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We study jump-diffusion systemswith neutral term and impulses. Under some conditions, we prove that the jump-diffusion systems
with neutral term and impulses are mean square and almost surely exponentially stable. Finally, we give an example to describe the
theoretical results.

1. Introduction

Recently, stochastic partial differential systems (SPDS) are
often used to describe some evolution phenomena in study-
ing pattern recognition and engineering [1, 2]. Dynamic
behavior of solutions for SPDS has been discussed by many
researchers [3–8].

In the practical application, there exists often impul-
sive disturbance under specific circumstances [9, 10]. For
example, in [11, 12], Zhu et al. discussed stability behavior
of stochastic impulsive systems. Sakthivel and Luo [13] dis-
cussed asymptotics of stochastic impulsive systems. Further,
in [14], Jiang and Shen studied asymptotic behavior for
stochastic impulsive infinite delays systems. Chen et al. [15]
discussed stability of stochastic impulsive systems by inequal-
ity technique.

In addition, many models such as population models
and circuits models often include the derivative terms of
the current state and past state, which are often described
as neutral systems [16–21]. Meanwhile, there are also a few
works on jump diffusions, which are discussed extensively.
For example, Zhu [22] discussed the long-time behavior of
the solution including the 𝑝th moment asymptotic stability
and almost sure stability for stochastic jump systems. In [23,
24], the authors established dynamical behavior of stochastic
jump systems and stochastic jump biological model. Cui et al.

[25–27] studied the existence, uniqueness, and some stability
of stochastic jump systems. Luo and Taniguchi [28] discussed
the existence of solutions of neutral stochastic jump systems
under non-Lipschitz condition. Ren and Sakthivel [29, 30]
discussed dynamic behavior of second-order jump-diffusion
systems.

The rest of the paper is organized as follows. In Section 2,
we give some preliminaries on mild solution. Then we give
some conditions to guarantee stability of mild solution by the
fixed point theory in Section 3. In Section 4, an example is
presented to show our conclusions.

2. Preliminaries

Throughout this paper, let (Ω,F, {F
𝑡
}
𝑡≥0
,P) be a complete

probability space with a filtration {F
𝑡
}
𝑡≥0

satisfying the usual
conditions [31]. Let 󰜚 > 0 and 𝑅

+
= [0, +∞). Moreover, let Ξ

and ℘ be real separable Hilbert spaces with norms | ⋅ |
Ξ
, | ⋅ |
℘

and let m(℘, Ξ) be the space of all bounded linear operators
from ℘ into Ξ. In this work, ‖ ⋅ ‖ is the norms of operators.
The notation D = DF0

([−󰜚, 0], Ξ) denotes the family of all
F
0
-measurable functions from [−󰜚, 0] into Ξ with the norm

|Ψ|D = sup
𝑡∈[−󰜚,0]

|Ψ(𝑡)|
Ξ
.

Let {𝐵(𝑡) : 𝑡 ≥ 0} be a ℘-valued Wiener process on the
probability space (Ω,F, {F

𝑡
}
𝑡≥0
,P) with a trace class opera-

tor 𝑄 on ℘. L0
2
(℘, Ξ) being the set of all 𝑄-Hilbert-Schmidt
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operators from ℘ to Ξ. For the construction, the reader is
referred to [19, 25, 31, 32]. Assume that 𝑚(]), ] ∈ D

𝑚
, is a

stationaryF]-Poisson point process with characteristic mea-
sure 𝜆. 𝑁(𝑑], 𝑑𝜗) defined by 𝑁(],X) = ΣV∈D𝑚 ,]≥V1X(𝑚(V))
for X ∈ B(℘ − {0}). Let 𝑁̃(𝑑], 𝑑𝜗) = 𝑁(𝑑], 𝑑𝜗) − 𝜆(𝑑𝜗)𝑑],
which is independent of 𝐵(⋅). For the Poisson measure, see
[21].

Suppose that 𝑆(𝑡), 𝑡 ≥ 0, is an analytic semigroup with
its infinitesimal generator𝐴 [14]. For the analytic semigroup,
see Pazy [32, Page 60–75]. In the paper, assume that 0 ∈ 𝜌(𝐴).
According to Pazy [32], a linear closed operator (−𝐴)𝛼 (𝛼 ∈

(0, 1]) can be defined onD((−𝐴)
𝛼
).

Consider a jump-diffusion system with neutral term and
impulses:

𝑑 [𝑌 (𝑡) + 𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))]

= [𝐴𝑌 (𝑡) + 𝑃 (𝑡, 𝑌 (𝑡 − 𝜁 (𝑡)))] 𝑑𝑡

+ 𝑅 (𝑡, 𝑌 (𝑡 − 𝜛 (𝑡))) 𝑑𝐵 (𝑡)

+ ∫
X

Θ (𝑡, 𝑌 (𝑡 − 𝜃 (𝑡)) , 𝜗) 𝑁̃ (𝑑𝑡, 𝑑𝜗) , 𝑡 ̸= 𝜏
𝑗
, 𝑡 ≥ 0,

Δ𝑌 (𝜏
𝑗
) = 𝐻

𝑗
(𝑌 (𝜏
−

𝑗
)) , 𝑡 = 𝜏

𝑗
, 𝑗 = 1, . . . , 𝜄,

(1)

with the initial data 𝑌
0
(⋅) = Ψ ∈ DF0

([−󰜚, 0], Ξ). Here 𝐷, 𝑃 :
𝑅
+
×Ξ → Ξ,𝑅 : 𝑅

+
×Ξ → L0

2
(℘, Ξ),Θ : 𝑅

+
×Ξ×X → Ξ and

𝜅(𝑡), 𝜛(𝑡), 𝜁(𝑡), 𝜃(𝑡) : 𝑅
+
→ [0, 󰜚] are continuous. Consider

𝐻
𝑗
: Ξ → Ξ, Δ𝑌(V) = 𝑌(V+) − 𝑌(V−), where 𝑌(V+) =

lim
ΔV→0+𝑌(V + ΔV) and 𝑌(V

−
) = lim

ΔV→0+𝑌(V − ΔV), 0 <

𝜏
1
< ⋅ ⋅ ⋅ < 𝜏

𝜄
< ∞ = lim

𝑗→∞
𝜏
𝑗
.

Definition 1. A process 𝑌(𝑡), 𝑡 ∈ [0, 𝑇], 𝑇 ∈ [0,∞), is said to
be the mild solution to system (1) if

(i) 𝑌(𝑡) is a F
𝑡
-adapted, càdlàg process and is almost

surely square-integrable on [0, 𝑇];
(ii) for 𝑡 ∈ [0, 𝑇]𝑌(𝑡) satisfies
𝑌 (𝑡) = 𝑆 (𝑡) Ψ (0) + 𝑆 (𝑡)𝐷 (0, Ψ)

− 𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))

− ∫

𝑡

0

𝐴𝑆 (𝑡 − V) 𝐷 (V, 𝑌 (V − 𝜅 (V))) 𝑑V

+ ∫

𝑡

0

𝑆 (𝑡 − V) 𝑃 (V, 𝑌 (V − 𝜁 (V))) 𝑑V

+ ∫

𝑡

0

𝑆 (𝑡 − V) 𝑅 (V, 𝑌 (V − 𝜛 (V))) 𝑑𝐵 (V)

+ ∫

𝑡

0

∫
X

𝑆 (𝑡 − V) Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗) 𝑁̃ (𝑑V, 𝑑𝜗)

+ ∑

0<𝜏𝑗<𝑡

𝑆 (𝑡 − 𝜏
𝑗
)𝐻
𝑗
(𝑌 (𝜏
−

𝑗
)) ,

(2)

and 𝑌
0
= Ψ ∈ DF0

([−󰜚, 0], Ξ).

To establish exponential stability [7, 10, 20] of system (1),
we need the following hypotheses.

(𝐻
1
) ‖𝑆(𝑡)‖ ≤ 𝑒−𝛽𝑡, where 𝛽 is a positive constant.

(𝐻
2
) There exists 𝐾̃ > 0 such that, for 𝑡 ≥ 0, 𝑌

1
, 𝑌
2
∈ Ξ,

󵄨󵄨󵄨󵄨(−𝐴)
𝛼
𝐷(𝑡, 𝑌

1
) − (−𝐴)

𝛼
𝐷(𝑡, 𝑌

2
)
󵄨󵄨󵄨󵄨
2

Ξ
≤ 𝐾̃

󵄨󵄨󵄨󵄨𝑌1 − 𝑌2
󵄨󵄨󵄨󵄨
2

Ξ
. (3)

(𝐻
3
) There exist positive constants 𝐿

1
, 𝐿
2
, 𝐿
3
such that, for

𝑡 ≥ 0, 𝑌
1
, 𝑌
2
∈ Ξ,

󵄨󵄨󵄨󵄨𝑃 (𝑡, 𝑌1) − 𝑃 (𝑡, 𝑌2)
󵄨󵄨󵄨󵄨
2

Ξ
≤ 𝐿
1

󵄨󵄨󵄨󵄨𝑌1 − 𝑌2
󵄨󵄨󵄨󵄨
2

Ξ
,

󵄨󵄨󵄨󵄨𝑅 (𝑡, 𝑌1) − 𝑅 (𝑡, 𝑌2)
󵄨󵄨󵄨󵄨
2

L0
2

≤ 𝐿
2

󵄨󵄨󵄨󵄨𝑌1 − 𝑌2
󵄨󵄨󵄨󵄨
2

Ξ
,

∫
X

󵄨󵄨󵄨󵄨Θ (𝑡, 𝑌1, 𝜗) − Θ (𝑡, 𝑌2, 𝜗)
󵄨󵄨󵄨󵄨
2

Ξ
𝜆 (𝑑𝜗) ≤ 𝐿

3

󵄨󵄨󵄨󵄨𝑌1 − 𝑌2
󵄨󵄨󵄨󵄨
2

Ξ
.

(4)

(𝐻
4
) There exist constants 𝑙

𝑗
such that, for 𝑌

1
, 𝑌
2
∈ Ξ,

|𝐻
𝑗
(𝑌
1
) − 𝐻
𝑗
(𝑌
2
)|
2
≤ 𝑙
𝑗
|𝑌
1
− 𝑌
2
|
2
(𝑗 = 1, . . . , 𝜄).

(𝐻
5
) One has 𝐷(𝑡, 0) = 𝑃(𝑡, 0) = 𝑅(𝑡, 0) = Θ(𝑡, 0, 𝜗) =

𝐻
𝑗
(0) = 0 (𝑗 = 1, 2, . . .) for 𝑡 ≥ 0.

Remark 2. We should point out that it is clear that system (1)
has a trivial solution when Ψ = 0 by (𝐻

1
)–(𝐻
5
).

3. Main Results

In the section, we will state and prove our main results on
mean square and almost surely exponential stability to system
(1) by the fixed point theory. To prove our main results, we
firstly give a useful lemma.

Lemma 3 (see [18, 32]). Under (𝐻
1
), assume that 0 ∈ 𝜌(𝐴).

Then, for 𝛼 ∈ (0, 1],

(i) for 𝑌 ∈ D((−𝐴)
𝛼
), 𝑆(𝑡)(−𝐴)𝛼𝑌 = (−𝐴)

𝛼
𝑆(𝑡)𝑌;

(ii) there exist constants𝑀
𝛼
> 0 and 𝛽 > 0 such that, for

𝑡 > 0,
󵄩󵄩󵄩󵄩(−𝐴)

𝛼
𝑆 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝑀𝛼𝑡
−𝛼
𝑒
−𝛽𝑡
. (5)

Now we will state and prove the main results on stability.

Theorem4. Suppose that (𝐻
1
)–(𝐻
5
) hold.Then system (1) has

a uniquemild solution and ismean square exponentially stable,
if the initial data Ψ is mean square exponentially stable and

6 [𝐾̃
󵄩󵄩󵄩󵄩(−𝐴)

−𝛼󵄩󵄩󵄩󵄩
2

+ 𝐾̃𝑀
2

1−𝛼
𝛽
−2𝛼
Γ
2
(𝛼)

+ 𝐿
1
𝛽
−2
+ 𝐿
2
(2𝛽)
−1

+ 𝐿
3
(2𝛽)
−1

+ 𝑙̃𝑒
−2𝛽𝑇

] < 1.

(6)

Here 𝑙̃ = E(∑
𝜄

𝑗=1
|𝑙
𝑗
|) and𝑀

1−𝛼
and 𝛽 are defined by (5).

Proof. Let Υ be the Banach space of 𝑌(𝑡) with the norm
‖𝑌‖
Υ
:= sup

𝑡≥0
E|𝑌(𝑡)|2

Ξ
and there exist 𝑀 > 0 and 𝛿 > 0

such that, for 𝑡 ≥ 0,

E |𝑌 (𝑡)|
2

Ξ
< 𝑀E |Ψ|

2

D 𝑒
−𝛿𝑡
. (7)
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Define an operator Π : Υ → Υ by Π(𝑌)(𝑡) = Ψ(𝑡) for 𝑡 ∈
[−󰜚, 0] and for 𝑡 ≥ 0,

Π (𝑌) (𝑡) = 𝑆 (𝑡) Ψ (0) + 𝑆 (𝑡)𝐷 (0, Ψ)

− 𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))

− ∫

𝑡

0

𝐴𝑆 (𝑡 − V) 𝐷 (V, 𝑌 (V − 𝜅 (V))) 𝑑V

+ ∫

𝑡

0

𝑆 (𝑡 − V) 𝑃 (V, 𝑌 (V − 𝜁 (V))) 𝑑V

+ ∫

𝑡

0

𝑆 (𝑡 − V) 𝑅 (V, 𝑌 (V − 𝜛 (V))) 𝑑𝐵 (V)

+ ∫

𝑡

0

∫
X

𝑆 (𝑡 − V) Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗) 𝑁̃ (𝑑V, 𝑑𝜗)

+ ∑

0<𝜏𝑗<𝑡

𝑆 (𝑡 − 𝜏
𝑗
)𝐻
𝑗
(𝑌 (𝜏
−

𝑗
)) .

(8)

Now we will prove that the operatorΠ has a fixed point in Υ.
Without loss of generality, we suppose that 0 < max{𝛿, 𝜂} <
𝛽. Let 𝛽

𝜍
:= (𝛽 − 𝜍)

−1. We firstly claim that Π(Υ) ⊂ Υ. Let
𝑌(𝑡) ∈ Υ and we then have from (8)

E |Π (𝑌) (𝑡)|
2

Ξ

≤ 7E |𝑆 (𝑡) Ψ (0) + 𝑆 (𝑡)𝐷 (0, Ψ)|
2

Ξ

+ 7E |𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))|
2

Ξ

+ 7E
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝐴𝑆 (𝑡 − V) 𝐷 (V, 𝑌 (V − 𝜅 (V))) 𝑑V
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Ξ

+ 7E
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝑆 (𝑡 − V) 𝑃 (V, 𝑌 (V − 𝜁 (V))) 𝑑V
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Ξ

+ 7E
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝑆 (𝑡 − V) 𝑅 (V, 𝑌 (V − 𝜛 (V))) 𝑑𝐵 (V)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Ξ

+ 7E
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

∫
X

𝑆 (𝑡 − V) Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗) 𝑁̃ (𝑑V, 𝑑𝜗)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Ξ

+ 7E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

0<𝜏𝑗<𝑡

𝑆 (𝑡 − 𝜏
𝑗
)𝐻
𝑗
(𝑌 (𝜏
−

𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= 7

7

∑

𝑖=1

𝐹
𝑖
.

(9)

Note that the initial data Ψ is mean square exponentially
stable; that is, there exist, for 𝑀̃ > 0, 𝜂 > 0 such that

−󰜚 ≤ 𝑡 ≤ 0, E|Ψ(𝑡)|2 ≤ 𝑀̃E|Ψ(0)|2
Ξ
𝑒
−𝜂𝑡. By (𝐻

2
) and (𝐻

5
),

we have

𝐹
2
= E

󵄨󵄨󵄨󵄨(−𝐴)
−𝛼
(−𝐴)
𝛼
𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))

󵄨󵄨󵄨󵄨
2

Ξ

≤ 𝐾̃
󵄩󵄩󵄩󵄩(−𝐴)

−𝛼󵄩󵄩󵄩󵄩
2

E |𝑌 (𝑡 − 𝜅 (𝑡))|
2

Ξ

≤ 𝐾̃
󵄩󵄩󵄩󵄩(−𝐴)

−𝛼󵄩󵄩󵄩󵄩
2

(𝑀E |Ψ|
2

D 𝑒
𝛿󰜚−𝛿𝑡

+ 𝑀̃E |Ψ (0)|
2

Ξ
𝑒
𝜂󰜚−𝜂𝑡

) .

(10)

Then (5) together with (𝐻
2
) and (𝐻

5
) yields

𝐹
3
≤ 𝑀
2

1−𝛼
E(∫
𝑡

0

𝑡
(1−𝛼)/2

V 𝑒
−𝛽(𝑡−V)/2

𝑡
(1−𝛼)/2

V 𝑒
−𝛽(𝑡−V)/2

⋅ |(−𝐴)
𝛼
𝐷(V, 𝑌(V − 𝜅(V)))|

Ξ
𝑑V)
2

≤ 𝑀
2

1−𝛼
∫

𝑡

0

𝑒
𝛽V−𝛽𝑡

𝑡
1−𝛼

V 𝑑V

⋅ ∫

𝑡

0

𝑒
𝛽V−𝛽𝑡

𝑡
1−𝛼

V E
󵄨󵄨󵄨󵄨(−𝐴)

𝛼
𝐷 (V, 𝑌 (V − 𝜅 (V)))󵄨󵄨󵄨󵄨

2

Ξ
𝑑V

≤ 𝐾̃Γ (𝛼) 𝛽
−𝛼
𝑀
2

1−𝛼

⋅ ∫

𝑡

0

𝑒
𝛽V−𝛽𝑡

𝑡
1−𝛼

V E |𝑌 (V − 𝜅 (V))|2
Ξ
𝑑V

≤ 𝐾̃Γ (𝛼) 𝛽
−𝛼
𝑀
2

1−𝛼

⋅ ∫

𝑡

0

𝑒
𝛽V−𝛽𝑡

𝑡
1−𝛼

V

⋅ (𝑀E |Ψ|
2

D 𝑒
𝛿󰜚−𝛿V

+ 𝑀̃E |Ψ (0)|
2

Ξ
𝑒
𝜂󰜚−𝜂V

) 𝑑V

≤ 𝐾̃Γ
2
(𝛼) 𝛽
−𝛼
𝑀
2

1−𝛼

⋅ (𝛽
𝛼

𝛿
𝑀E |Ψ|

2

D 𝑒
𝛿󰜚−𝛿𝑡

+ 𝛽
𝛼

𝜂
𝑀̃E |Ψ|

2

D 𝑒
𝜂󰜚−𝜂𝑡

) .

(11)

By (𝐻
1
), we have

𝐹
4
≤ E(∫

𝑡

0

𝑒
𝛽V−𝛽𝑡 󵄨󵄨󵄨󵄨𝑃 (V, 𝑌 (V − 𝜁 (V)))

󵄨󵄨󵄨󵄨Ξ 𝑑V)
2

≤ ∫

𝑡

0

(𝑒
(𝛽V−𝛽𝑡)/2

)
2

𝑑V

⋅ E(∫
𝑡

(𝑒
(𝛽V−𝛽𝑡)/2 󵄨󵄨󵄨󵄨𝑃 (V, 𝑌 (V − 𝜁 (V)))

󵄨󵄨󵄨󵄨Ξ)
2

𝑑V)

≤
𝐿
1

𝛽
∫

𝑡

0

𝑒
𝛽V−𝛽𝑡

E
󵄨󵄨󵄨󵄨𝑌 (V − 𝜁 (V))

󵄨󵄨󵄨󵄨
2

Ξ
𝑑V

≤
𝐿
1

𝛽
(𝛽
𝛿
𝑀E |Ψ|

2

D 𝑒
𝛿󰜚−𝛿𝑡

+ 𝛽
𝜂
𝑀̃E |Ψ|

2

D 𝑒
𝜂󰜚−𝜂𝑡

) .

(12)
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By the properties of the martingales, we have

𝐹
5
≤ ∫

𝑡

0

E |𝑆 (V − 𝑡) 𝑅 (V, 𝑌 (V − 𝜛 (V)))|2L0
2

𝑑V

≤ ∫

𝑡

0

𝑒
2𝛽V−2𝛽𝑡

E |𝑅 (V, 𝑌 (V − 𝜛 (V)))|2L0
2

𝑑V

≤ 𝐿
2
∫

𝑡

0

𝑒
2𝛽V−2𝛽𝑡

E |𝑌 (V − 𝜛 (V))|2
Ξ
𝑑V

≤ 𝐿
2
∫

𝑡

0

𝑒
2𝛽V−2𝛽𝑡

(𝑀E |Ψ|
2

D 𝑒
𝛿󰜚−𝛿V

+ 𝑀̃E |Ψ|
2

Ξ
𝑒
𝜂󰜚−𝜂V

) 𝑑V

≤ 𝐿
2
(𝛽
𝛿
𝑀E |Ψ|

2

D 𝑒
2𝛿󰜚−2𝛿𝑡

+ 𝛽
𝜂
𝑀̃E |Ψ|

2

Ξ
𝑒
𝜂󰜚−𝜂𝑡

) ,

𝐹
6
≤ E∫

𝑡

0

∫
X

𝑒
2𝛽V−2𝛽𝑡

|Θ (V, 𝑌 (V − 𝜃 (V)) , 𝜗)|2 𝜆 (𝑑𝜗) 𝑑V

≤ 𝐿
3
∫

𝑡

0

𝑒
2𝛽V−2𝛽𝑡

E |𝑌 (V − 𝜃 (V))|2
Ξ
𝑑V

≤ 𝐿
3
(𝛽
𝛿
𝑀E |Ψ|

2

D 𝑒
𝛿󰜚−𝛿𝑡

+ 𝛽
𝜂
𝑀̃E |Ψ|

2

Ξ
𝑒
𝜂󰜚−𝜂𝑡

) .

(13)

By (𝐻
1
) and (𝐻

4
), we have

𝐹
7
≤ 𝑒
−2𝛽𝑡

𝑙
𝑗
E
󵄨󵄨󵄨󵄨󵄨
𝑌 (𝑡
−

𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

Ξ
. (14)

From (9) to (14), we can see obviously that there exist 𝑀̂ > 0

and 𝛿 > 0 such that

E |Π (𝑌) (𝑡)|
2

Ξ
≤ 𝑀̂E |Ψ|

2

D 𝑒
−𝛿𝑡
. (15)

Next we claim that Π(𝑌)(𝑡) is càdlàg on Υ. Let 𝑌 ∈ Υ, 𝑡̂ ≥ 0,
and Δ𝑡̂ > 0; we have from (8) that

E
󵄨󵄨󵄨󵄨Π (𝑌) (𝑡̂ + Δ𝑡̂) − Π (𝑌) (𝑡̂)

󵄨󵄨󵄨󵄨
2

Ξ

≤ 7

7

∑

𝑖=1

E
󵄨󵄨󵄨󵄨𝐹𝑖 (𝑡̂ + Δ𝑡̂) − 𝐹𝑖 (𝑡̂)

󵄨󵄨󵄨󵄨
2

Ξ
.

(16)

We can easily see that E|𝐹
𝑖
(𝑡̂ + Δ𝑡̂) − 𝐹

𝑖
(𝑡̂)|
2

Ξ
→ 0 as Δ𝑡̂ → 0,

𝑖 = 1, . . . , 4, and 𝑖 = 7. Moreover, by the properties of the
martingales, we have the fact that when Δ𝑡̂ → 0,

E
󵄨󵄨󵄨󵄨𝐹5 (𝑡̂ + Δ𝑡̂) − 𝐹5 (𝑡̂)

󵄨󵄨󵄨󵄨
2

Ξ

≤ 2∫

𝑡̂

0

E
󵄨󵄨󵄨󵄨(𝑆 (𝑡̂ + Δ𝑡̂ − V) − 𝑆 (𝑡̂ − V))

⋅ 𝑅 (V, 𝑌 (V − 𝜁 (V)))󵄨󵄨󵄨󵄨
2

Ξ
𝑑V

+ 2∫

𝑡̂+Δ𝑡̂

𝑡̂

E
󵄨󵄨󵄨󵄨𝑆 (𝑡̂ + Δ𝑡̂ − V) 𝑅 (V, 𝑌 (V − 𝜁 (V)))󵄨󵄨󵄨󵄨

2

Ξ
𝑑V

󳨀→ 0,

E
󵄨󵄨󵄨󵄨𝐹6 (𝑡̂ + Δ𝑡̂) − 𝐹6 (𝑡̂)

󵄨󵄨󵄨󵄨
2

Ξ

≤ 2E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡̂

0

∫
X

(𝑆 (𝑡̂ + Δ𝑡̂ − V) − 𝑆 (𝑡̂ − V)

⋅ Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗) 𝑁̃ (𝑑V, 𝑑𝜗)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Ξ

+ 2E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡̂+Δ𝑡̂

𝑡̂

∫
X

𝑆 (𝑡̂ + Δ𝑡̂ − V)

⋅ Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗) 𝑁̃ (𝑑V, 𝑑𝜗)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Ξ

≤ 2
󵄩󵄩󵄩󵄩𝑆 (Δ𝑡̂) − 𝐼

󵄩󵄩󵄩󵄩
2

E

⋅ ∫

𝑡̂

0

∫
X

󵄨󵄨󵄨󵄨𝑆 (𝑡̂ − V)Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗)󵄨󵄨󵄨󵄨
2

Ξ
𝜐 (𝑑𝜗) 𝑑V

+ 2E

⋅ ∫

𝑡̂+Δ𝑡̂

𝑡̂

∫
X

󵄨󵄨󵄨󵄨𝑆 (𝑡̂ + Δ𝑡̂ − V)Θ (𝑡, 𝑌 (V − 𝜃 (V)) , 𝜗)󵄨󵄨󵄨󵄨
2

Ξ

⋅ 𝜐 (𝑑𝜗) 𝑑V

󳨀→ 0.

(17)

Consequently, we obtain that Π(Υ) ⊂ Υ.
We finally claim Π is contractive. From (8), 𝑌

1
, 𝑌
2
∈ Υ,

sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨Π (𝑌1) (𝑡) − Π (𝑌2) (𝑡)

󵄨󵄨󵄨󵄨
2

Ξ
≤ 6

6

∑

𝑖=1

𝐺
𝑖
. (18)

Similar to (10)–(14), we have

𝐺
1
= sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨𝐷 (𝑡, 𝑌

1
(𝑡 − 𝜅 (𝑡))) − 𝐷 (𝑡, 𝑌

2
(𝑡 − 𝜅 (𝑡)))

󵄨󵄨󵄨󵄨
2

Ξ

≤ 𝐾̃
󵄩󵄩󵄩󵄩(−𝐴)

−𝛼󵄩󵄩󵄩󵄩
2 sup
0≤V≤𝑇

E
󵄨󵄨󵄨󵄨𝑌1 (V) − 𝑌2 (V)

󵄨󵄨󵄨󵄨
2

Ξ
,

𝐺
2
= sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝐴𝑆 (𝑡 − V)

⋅ [𝐷 (V, 𝑌
1
(V − 𝜅 (V)))

−𝐷 (V, 𝑌
2
(V − 𝜅 (V)))] 𝑑V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Ξ

≤ 𝐾̃𝑀
2

1−𝛼
𝛽
−2𝛼
Γ
2
(𝛼) sup
0≤V≤𝑇

E
󵄨󵄨󵄨󵄨𝑌1 (V) − 𝑌2 (V)

󵄨󵄨󵄨󵄨
2

Ξ
,

𝐺
3
= sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝑆 (𝑡 − V)

⋅ [𝑃 (V, 𝑌
1
(V − 𝜁 (V)))

−𝑃 (V, 𝑌
2
(V − 𝜁 (V)))] 𝑑V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Ξ

≤ 𝐿
1
𝛽
−2 sup
0≤V≤𝑇

E
󵄨󵄨󵄨󵄨𝑌1 (V) − 𝑌2 (V)

󵄨󵄨󵄨󵄨
2

Ξ
,
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𝐺
4
= sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝑆 (𝑡 − V)

⋅ [𝑅 (V, 𝑌
1
(V − 𝜛 (V)))

−𝑅 (V, 𝑌
2
(V − 𝜛 (V)))] 𝑑𝐵 (V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Ξ

≤ 𝐿
2
(2𝛽)
−1 sup
0≤V≤𝑇

E
󵄨󵄨󵄨󵄨𝑌1 (V) − 𝑌2 (V)

󵄨󵄨󵄨󵄨
2

Ξ
,

𝐺
5
= sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

∫
X

𝑆 (V − 𝑡)

⋅ [Θ (𝑡, 𝑌
1
(V − 𝜃 (V)) , 𝜗)

−Θ (𝑡, 𝑌
2
(V − 𝜃 (V)) , 𝜗)]

⋅ 𝑁̃(𝑑V, 𝑑𝜗)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

Ξ

≤ 𝐿
3
(2𝛽)
−1 sup
0≤V≤𝑇

E
󵄨󵄨󵄨󵄨𝑌1 (V) − 𝑌2 (V)

󵄨󵄨󵄨󵄨
2

Ξ
,

(19)

𝐺
6
= sup
0≤𝑡≤𝑇

E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

0<𝜏𝑗<𝑡

𝑆 (𝑡 − 𝜏
𝑗
) (𝐻
𝑗
(𝑌
1
(𝜏
−

𝑗
)) − 𝐻

𝑗
(𝑌
2
(𝜏
−

𝑗
)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑙̃𝑒
−2𝛽𝑇 sup
0≤V≤𝑇

E
󵄨󵄨󵄨󵄨𝑌1 (V) − 𝑌2 (V)

󵄨󵄨󵄨󵄨
2

Ξ
.

(20)

Here 𝑙̃ = E(∑
𝜄

𝑗=1
|𝑙
𝑗
|).

Consequently, we have

sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨Π (𝑌1) (𝑡) − Π (𝑌2) (𝑡)

󵄨󵄨󵄨󵄨
2

Ξ

≤ 6 [𝐾̃
󵄩󵄩󵄩󵄩(−𝐴)

−𝛼󵄩󵄩󵄩󵄩
2

+ 𝐾̃𝑀
2

1−𝛼
𝛽
−2𝛼
Γ
2
(𝛼)

+ 𝐿
1
𝛽
−2
+ 𝐿
2
(2𝛽)
−1

+ 𝐿
3
(2𝛽)
−1

+ 𝑙̃𝑒
−2𝛽𝑇

]

⋅ sup
0≤V≤𝑇

E
󵄨󵄨󵄨󵄨𝑌1 (V) − 𝑌2 (V)

󵄨󵄨󵄨󵄨
2

Ξ
.

(21)

Then if (6) holds,Π is contractive.Therefore, system (1) has a
unique𝑌(𝑡) ∈ Υ and𝑌(𝑡) is mean square exponentially stable
if (6) holds. This proof is complete.

According to [5], we similarly have the following.

Theorem 5. Under the conditions in Theorem 4, system (1) is
almost surely exponentially stable.

If Θ = 0, system (1) becomes

𝑑 [𝑌 (𝑡) + 𝐷 (𝑡, 𝑌 (𝑡 − 𝜅 (𝑡)))]

= [𝐴𝑌 (𝑡) + 𝑃 (𝑡, 𝑌 (𝑡 − 𝜁 (𝑡)))] 𝑑𝑡

+ 𝑅 (𝑡, 𝑌 (𝑡 − 𝜛 (𝑡))) 𝑑𝐵 (𝑡) , 𝑡 ≥ 0, 𝑡 ̸= 𝜏
𝑗
,

Δ𝑌 (𝜏
𝑗
) = 𝐻

𝑗
(𝑌 (𝜏
−

𝑗
)) , 𝑡 = 𝜏

𝑗
, 𝑗 = 1, . . . , 𝜄,

(22)

with the initial data 𝑌
0
(⋅) = Ψ ∈ DF0

([−󰜚, 0], Ξ).
FromTheorems 4 and 5, we have the following.

Corollary 6. Assume that the conditions in Theorem 4 hold,
but (6) is replaced with the following condition:

5[

[

𝐾̃
󵄩󵄩󵄩󵄩(−𝐴)

−𝛼󵄩󵄩󵄩󵄩
2

+𝑀
2

1−𝛼
𝐾̃𝛽
−2𝛼
Γ
2
(𝛼)

+ 𝐿
1
𝛽
−2
+ 𝐿
2
(2𝛽)
−1

+ 𝑒
−2𝛽𝑇

E(
𝜄

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
)]

]

< 1.

(23)

Then system (22) admits a unique mild solution and is mean
square and almost surely exponentially stable.

If Θ ≡ 0 and𝐷 ≡ 0, system (1) becomes

𝑑𝑌 (𝑡) = [𝐴𝑌 (𝑡) + 𝑃 (𝑡, 𝑌 (𝑡 − 𝜁 (𝑡)))] 𝑑𝑡

+ 𝑅 (𝑡, 𝑌 (𝑡 − 𝜛 (𝑡))) 𝑑𝐵 (𝑡) , 𝑡 ≥ 0, 𝑡 ̸= 𝜏
𝑗
,

Δ𝑌 (𝜏
𝑗
) = 𝐻

𝑗
(𝑌 (𝜏
−

𝑗
)) , 𝑡 = 𝜏

𝑗
, 𝑗 = 1, . . . , 𝜄,

(24)

with the initial data 𝑌
0
(⋅) = Ψ ∈ DF0

([−󰜚, 0], Ξ).

Corollary 7. Assume that the conditions in Theorem 4 hold,
but (𝐻

2
) and (6) are replaced with the following condition:

4(𝐿
1
𝛽
−2
+ 𝐿
2
(2𝛽)
−1

+ 𝑒
−2𝛽𝑇

E(
𝜄

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
)) < 1. (25)

Then system (24) has a unique mild solution and is mean
square and almost surely exponentially stable.

Remark 8. We think that the results of the paper can be
generalized to infinite delay systems. Systems (22) and (24)
have been discussed in [14] and [13], respectively, which focus
on asymptotic stability of mild solution. Also by Theorem 4
system (1) without impulses is also mean square and almost
surely exponential stability under some conditions, which has
been studied in [25]. However, it is well known that there are
great differences on themethod between the time-delay cases,
in particular when considering a problem involved in pertur-
bation. In the paper, wemainly focus on exponential stability.
In the sense, [13, 14, 25] are generalized to more extensive
systems.

Remark 9. In particular, when 𝐷 ≡ 0, Θ ≡ 0, system (1)
without jumps, impulses, and neutral term reduces to SPDS,
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which is mean square and almost surely exponential stability
if 3(𝐿

1
𝛽
−2
+ 𝐿
2
(2𝛽)
−1
) < 1. When 𝐿

1
𝛽
−2
+ 𝐿
2
𝛽
−1
< 1/3, Luo

[5] showed that system (1) without jumps, impulses, and neu-
tral term is mean square exponentially stable to this system.
In the sense, the result of the paper improves the result of [5].

Remark 10. Besides, it should be pointed out that the pro-
posed method in the paper can be employed to consider the
𝑝th moment (𝑝 ≥ 2) exponential stability to system (1).

4. Illustrative Example

Example 1. Consider a jump-diffusion system with neutral
term and impulses:

𝑑 (𝑌 (𝑡, 𝜒) + 𝛽
1
𝑌 (𝑡 − 𝜅 (𝑡) , 𝜒))

= (
𝜕
2

𝜕𝜒2
𝑌 (𝑡, 𝜒) + 𝛽

2
𝑌 (𝑡 − 𝜁 (𝑡) , 𝜒)) 𝑑𝑡

+ 𝛽
3
𝑌 (𝑡 − 𝜛 (𝑡) , 𝜒) 𝑑𝐵 (𝑡)

+ ∫
X

𝛽
4
𝜗𝑌 (𝑡 − 𝜃 (𝑡) , 𝜒) 𝑁̃ (𝑑𝑡, 𝑑𝜗) , 𝑡 ≥ 0,

Δ𝑌 (𝜏
𝑗
, 𝜒) = 𝑏

𝑗
𝑌 (𝜏
−

𝑗
, 𝜒) , 𝑡 = 𝜏

𝑗
(𝑗 = 1, 2, 3, . . . , 𝜄) ,

(26)

with 𝑌(𝑠, ⋅) = Ψ(𝑠, ⋅) ∈ L2[0, 𝜋], 𝑌(⋅, 0) = 𝑌(⋅, 𝜋) = 0, 𝑠 ≤ 0,
where 𝛽

𝑗
> 0, 𝑏
𝑗
≥ 0 and ∑𝜄

𝑗=1
𝑏
𝑗
< ∞.

Let X = {x ∈ 𝑅 : 0 < |x| ≤ ℓ, ℓ > 0} and H = 𝐿
2
(0, 𝜋).

The operator 𝐴 is defined by 𝐴 : H → H with 𝐴 = 𝜕
2
/𝜕𝜒
2

and

D (𝐴) = {𝑌 ∈ H : 𝑌,
𝜕𝑌

𝜕𝜒
are absolutely continuous,

𝜕
2
𝑌

𝜕𝜒2
∈ H, 𝑌 (0) = 𝑌 (𝜋) = 0} ;

(27)

then (−𝐴)3/5 is given by

(−𝐴)
3/5
𝑌 =

∞

∑

𝑛=1

𝑛⟨𝑌,√
2

𝑛
sin 𝑛𝜒⟩

H

√
2

𝑛
sin 𝑛𝜒, (28)

and the domain

D ((−𝐴)
3/5
)

= {𝑌 ∈ H,
∞

∑

𝑛=1

𝑛⟨𝑌,√
2

𝑛
sin 𝑛𝜒⟩

H

√
2

𝑛
sin 𝑛𝜒 ∈ H} .

(29)

Since, for 𝑡 ≥ 0, ‖𝑆(𝑡)‖ ≤ exp(−𝜋2𝑡), from Pazy [32, Page 70],
we have

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
−3/5󵄩󵄩󵄩󵄩󵄩

≤
1

Γ (3/5)
∫

∞

0

V−2/5 ‖𝑆 (V)‖ 𝑑V ≤
1

𝜋6/5
. (30)

Obviously, (𝐻
1
)–(𝐻
5
) are satisfied with

𝛽 = 𝜋
2
, 𝐾̃ =

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
3/5󵄩󵄩󵄩󵄩󵄩

2

𝛽
2

1
, 𝐿

1
= 𝛽
2

2
,

𝐿
2
= 𝛽
2

3
, 𝐿

3
= 𝛽
2

4
∫
X

𝜗
2
𝜆 (𝑑𝜗) , 𝑙

𝑗
= 𝑏
2

𝑗
.

(31)

Thus, by Theorems 4 and 5, system (26) is mean square and
almost surely exponentially stable if

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
3/5󵄩󵄩󵄩󵄩󵄩

2

𝛽
2

1
(
1

𝜋2
+
𝑀
2

2/5

𝜋
) +

𝛽
2

2

𝜋4
+
𝛽
2

3

2𝜋2

+
𝛽
2

4

2𝜋2
∫
X

𝜗
2
𝜆 (𝑑𝜗) + 𝑒

−2𝜋𝑇
E(
𝜄

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗

󵄨󵄨󵄨󵄨󵄨

2

) <
1

6
,

(32)

where𝑀
2/5

is defined by (5).

5. Concluding Remarks

In this paper, we have discussed jump-diffusion systems with
neutral term and impulses. Some conditions on mean square
and almost surely exponential stability of the mild solutions
to the jump-diffusion systemswith neutral term and impulses
are derived by the fixed point theory. The obtained results
extend some earlier results to the case of SPDS with neutral
term and jump and impulses. Finally, the results of this paper
are demonstrated well with an example.
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