sectional volume estimation models for lowland forest
of Tanzania. Preferred trees species for timber in the lowland
forests includePterocarpus angolensis, Afzelia quanzensis, and
Sterculia quinqueloba [6].However, due to diminishing rate of
these tree species and large demand of timber, lesser known
timber tree species has been exploited [7, 8]. Therefore, this
necessitates the need to develop multispecies volume models
other than for only known timber tree species [9]. Though
not common in the scientific literature, many multispecies
volume models have been developed and can be found in the
international allometric equations database GlobAllomeTree
[10].

The need for quantification of carbon stocks for differ-
ent forest types is also relevant for the emerging carbon
credit market mechanism such as Reducing Emission from
Deforestation and Forest Degradation (REDD).This requires
that appropriate allometric models specific for a given forest
type are in place [11, 12]. Allometric models use the easy
to measure individual tree parameters such as diameter at
breast height (dbh) and total tree height (ht) from forest
inventories to estimate volume and AGB. Another important
explanatory variable for biomass estimating allometricmodel
is wood basic density (WD) which is determined from
wood samples in laboratory as a ratio of dry mass to the
green volume [13]. Literatures list these variables according
to their importance as dbh, WD, and ht in explaining tree
biomass variations and dbh and ht for tree volume [12, 13].
Among the three explanatory variables, tree dbh and ht have
been often used as only explanatory variables to develop
biomass allometric models because they are readily available
compared to WD which results in overall poor estimation of
AGB [14, 15] especially for forests where WD of trees varies
considerably [12, 13]. This calls for the need of developing
biomass allometricmodels which integrateWD in estimating
tree biomass.

Conventionally, forest inventories measure dbh of all
trees in each plot but often few are randomly selected and
measured for ht for development of simple and local ht-dbh
models that are used to estimate ht of trees not measured in
the field [16, 17]. This implies that biomass allometric model,
in practice, requires local ht-dbh models for ht estimation.
Although Mugasha et al. [18] recently developed ht-dbh
models for four main forest types including lowland forest,
none of the sites were selected from the lowland forests in
the coast. Furthermore, due to large variations in ht from
one forest to another as a function of climate and other

environmental factors, it is imperative that a local ht-dbh
model is developed to improve the tree volume or biomass
estimates [19, 20].

It is against this background that this study entails develop
site specific and general models for estimating total tree
volume and aboveground biomass. Specifically the study aims
to develop and compare (i) height-diameter (ht-dbh) models
for trees found in the two sites, (ii) total, merchantable,
and branches volume models, and (iii) total and sectional
aboveground biomass models of trees found in the two study
sites.

2. Material and Methods

2.1. Study Sites Description. The study area covered two
forest reserves, namely, Rondo forest reserve located in Lindi
Region andDindili forest reserve located inMorogoroRegion
in Tanzania (Figure 1). Rondo forest reserve is located along
the coast of Indian Ocean (39.08∘E, 10.04∘S) 46 km from the
Indian Ocean shores in Lindi Region (Figure 1). The area
of the forest is about 14 060 ha and it is managed by the
government. The forest is described as lowland forest (wet)
and situated at the top of the plateau in a relatively flat
terrain between 465 and 885m above sea level. The average
annual rainfall is 1 215mm and the mean annual temperature
is between 15 and 31∘C. Dindili forest reserve is located
in the inland (37.87∘E, 6.70∘S) about 117 km away from the
Indian ocean shores. The forest is situated about 50 km east
west of Morogoro municipality, the administrative capital of
Morogoro Region. The area of the forest is 1 009.9 ha and it is
managed by the government as a catchment forest.The forest
is described as lowland forest (dry) and situated at the ridge
top of a mountain between 465 and 765m above sea level.
The average annual rainfall is 1 000mm and the mean annual
temperature is between 21 and 26∘C.

2.2. Field Sampling. This study implemented a nested 1 ha
plot design.This was necessary to capture asmuch as possible
the large trees which are normally excluded when a small
concentric circular sample plot design is used [22].

For each study sites, the following plot design was
implemented:

(i) two 1 ha plots (100 × 100m) where all trees greater or
equal to dbh of 50 cm were measured for dbh and ht,

(ii) one 0.5 ha plot (50 × 100m) nested in (i) above where
all trees with dbh greater or equal to 20 cm and less
than dbh of 50 cm were measured for dbh and at
least 25% of the trees were selected randomly and
measured for ht,

(iii) one 0.1 ha plot (50 × 20m) nested in (ii) above where
all trees with dbh less than 20 cm and greater or equal
to dbh of 5 cmweremeasured for dbh and at least 10%
of trees were measured for ht.

Themeasured trees were marked with paint to ensure that no
measurement repetition was made. Total number of sample
trees measured for both dbh and ht were 153 and 322 for
Dindili and Rondo forests, respectively.
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Figure 1: Location of Dindili and Rondo forest reserves.

Table 1: Sample trees selection corresponding to tree size distribution in each plot.

Diameter class (cm) Trees ha−1 Trees felled Total number of trees felled
Rondo Dindili Rondo Dindili All

5–15 540 435 3 5 8
15–25 169 128 7 1 8
25–35 74 59 1 6 7
35–45 41 26 2 4 6
45–55 23 17 2 4 6
55–65 12.5 8 0 6 6
65–75 8.5 1 3 2 5
75–85 2.5 0 3 2 5
85–100 2 0 5 0 5
>100 2 0 4 0 4
Total 874.5 674 30 30 60

2.3. Selection and Destructive Sampling of Sample Trees. To
secure an appropriate distribution of sample trees with regard
to tree sizes and tree species, information collected from
sample plot inventories was used. The tree size, species dis-
tribution, and dominance/abundance of species from forest
inventory information were used for the selection of sample
trees to be used in volume and biomass modelling. A total of
30 trees were selected from each site to represent typical size
and species distributions for each tree species (Table 1). Prior
to the destructive procedure, all sample trees were recorded

for species name, while dbh were measured with calipers or
a diameter tape and ht measured using Suunto hypsometer.
Trees were further divided into five major sections, namely,

(i) buttress (if any),
(ii) bole stem (merchantable section),
(iii) branches including tops (up to a minimum diameter

of 2.5 cm),
(iv) twigs with diameter less than 2.5 cm,
(v) leaves.
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For small trees with dbh < 10 cm, no merchantable stem
part was considered. For trees with dbh ≥ 10 cm no spe-
cific minimum diameters were set to distinguish between
merchantable stem biomass and branch biomass. However,
the decision between these ranges was based on subjective
judgment of the researchers and districts forest department
personnel experience on the total length of the stem that can
be used to produce timber. All leaves were separated from
twigs and weighed separately.

Stems and branches were trimmed and crosscut into
manageable billets ranging from 1 to 2.5m in length and
then weighed for green weight. In addition, the length and
the mid-diameter of billets were measured for the purpose
of estimating tree volume. At least two small wood samples
of 2 cm thick from the tree core to the outside excluding
bark were extracted from stem sections (depending on the
stem length) and three samples from branches and weighed
immediately in the field. Twigs were tied into separate
bundles and weighed in the field and the green weights of
each were recorded. Small wood samples from each bundle
were extracted, labelled, and measured for green weight in
the field. Leaves were collected in bundles, weighted in the
field and small sample (small bunch of leaves), extracted,
and weighed. Samples from all components were sent to the
laboratory in order to determine dry to greenweight ratio and
WD.

2.4. Laboratory Measurements. In the laboratory all stems,
branches, twigs, and leaves subsamples collected from the
field were oven dried at 103 ± 2∘C to constant weight. Dried
samples were weighed and the biomass ratios for each pile of
stems, branches, and twigs components were computed as the
ratio of oven-dry weight to green weight. Green volumes of
the sample disks/wood samples were obtained after soaking
the disks/wood samples in water for at least four days until
all disks are saturated. Using the water displacement method,
the volume of each disk/wood sample was determined [23].
Wood basic density (WD, g cm−3) for each disk/wood sample
was determined as the ratio of dry weight (g) to green volume
(cm3).

2.5. Data Preparation. Components biomass was estimated
as the product of dry to green ratio and total green weight
(kg) of the respective tree component. The total biomass for
each tree was obtained as the sum of stump, stem, branches,
twigs, and leaves component tree biomass. Huber’s formula
[24] was applied to compute billet volume. Volume of tree
merchantable stem and branches was obtained by summing
the volumes of the billets of the respective sections for
that particular tree. Total tree volume was finally obtained
through summation of stem and branches component vol-
ume. The resulting dataset was used for developing volume
and biomass models.

2.6. Data Analysis

2.6.1. Height-Diameter Models Development. Five nonlinear
model forms outlined below were used to model ht for

the sample tree measured for both ht and dbh during
the forest inventory exercise. Their characteristics, that is,
flexibility and shape, are well documented in the literature
[25]:

ht = 1.3 + 𝑎 × [1 − exp (−𝑏 × dbh)]𝑐 (1)

(see [26]),

ht = 1.3 + 𝑎 × [exp(− 𝑏

(dbh + 𝑐)
)] (2)

(see [27]),

ht = 1.3 + 𝑎 × [exp (−𝑏 × exp (−𝑐 × dbh))] (3)

(see [28]),

ht = 1.3 + [ dbh2

𝑎 + 𝑏 × dbh + 𝑐 × dbh2
] (4)

(see [29]),

ht = 1.3 + [ 𝑎

exp (−𝑏 × exp (−𝑐 × dbh))
] (5)

(see [30]).

2.6.2. Volume and Biomass Models Development. Prior to the
analysis, dependent variables (volume and biomass) were
plotted against each of the explanatory variables to examine
the range and shape of the functional relationship and to
assess the heterogeneity of the variance.The following general
nonlinear model forms for prediction of volume and biomass
were fitted:

𝑌 = 𝑎 × dbh𝑏, (6)

𝑌 = 𝑎 + 𝑏 × dbh2, (7)

𝑌 = 𝑎 × dbh𝑏 × ht𝑐, (8)

𝑌 = 𝑎 × (ht × dbh2)
𝑏

, (9)

𝑌
1

= 𝑎 × (WD × dbh2 × ht)
𝑏

, (10)

where 𝑌 is the volume (m3 tree−1) or biomass (kg tree−1);
WD is wood basic density (g cm−3); 𝑎, 𝑏, and 𝑐 are model
parameters to be estimated.WD (inmodel (10)) was not used
as a predictor in modelling tree volume.

The NLP procedure (Nonlinear Programming) in SAS
software [31] was used to fit the models parameters. The pro-
cedure fits both model parameters and variance parameters
(Variance = 𝑛2 × dbh2𝑚, where 𝑛 and𝑚 are parameters to be
estimated) simultaneously by applying maximum likelihood
regression approach. This type of procedure was used due to
its flexibility to work with equations forms and its recognized
robustness over nonlinear models with additive error and
log transformed models [32]. A broad range of initial values
for the model and variance parameters were used to ensure
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an optimal solution to the Root Mean Square Error (RMSE)
minimization. Selection of our final models was based on
high adjusted 𝑅2, low RMSE, and finally low Akaike Infor-
mation Criterion (AIC). The selected biomass and volume
models were evaluated by computing prediction error and
model efficiency [13, 33] as follows:

MPE = (100
𝑛

) ×∑

[
[
[

[

(



𝑌 −𝑦
𝑖
)

𝑦
𝑖

]
]
]

]

% (11)

EF = 1 −
[
[
[

[

∑(𝑦
𝑖
−



𝑌)

2

∑(𝑦
𝑖
− 𝑌)

2

]
]
]

]

, (12)

where MPE is prediction error, EF is model efficiency, 𝑦
𝑖

is observed volume or biomass,


𝑌 is predicted volume or
biomass, 𝑌 is the mean of observed volume or biomass, and
𝑛 is the number of trees.

In addition, the generic biomass model developed by
Chave et al. [12] for tropical forest, volumemodel formiombo
woodlands [9], biomass and volume models developed for
montane/humid forests [21, 34], and ht-dbh model for low-
land forests in Tanzania were also tested to the modelling
data.

3. Results

3.1. Height-DiameterModels. Parameter estimates andmodel
performance criteria for ht-dbh models are presented in
Table 2. For Dindili, model (4) performed better in terms of
𝑅
2 (68%), RMSE (2.65m), and smaller AIC than other fitted

models while for Rondo model (3) performed better with
𝑅
2 (61%), RMSE (2.89m), and smaller AIC than other fitted

models (result for other poor performingmodels not shown).
When all data sets were fitted to develop a general model,
model (3) performed better than other models. However,
general ht-dbh model had larger RMSE (around 3m) and
lower 𝑅2 (0.57) than site specific models. Trees found in
Rondo forest were found to be relatively taller than those
in Dindili forest at a given dbh (Figure 2). Height-diameter
model developed by Mugasha et al. [18] overestimated and
underestimated trees smaller and larger than dbh of about
40 cm, respectively, in Rondo while in Dindili, the model
overestimated ht of trees larger than dbh of about 14 cm
(Figure 2). Equations (13) represent the selected site specific
and general ht-dbh models:

ht (Dindili)

= 1.3

+ [

dbh2

0.4239 + 0.8893 × dbh + 0.0398 × dbh2
] ,

General
Mugasha et al., 2013
Rondo model

Dindili model
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Figure 2: Pattern of observed and predicted ht against dbh of the
selected models.

ht (Rondo)

= 1.3 + [

22.8525

exp (−1.9824 × exp (−0.0888 × dbh))
] ,

ht (General)

= 1.3 + [

21.2679

exp (−2.1776 × exp (−0.0993 × dbh))
] .

(13)

3.2. Total, Stem, and Branch Tree Volume Models. Parameter
estimates and model performance criteria for total tree
volume and tree sections are presented in Table 3. By fitting
the four alternative volume models to entire data set, over
92% and 73% of the variations of total and sectional tree
volume, respectively, were explained. Based on AIC, model
(7) was the best performing one formodels with only dbh and
model (8) for models with both dbh and ht. Although model
(8) outperformed model (7), the performance differences
were quite insignificant. As expected, there was a significant
decrease in RMSE from general to site specific volume
models.

A comparison between allometric models for total tree
volume of miombo woodlands [9] and Montane/humid
forests [21] and volume allometric model developed in this
study with dbh only as explanatory variable is shown in
Figure 3. Miombo woodlands volume model overestimated
trees with dbh greater than 65 cm.

The selected general models (models (7) and (8)) were
also tested to each study site (Table 4). For total tree volume,
the prediction errorwas found to be not significantly different
from zero (𝑝 > 0.05) and found to be more efficient
(model efficiency above 0.87) than sectional models. When
general sectional models were tested, except for model (8)
for branches volume, mean prediction error was found to
be significantly different from zero (𝑝 < 0.05). Site specific
sectional model had low mean prediction error and is more
efficient than general sectional volume models.
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Table 2: Parameter estimates and performance criteria of five ht-dbh models.

Site Model Parameter estimates Error RMSE 𝑅
2 AIC

𝑎 𝑏 𝑐

Dindili

1 19.5933 0.0415 0.9023 0.314 × dbh0.6304 2.65 0.67 402.76
2 24.0599 18.3594 5.6557 0.317 × dbh0.6271 2.64 0.68 402.32
3 17.9649 2.0739 0.0797 0.317 × dbh0.6315 2.65 0.66 404.64
4 0.4239 0.8893 0.0398 0.318 × dbh0.6264 2.64 0.68 402.28
5 19.8856 0.0554 0.9246 0.315 × dbh0.6296 2.65 0.67 402.7

Rondo

1 23.3447 0.0639 1.0728 2.239 × dbh0.1469 2.90 0.61 1593.02
2 27.5692 11.2866 2.0427 2.374 × dbh0.1306 2.92 0.61 1595.18
3 22.8525 1.9824 0.0888 2.145 × dbh0.1591 2.89 0.61 1591.6
4 1.9292 0.3691 0.0369 2.399 × dbh0.1273 2.92 0.61 1594.98
5 23.2808 0.0534 1.0454 2.233 × dbh0.1477 2.904 0.61 1592.98

All 3 21.2679 2.1776 0.0993 1.681 × dbh0.2539 3.03 0.57 2099.2
4 2.3468 0.3489 0.0398 1.835 × dbh0.2088 3.06 0.57 2101.98

Table 3: Parameter estimates and volume models performance for individual total tree and sectional volume.

Section General/site specific Model Parameter estimates Error RMSE 𝑅
2 AIC

𝑎 𝑏 𝑐

Total tree volume

General

6 0.00053 2.1620 — 0.013 × dbh0.5 0.90 0.95 92.32
7 −0.0393 0.00102 — 0.013 × dbh0.5 0.85 0.95 92.06
8 0.000076 2.3488 0.3848 0.013 × dbh0.5 0.90 0.95 91.64
9 0.00014 0.9039 — 0.014 × dbh0.5 1.10 0.92 107.42

Dindili forest 7 −0.0226 0.00090 0.014 × dbh0.5 0.72 0.88 45.82
8 0.000041 2.5042 0.4329 0.012 × dbh0.5 0.74 0.89 39.36

Rondo forest 7 −0.0760 0.0010 0.011 × dbh0.5 0.87 0.96 46.92
8 0.00014 2.3176 0.1854 0.010 × dbh0.5 0.92 0.96 45.34

Tree branch volume

General

6 0.00024 2.1658 — 0.013 × dbh0.5 0.84 0.78 88.74
7 −0.0069 0.00031 — 0.013 × dbh0.5 0.82 0.78 88.58
8 0.000034 2.5514 −0.1277 0.012 × dbh0.5 0.83 0.79 89.78
9 0.000074 0.8901 — 0.014 × dbh0.5 0.90 0.73 99.72

Dindili forest 7 −0.0120 0.00046 0.013 × dbh0.5 0.60 0.70 39.66
8 0.000045 2.9229 −0.3903 0.012 × dbh0.5 0.70 0.69 38.26

Rondo forest 7 −0.015 0.00033 0.011 × dbh0.5 0.80 0.84 45.72
8 0.000045 2.5642 −0.0659 0.010 × dbh0.5 0.80 0.87 43.14

Tree stem volume

General

6 0.0003 2.1452 — 0.028 × dbh0.5 0.68 0.89 47.90
7 −0.0176 0.00052 — 0.009 × dbh0.5 0.65 0.90 47.74
8 0.000051 2.1611 0.5517 0.008 × dbh0.5 0.65 0.90 38.70
9 0.00007 0.9088 — 0.008 × dbh0.5 0.67 0.89 40.18

Dindili forest 7 −0.0121 0.00047 0.008 × dbh0.5 0.42 0.79 33.9
8 0.0000099 2.0392 1.2855 0.007 × dbh0.5 0.36 0.86 4.3

Rondo forest 7 −0.03965 0.00059 0.009 × dbh0.5 0.83 0.90 33.94
8 0.00011 2.1685 0.3038 0.009 × dbh0.5 0.83 0.90 35.3

3.3. Total, Branch, and Stem Tree Biomass Models. Parameter
estimates of total tree AGB for general and site specific
models are presented in Table 5. Model with dbh alone
had the lowest 𝑅2 and highest RMSE. Site specific models
had larger 𝑅2 and lower RMSE compared to corresponding
general models. Inclusion of ht into the model (models (8)
and (9)) improved the model fit marginally. On the other
hand, the lowest AIC and RMSE and highest 𝑅2 for general

and site specific models were apparent for models which
include WD (model (10)). Models (7), (9), and (10) were
selected for further evaluation. The distribution of observed
trees AGB and projected AGB by applying the selected site
specific and general models against dbh is presented in
Figure 4. Observed tree AGB data for Dindili forest was
systematically larger than that of Rondo forest for all trees
sizes.
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Table 4: Evaluation of the selected general and site specific models for tree total, branches, and stem volume.

Type Tree section Selected model Prediction error% All Model efficiency All
Dindili Rondo Dindili Rondo

General

Total 7 −2.09 12.78 8.84 0.87 0.96 0.94
8 −0.50 13.27 6.38 0.90 0.87 0.87

Branches 7 −17.73 20.95S 1.75 0.35 0.65 0.56
8 −0.26 56.12S 27.93 0.66 0.68 0.68

Stem 7 13.72 15.61 14.66 0.88 0.89 0.88
8 15.43 14.53 14.98 0.90 0.86 0.86

Selected site specific (Regional)

Total 7 4.08 6.97 — 0.87 0.96 —
8 6.68 3.28 — 0.90 0.96 —

Branches 7 15.79 17.46 — 0.58 0.66 —
8 14.28 18.90 — 0.73 0.86 —

Stem 7 11.75 15.50 — 0.78 0.90 —
8 10.28 17.95 — 0.74 0.87 —

The best selected models are in bold and italic. SSignificantly different from zero (𝑝 < 0.05).

Table 5: Parameter estimates and performance of general and site specific models for total tree aboveground biomass.

General/sites Model Parameter estimates Error RMSE 𝑅
2 AIC

𝑎 𝑏 𝑐

General

6 0.6881 1.93834 0.237 × dbh2.028 1280.4 0.49 893.98
7 3.2064 0.6166 0.176 × dbh2.105 1326.16 0.48 892.70
8 0.3571 1.7440 0.4713 0.274 × dbh1.982 1214.68 0.52 893.44
9 0.1459 0.8601 0.323 × dbh1.940 1169.65 0.54 892.56
10 0.0873 0.9458 0.559 × dbh1.673 567.9 0.87 840.94

Dindili forest

6 0.5414 2.0591 0.429 × dbh1.801 539.98 0.83 421.38
7 4.5076 0.6915 0.347 × dbh1.860 506.59 0.84 421.40
8 0.2137 1.8004 0.6724 0.573 × dbh1.686 470.50 0.87 416.48
9 0.1568 0.8613 0.585 × dbh1.683 478.61 0.87 415.06
10 0.1014 0.9510 0.638 × dbh1.675 467.52 0.89 418.34

Rondo forest

6 0.3238 2.0673 0.040 × dbh2.430 1360.97 0.50 450.04
7 0.2816 1.1654 0.006 × dbh2.916 1514.67 0.51 442.78
8 0.0542 1.3326 1.4278 0.165 × dbh2.010 967.08 0.66 439.90
9 0.0863 0.8544 0.040 × dbh2.397 1172.15 0.58 440.64
10 0.07511 0.9477 0.214 × dbh1.780 462.47 0.92 396.58

Parameter estimates and performance of general and site
specific models for biomass tree section are presented in
Table 6. Similarmodels performance trend as that of total tree
AGB models were also found for sectional biomass models.
Modelling all data sets significantly reduced and increased the
𝑅
2 and RMSE, respectively, compared to site specific models.

Inclusion of ht andWDreducedAIC except forDindili where
addition of WD did not improve the model fit.

The selected general biomass models were evaluated on
how best they predict the tree total, branches, and stem
biomass to each study site (Table 7). Overall model with dbh
or a combination of dbh and ht performed poorly.Themodels
underestimated biomass in Dindili forest and overestimated
the biomass in Rondo forest. However, the magnitude of
overestimation was immense in Rondo forest when com-
pared to the magnitude of underestimation at Dindili forest.
Inclusion of WD stabilized the models’ prediction error

and efficiency globally. AGB models developed by Chave
et al. [12] produced small mean prediction error globally
(about 5%) and performed poorly when tested at site level
(prediction error > 12%). Model developed by Masota [34]
significantly overestimated tree biomass in all sites. The
selected site specific models were found to be efficient and
produced lower mean prediction error compared to best
performing general model (model (10)) when tested to site
level.

4. Discussion

Lowland forests in Tanzania are generally found in areas
close to the coast of Indian Ocean and some areas of the
inland. The locality differences as defined by the distance
of the forest from the coast influence the forest structure
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Table 6: Parameter estimates and performance of general and site specific models for biomass of tree sections.

Section General/sites Model Parameter estimates Error RMSE 𝑅
2 AIC

𝑎 𝑏 𝑐

Tree branches

General

6 0.1379 2.1738 0.027 × dbh2.456 846.89 0.39 823.10
7 −1.6031 0.2524 0.042 × dbh2.345 677.87 0.41 826.66
8 0.1364 2.1697 0.0088 0.028 × dbh2.451 842.13 0.39 825.08
9 0.0434 0.8868 0.047 × dbh2.319 757.86 0.40 828.52
10 0.0270 0.9887 0.075 × dbh2.118 441.72 0.75 795.70

Dindili

6 0.1173 2.2750 0.023 × dbh2.441 370.47 0.75 383.04
7 −2.5456 0.3211 0.033 × dbh2.375 285.20 0.76 391.26
8 0.1604 2.35962 −0.2205 0.022 × dbh2.455 368.64 0.76 384.92
9 0.0483 0.9083 0.032 × dbh2.380 420.12 0.62 390.90
10 0.04624 0.9549 0.020 × dbh2.510 296.64 0.72 388.60

Rondo

6 0.1343 2.0777 0.046 × dbh2.277 619.55 0.46 422.6
7 0.1403 0.9548 0.041 × dbh2.303 620.00 0.46 421.78
8 0.000007 0.5631 4.9456 0.141 × dbh1.890 531.55 0.64 405.46
9 0.0288 0.8912 0.047 × dbh2.249 594.47 0.51 416.26
10 0.05347 0.8840 0.205 × dbh1.763 345.94 0.85 394.66

Tree stem

General

6 0.3859 1.7794 0.135 × dbh1.994 570.48 0.49 811.60
7 −1.0523 0.2482 0.109 × dbh2.053 618.81 0.49 811.76
8 0.07646 1.5073 1.0172 0.203 × dbh1.859 472.48 0.62 803.40
9 0.1683 0.7287 0.174 × dbh1.903 494.66 0.60 801.86
10 0.0848 0.8726 0.333 × dbh1.658 259.49 0.85 772.30

Dindili

6 0.2451 2.0119 0.086 × dbh2.108 358.30 0.56 390.86
7 −1.1567 0.2895 0.103 × dbh2.059 343.87 0.57 390.92
8 0.0395 1.3879 1.4583 0.181 × dbh1.825 212.42 0.84 377.04
9 0.0869 0.8392 0.118 × dbh1.963 260.6 0.77 388.60
10 0.0853 0.8798 0.108 × dbh1.994 277.39 0.68 380.18

Rondo

6 0.3944 1.7607 0.200 × dbh1.869 549.37 0.49 417.66
7 −5.4258 0.2147 0.104 × dbh2.043 668.71 0.48 422.10
8 0.0278 1.2617 1.5116 0.344 × dbh1.694 441.80 0.67 412.20
9 0.0808 0.8026 0.213 × dbh1.830 493.90 0.59 412.35
10 0.06812 0.8888 0.779 × dbh1.395 271.52 0.89 391.32

and conditions due to climatic and topographical differences.
Therefore, in this study two sites of lowland forests were
selected, that is, one near to the coast (wet lowland forest)
and the second from further inland (dry lowland forest), to
cater the variations associated with environmental factors.
Since the tree selection for modelling was based on the tree
size distribution from the information derived from the forest
inventory data (Table 2), it is apparent that the modelling
data in this study was representative. However, in tropical
natural forests where hundreds of species exist per ha [35],
it is impractical to represent every tree species for allometric
model development. However, the priority was given to tree
species which have high appearance frequency.Moreover, the
larger trees which normally influence the trend of allometric
model and also account for a very large part of the volume and
AGB [4, 35] were well represented to avoid extrapolation.

4.1. Height-Diameter Relationships. Over 61% of variation
on tree ht was explained by the selected site specific ht-
dbh models. The coefficient of variation (𝑅2) in this study

corresponds to that of Mugasha et al. [18] lowland forests of
Tanzania where 𝑅2 of 0.64 was reported. However, consid-
erable amount of variation in ht remains unexplained. This
may be due to large diversity of tree species with different
ht-dbh allometry. This is also evident when modelling ht-
dbh of combined data from the two sites where 𝑅2 dropped
to 0.57. In addition, tree allometry was found to be different
among sites as indicated by slightly taller trees in Rondo than
those from Dindili forest at a given dbh (Figure 3). Due to
such difference in addition to drop of 𝑅2 and increasing of
RMSE for the combined data set, it is recommended that the
site specific ht-dbh models are to be applied. Furthermore, ht
of trees larger than 40 cm dbh were overestimated by ht-dbh
model developed by Mugasha et al. [18]. This may be due to
the fact that Mugasha et al. [18] did not include trees found
in areas with similar climate conditions as that of Rondo
or Dindili in their model. Studies have shown that ht-dbh
relationship varies significantly with climate [12, 36]. Since
climate variation affects ht, this in turn affects trees AGB and
volume.Therefore, as noted byChave et al. [12], it is important
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Table 7: Evaluation of the selected general and site specific models for tree total, branches, and stem biomass.

Type Section Selected model Prediction error% Model efficiency
Dindili Rondo All Dindili Rondo All

General

Total tree biomass

7 −1.26 53S 50.28 0.81 −0.61 −0.10
9 −6.59 60S 53.12 0.83 0.87 −0.25
10 −14.97S 19.10S 2.06 0.81 0.91 0.87

Chave et al., 2014 [12] −12.59S 23.24S −5.33 0.85 0.86 0.86
Masota, 2015 [34] 25.07S 151.30S 88.1 0.84 −1.78 −0.84

Branches biomass
6 −13.58 80S 56.66 0.60 −0.47 −0.02
8 −13.96 87S 56.68 0.60 −0.47 −0.02
10 −14.87 47.17S 16.16 0.59 0.84 0.74

Stem biomass
6 −23.46S 38S −4.40 0.30 0.48 0.44
9 −21.95S 29.96S 4.32 0.48 0.59 0.56
10 9.17 23.57 16.37 0.72 0.91 0.86

Site specific (regional)

Total tree biomass

6 5.16 — — 0.94 — —
7 — 6.47 — — 0.72 —
8 — −1.26 — — 0.77 —
9 1.68∗∗ — — 0.94 — —
10 3.75 4.31 — 0.88 0.93 —

Branches biomass

6 4.82 — — 0.87 — —
7 — 11.80 — — 0.65 —
8 4.62 −4.00 — 0.88 0.76 —
10 5.89 7.14 — 0.69 0.69 —

Stem biomass
6 9.06 9.39 — 0.83 0.72 —
8 7.07 7.17 — 0.93 0.80 —
10 17.52 12.73 — 0.71 0.91 —

∗∗The best selected models are in bold and italic. SSignificantly different from zero (𝑝 < 0.05).

Lowland model Miombo model
Montane/humid Dindili data
Rondo data
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Figure 3: Comparison of lowland forest, miombo woodlands,
and Montane/humid volume models. Lowland volume estimates
computed by model (8). Total tree height was estimated using the
developed ht-dbh models.

to include ht as an explanatory variable in AGB or volume
models to accommodate variation triggered by climate and
other environment factors.

4.2. Volume and Biomass Allometric Models. Over 73% of
variation in tree volume was explained by dbh or by both
dbh and ht. Site specific models slightly improved the model
fit compared to general models. Model (7) (with only dbh)

Dindili data Rondo data
General model Dindili model
Rondo model
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Figure 4: Scatter plot and biomass estimates by applying model (9).
Total tree height was predicted using the developed ht-dbh models.

andmodel (8) (with both ht and dbh)were selected for all tree
section. However, model (8) with ht included outperformed
model (7) with only dbh. This observation also underscores
the importance of including ht in volume allometric models
as also suggested by Chave et al. [12].

The comparison between the developed volume models
and that of miombo woodlands and Montane/humud forest
shows that the volume of trees with dbh greater than 65 cm
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Table 8: Families and wood basic density of sample tree species for allometric model development.

Forest Tree # Botanical name Local name Family WD ± SD (g cm−3)
Dindili 1 Manilkara sulcata Msezi Sapotaceae 0.70 ± 0.11
Dindili 2 Ricinodendron heudelotii Mkungunolo Euphorbiaceae 0.41 ± 0.06
Dindili 3 Manilkara sulcata Msezi Sapotaceae 0.74 ± 0.04
Dindili 4 Combretum schumannii Mkatakorongo Combretaceae 0.82 ± 0.06
Dindili 5 Albizia gummifera Mkenge Fabaceae 0.62 ± 0.06
Dindili 6 Terminalia sambesiaca Mpululu Combretaceae 0.69 ± 0.16
Dindili 7 Tamarindus indica Mkwaju Fabaceae 0.69 ± 0.04
Dindili 8 Commiphora zimmermannii Mtwini Burseraceae 0.40 ± 0.08
Dindili 9 Pteleopsis myrtifolia Mngoji Combretaceae 0.67 ± 0.04
Dindili 10 Pteleopsis myrtifolia Mngoji Combretaceae 0.70 ± 0.03
Dindili 11 Combretum schumannii Mkatakorongo Combretaceae 0.78 ± 0.04
Dindili 12 Tamarindus indica Mkwaju Fabaceae 0.70 ± 0.01
Dindili 13 Vepris nobilis Mzindizi Rutaceae 0.77 ± 0.08
Dindili 14 Terminalia sambesiaca Mpululu Combretaceae 0.58 ± 0.13
Dindili 15 Holarrhena pubescens Mmelemele Apocynaceae 0.44 ± 0.03
Dindili 16 Sterculia appendiculata Mgude Sterculiaceae 0.46 ± 0.08
Dindili 17 Sterculia appendiculata Mgude Sterculiaceae 0.49 ± 0.11
Dindili 18 Lannea sp. Muumbu Anacardiaceae 0.52 ± 0.21
Dindili 19 Terminalia sambesiaca Mpululu Combretaceae 0.70 ± 0.12
Dindili 20 Combretum schumannii Mkatakorongo Combretaceae 0.80 ± 0.06
Dindili 21 Scorodophloeus fischeri Mhande Fabaceae 0.76 ± 0.06
Dindili 22 Terminalia sambesiaca Mpululu Combretaceae 0.62 ± 0.05
Dindili 23 Scorodophloeus fischeri Mhande Fabaceae 0.70 ± 0.07
Dindili 24 Cussonia zimmermannii Mkong’onolo Araliaceae 0.40 ± 0.05
Dindili 25 Terminalia sambesiaca Msezi Sapotaceae 0.80 ± 0.04
Dindili 26 Scorodophloeus fischeri Mhande Fabaceae 0.71 ± 0.06
Dindili 27 Celtis sp. Mkoma chuma Ulmaceae 0.79 ± 0.12
Dindili 28 Sterculia africana Moza Sterculiaceae 0.81 ± 0.07
Dindili 29 Cussonia zimmermannii Mkong’onolo Araliaceae 0.63 ± 0.16
Dindili 30 Scorodophloeus fischeri Mhande Fabaceae 0.60 ± 0.17

Mean value 0.65 ± 0.13
Rondo 1 Xylopia sp. Nami Annonaceae 0.51 ± 0.01
Rondo 2 Blighia unijugata Mkalanga Sapindaceae 0.44 ± 0.06
Rondo 3 Tabernaemontana ventricosa Mnongoli Apocynaceae 0.45 ± 0.02
Rondo 4 Cussonia zimmermannii Mtumbitumbi Araliaceae 0.27 ± 0.02
Rondo 5 Parinari excelsa Mmula Rosaceae 0.49 ± 0.02
Rondo 6 Ricinodendron heudelotii Mtene Euphorbiaceae 0.29 ± 0.06
Rondo 7 Ricinodendron heudelotii Mtene Euphorbiaceae 0.26 ± 0.02
Rondo 8 Ricinodendron heudelotii Mtene Euphorbiaceae 0.21 ± 0.04
Rondo 9 Ricinodendron heudelotii Mtene Euphorbiaceae 0.35 ± 0.04
Rondo 10 Ricinodendron heudelotii Mtene Euphorbiaceae 0.21 ± 0.03
Rondo 11 Cussonia zimmermannii Mtumbitumbi Araliaceae 0.32 ± 0.07
Rondo 12 Antiaris toxicaria Nkalale/Nkarale Moraceae 0.36 ± 0.13
Rondo 13 Ricinodendron heudelotii Mtene Euphorbiaceae 0.23 ± 0.03
Rondo 14 Ricinodendron heudelotii Mtene Euphorbiaceae 0.26 ± 0.03
Rondo 15 Ricinodendron heudelotii Mtene Euphorbiaceae 0.30 ± 0.03
Rondo 16 Ricinodendron heudelotii Mtene Euphorbiaceae 0.25 ± 0.07
Rondo 17 Ricinodendron heudelotii Mtene Euphorbiaceae 0.21 ± 0.04
Rondo 18 Porlerandia penduliflora Nakatumbaku Rubiaceae 0.54 ± 0.01
Rondo 19 Trilepsium madagascariense Ntulumuti Sapotaceae 0.48 ± 0.02
Rondo 20 Euphorbia sp. Milembutuka Mweusi Euphorbiaceae 0.57 ± 0.03
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Table 8: Continued.

Forest Tree # Botanical name Local name Family WD ± SD (g cm−3)
Rondo 21 Milletia eetveldiana Mkunguwe Fabaceae 0.59 ± 0.01
Rondo 22 Manilkara discolor Mtondoli Sapotaceae 0.53 ± 0.02
Rondo 23 Dialium holtizii Mpepeta Fabaceae 0.58 ± 0.02
Rondo 24 Milletia eetveldiana Mkunguwe Fabaceae 0.58 ± 0.03
Rondo 25 Drypetes parviflora Mkengeda/Mnangari Euphorbiaceae 0.50 ± 0.04
Rondo 26 Milletia eetveldiana Mkunguwe Fabaceae 0.57 ± 0.02
Rondo 27 Dialium holtizii Mpepeta Fabaceae 0.60 ± 0.03
Rondo 28 Drypetes parviflora Mkengeda/Mnangari Euphorbiaceae 0.71 ± 0.06
Rondo 29 Milicia excelsa Mtunguru/Mvule Moraceae 0.50 ± 0.08
Rondo 30 Ricinodendron heudelotii Mtene Euphorbiaceae 0.23 ± 0.02

Mean value 0.41 ± 0.15

was overestimated by the miombo woodlands model while
all trees sizes were overestimated byMontane/humid volume
model. This pattern provides an insight into the actual
volume difference between trees in miombo woodlands
and Montane/humid forests and that of lowland forests
at a given tree size. This variation may be attributable to
the tree architectural differences since lowland forests are
characterised by very tall trees as opposed to short and
very wide crowned trees in miombo woodlands (Figure 2)
[37]. While branching pattern for lowland forest is similar to
Montane/humid forests, the biomass differences revealed in
this studymay be due to the fact that trees inMontane/humid
forest are taller than those found in lowland forests [1, 18].
Due to large variation in branching patterns among tree sizes
and species in lowland, the model fit to the tree branches
was not as good as the model fit of the tree total and stem
models. It can also be noted that even though the total
volume models are affected by the branches, the model fits
were still better than those of the stem models. The most
plausible explanation for this is the fact that the demarcation
point formerchantable stem relies on considerations not only
on size (minimum diameter), but also on subjective stem
quality assessments for timber which adds variability to the
relationship between dbh and stem. Evaluation of general
volume models to the sites indicates that models (7) and (8)
can be reliably applied to lowland forests of Tanzania while
for tree sectional tree volume the site specific volume models
are recommended.

Although the selected general biomass model performed
well globally, the selected site specificAGBmodels performed
far better. The model fit improved with addition of ht and
WD. In contrast to volume models, AGB varied significantly
between sites.The variation is highly associatedwithWD (see
Table 8).This explains whymodel (10) (withWD) performed
relatively well for site specific AGB models as well as for
general AGB model. Similar trend was found for biomass
sectional models where inclusion of WD also improved the
model fit and efficiency significantly (e.g., from 𝑅

2 values
from 0.62 to 0.85 and model efficiency value from 0.80 to
0.91 from model (8) to model (10), resp., for stem general
biomass model). However, the mean prediction error of
general biomass model (model (10)) was large and inefficient
compared to site specific models when tested at site level.

This may be due to actual differences between the two forests
as a function of climate and other environmental factors
which shape the forest structure and conditions [20, 38].
It is therefore recommended that, for lowland forests, the
selected site specific biomass models (Table 7) be applied
since their prediction error is within the acceptable range
(𝑝 > 0.05, Table 7). For the sites which are situated inland,
the AGB model developed for Dindili forest may be used
and for lowland forests near the coast, the AGB model
developed for Rondo forest may be used. Furthermore, for
improved estimation of AGB, the model with ht and WD
included is highly recommended.Model developed by Chave
et al. [12] underestimated and overestimated AGB in Rondo
and Dindili forest, respectively, and gave unbiased biomass
estimates at global scale.

5. Conclusion

From the findings in this study, site specific ht-dbh model
is recommended since the tree allometry was found to
differ significantly between dry and wet lowland forests. The
selected general tree total volume model may be applied in
lowland forests of Tanzania since no significant difference
in prediction error was found when tested to each study
site. Due to biased biomass estimates of general aboveground
biomass model, the application of selected site specific
biomass models is recommended, that is, dry and wet
lowland forests biomass models developed in Dindili and
Rondo forest, respectively. Application ofmodels withWD in
addition to dbh and ht is highly recommended for improved
estimates accuracy.
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