
Research Article
DIY Interface for Enhanced Service Customization of
Remote IoT Devices: A CoAP Based Prototype

Muhammad Sohail Khan and DoHyeun Kim

College of Computer Engineering, Jeju National University, 102 Jejudaehakno, Jeju-si 690-756, Republic of Korea

Correspondence should be addressed to Muhammad Sohail Khan; sohail.khan@jejunu.ac.kr

Received 12 June 2015; Revised 9 September 2015; Accepted 9 September 2015

Academic Editor: Neil Y. Yen

Copyright © 2015 M. S. Khan and D. Kim. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

DIY vision for the design of a smart and customizable world in the form of IoT demands the involvement of general public in its
development process. General public lacks the technical depths for programming state-of-the-art prototyping and development
kits. Latest IoT kits, for example, Intel Edison, are revolutionizing the DIY paradigm for IoT and more than ever a DIY intuitive
programming interface is required to enable masses to interact with and customize the behavior of remote IoT devices on the
Internet. This paper presents the novel implementation of such a system enabling general public to customize the behavior of
remote IoT devices through a visual interface. The interface enables the visualization of the resources exposed by a remote CoAP
device in the form of graphical virtual objects. The VOs are used to create service design through simple operations like drag-
and-drop and properties settings.The design is maintained as an XML document, thus being easily distributable and recognizable.
CoAP proxy acts as an operation client for the remote device and also provides communication link between the designer and
the device. The paper presents the architecture, detailed design, and prototype implementation of the system using state-of-the-art
technologies.

1. Introduction

Human nature has a strong tendency to do or try to do things
itself. There are various drivers which push human towards
the Do-It-Yourself (DIY) approach. The major drivers for
DIY paradigm are creativity, simplification, extension, eco-
nomic reasons, and the need to control things [1]. Apart from
these drivers, the recent advancements and innovations in the
DIY electronics are providing an opportunity for the masses
to portray their creativity. System on chip (SoC), electronics
development platforms, and kits in the form of Arduino and
Raspberry Pi are a huge inspiration for DIY. The simplicity
and ease of development on these platforms are attracting
more and more people towards the DIY and hence enabling
the general masses to express their creativity and genius.

According to a report from the International Telecom-
munication Union (ITU) in 2005, “Internet of Things (IoT)
will connect objects from the world, both in a sensory and
in an intelligent way” [2, 3]. IoT as it was perceived until
the recent past had not been adopted by the masses [4]

while the connections and devices in the IoT have grown in
numbers since its advent [5, 6]. This means that end-users’
involvement in the IoT creation process is a crucial factor for
its successful adaptation. According to the recently updated
Gartner Hype Cycle [7], IoT is of great importance and
presents the idea that IoT has come out of its imaginative and
fictive stage [8] and now it is considered as a real deal [9, 10].
However, the end-users should be a part of the creation pro-
cess while having the power to discover things [5, 11], control
it, and effectively use the applications for smart environments
[12]. The same idea is also presented by Xiao et al. [13].

In addition to the DIY driver, motivations, and the need
formass end-users’ involvement for the realization of IoT, the
current Makers Revolution [14] is inculcating a new version
of the DIY culture. Connecting things, people, and ideas
together is conceived as the term “Making” [15]. Internet is
providing the bridge between the makers and the masses.
Online communities of people not only share their ideas and
creations but also have a chance to communicate and help
each other on a larger scale [16]. DiYSE [17] presents a DIY

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 542319, 8 pages
http://dx.doi.org/10.1155/2015/542319

2 International Journal of Distributed Sensor Networks

manifesto of 13 statements focused towards the developers
who design and implement digital creation systems for end-
users. The manifesto also highlights the relation of DIY IoT
to the maker movement.

Recently, there have been several efforts focused towards
mass DIY in the fields of electronic device design, creation,
and programming. Some efforts are based on hardware
boards which come with electronic block modules for the
general public to combine these blocks in any way they like
and express their creativity by creating new and smarter
things. Raspberry Pi [18] and Arduino [19] boards are one of
the first and most popular efforts in this regard.These boards
provide their own programming environment and the users
must be able to knowprogramming languages such as Python
or Java to write code for these boards. Microsoft .NET Gad-
geteer [20] is another open-source toolkit for creating cus-
tomized electronic devices by combining smaller electronic
blocks onto a mainboard. The mainboard of the .NET Gad-
geteer system has an embedded processor and sockets to con-
nect simple plug-and-play Gadgeteer modules which include
display, camera, networking, storage, and sensors.The toolkit
is based on .NET Micro Framework and the electronics are
programmed using a visual interface and C# .NET program-
ming language. .NETGadgeteer is aimed at exciting students
about learning programming, electronics, and design using
an object-oriented environment of development.

SAM [21] is another Kickstarter [22] project which
provides blocked electronics modules which can be used
by inventors, creators, designers, and so forth, without any
distinction of being beginner or expert in the field. The
main theme of the SAM project is to combine hardware,
software, and Internet. All the block modules in the SAM
kit are wireless and Python language is used to program
the modules. Not only is the DIY approach limited to basic
hardware kits that can be combined as the user likes but a
recent trend is to investigate generic electronics with a higher
degree of customizability and to involve general public in the
design and creation of such products has been investigated
by Mazzei et al. [23]. The same idea is backed by many other
studies such as Feki et al. [24] where DIY has been considered
among the future trends in the field of IoT development. The
study by Scott and Chin [25] provides an instance of the
application of DIY approach to IoT development based on
low-cost systems on chip (SoC) as suggested in the previous
paragraphs. A more recent application of DIY IoT approach
to digital agriculture in the form of crop growth monitoring
and irrigation decision support, and so forth, is presented by
Jayaraman et al. [26].

Internet is a key player in the implementation and adap-
tation of IoT. World Wide Web (WWW) and web services
have also been used to provide a medium for makers or
creators to share their inventions and creation. This way they
may be able to aggregate and reuse creations of other people
to make more useful and smarter things. Pachube [27] is a
web centric service to aggregate streams of data “feeds” to
acquire and store information related to different types of
sensing devices and the data they produce over time. It also
provides the capabilities of processing, integration, and data
visualization in the form of a collection of applications and is

based on the idea of “triggers.” A trigger can be defined as the
arrival of data from a resource (hardware or software) and in
response it can be forwarded to a specific URL based on some
rule/condition or processed in order to activate some other
triggers. In Pachube, the feeds integrations or triggers created
by one person can be shared for use by others enabling rapid
development and creativity.

A more recent development came in the form of IBM’s
Node-RED [28] with a focus to reduce the coding efforts
and lower the technical bar for the developers. Node-RED
users wire together graphical nodes taken from a panel in
order to create flows and then deploy these flows to get the
results. The nodes in Node-RED represent devices, software
platforms, and web services [28]. The approach used by
Node-RED is better solution for enabling mass involvement
in the realization of IoT, specially from a makers or creator’s
perspective. Although these efforts have simplified the design
and creation of things for the end-users still there is some
level of experience required on the part of the developer. One
way or the other, the developers must know how to program
in order to use these hardware platforms or web services.

We present a visual service designer with the same
drag-and-drop approach as Node-RED but with the focus
on zero-programming customization of the functionality
offered by remote and constraint CoAP devices. Constrained
application protocol (CoAP) is among themost popular com-
munication protocols for devices having limited resources. It
is being standardized by the Internet Engineering Task Force
(IETF) [29]. The proposed system utilizes CoAP resources as
part of a CoAP server which is implemented using the Intel
Edison board. Intel Edison is the latest SD card size platform
with its own Yocto distribution of Linux OS. The reason to
select this platform is the growing acceptance of the platform
for the development of IoT devices by the DIY community
all over the world. These CoAP resources are shared by the
CoAP server with the visual service designer via a CoAP
proxy. The proxy is a Java implementation based on the
Californium [30] framework which facilitates the discovery
of CoAP resources and provides libraries for generation of
CoAP commands. The designer represents the resources as
virtual objects. The user uses the graphical representations of
the virtual objects to design a service flow.The service design
is sent back to the proxy in the form of an XML document
where it is parsed to extract the information regarding the
customized behavior of the remote CoAP device. The proxy
then generates CoAP commands using the Californium
framework in order to operate the devices according to the
new functionality defined.

We believe that it is not far in the future when such IoT
devices will be commonly available through the Internet and
the nonprogrammer users will require such aDIY interface to
customize the functionality of those devices.The focus of this
work is not how to implement CoAP devices and program
them as is the case for several implementations discussed in
this section. The focus is rather to enable general public to
easily access remote devices and, based on the resources and
functional capabilities exposed by these devices, provide an
intuitive representation to the users in order to customize
device’s operations according to the users’ needs. To our

International Journal of Distributed Sensor Networks 3

knowledge, the proposed system is the first ever step towards
the behavior customization of remote CoAP devices using a
visual interface.

The rest of the paper is organized as follows. Section 2
presents the conceptual architecture for the proposed system
and provides a brief description of the process through which
it achieves the goal. Section 3 includes detailed design of the
proposed system.This section presents the interaction design
and an overview of the generic process of the system in the
form of a sequence model. Section 4 includes the implemen-
tation details while Section 5 presents the execution results
for the implemented prototype. Section 6 provides a brief
comparison of the proposed DIY interface with two of the
popular and similar interfaces. The comparison also high-
lights the significance of the proposed DIY interface and the
prototype implementation. Finally, Section 7 concludes the
paper and presents the future work related to the proposed
system.

2. Conceptual Architecture

Figure 1 illustrates the conceptual architecture for the DIY
service designer based operation for CoAP devices. As a
CoAP device acts like server and it requires client to request
the functionality (e.g., getting readings from sensors or
operating the actuators) of the resources associated with the
server, the architecture is based on a proxy which acts like an
operating client for the connected CoAP devices. The proxy
decouples the CoAP devices from the visual designer. This
means that the connection (via proxy) between the designer
and the devices is required only when a change in the device
operation is intended; otherwise the proxy acts as the CoAP
client and controls the operation of the connected devices as
specified by the XML profile from the visual designer.

The CoAP proxy communicates with a CoAP server
(device) only through CoAP protocol commands. For the
connection to establish, the proxy must know the initial
information about the CoAP server. This initial information
is the IP address and CoAP port for the said server device.
The proxy, using the IP and port, establishes a connection
with the CoAP server and retrieves the information about the
available resources from the server in the form of a string.
This information about the resources on the CoAP server
is then communicated to the visual service designer which
initiates the designer interface with the virtual representa-
tions of the available resources. The virtual representation
of the CoAP resources is termed as virtual objects (VOs)
in the visual service designer. The communication between
visual designer and the CoAP proxy takes place using socket
connection. In this communication, the CoAP proxy acts as
a server while the visual service designer acts as client entity.

The user of the visual designer then uses these VOs to
create a service flow which describes the functionality of the
CoAP server in terms of the available resources. The service
flow is termed as the profile which is an XML representation
of the graphical design. The CoAP proxy uses the XML
profile from the visual service designer to extract the role of
each CoAP resource by parsing the XML profile and then

CoAP devices

Visual service designer

CoAP proxy

O
ut

pu
ts

In
pu

ts

CoAP operation manager

Cmd generator

XM
L

VO
 in

fo

Profile parserCon manager

Sensors Actuators

Virtual
objects

XML
profile

Virtual object
representation Profile generator

Graphical designer Rule/behavior manager

CoAP
communication

Socket
communication

Figure 1: Conceptual architecture for the DIY visual service design
system based on CoAP proxy.

dynamically translate the roles into CoAP commands. The
CoAP commands are then executed on the remote CoAP
server.

3. Interaction Model

Figure 2 illustrates the sequence of connectivity among the
CoAP devices (server), the Java based CoAP proxy (client),
and the visual service designer. The figure also provides a
general overview of the operation of the while configuration.
The CoAP server is the device which is intended to be
operated via the CoAP proxy according to the graphical
service design created through the visual service designer. For
this purpose, the CoAP servermust be running with a known
IP address and port.TheCoAPproxy connects as a clientwith
the CoAP server using the IP and port number.

As the CoAP proxy successfully connects with the CoAP
server, it sends a discovery request to the CoAP server and
as a result gets a string representation (core link format)
of the available resources on the server. This string of
resource names is tokenized and then converted to a format
understandable by the service designer for further interaction
between the proxy and the designer. The CoAP proxy first
checks whether an XML profile exists for the connected
device and if it finds one then the profile is read from the file.

4 International Journal of Distributed Sensor Networks

Visual service designer Proxy (client) CoAP server

Initialize sources

Wait for client
Connect (address, port)

Result

Get devices names (discover)

String names

Check local XML profile?

If XML profile exists?

Read and parse xml profile

Create CoAP commands

Execute CoAP commands

Response

Else

Wait for designer connection
Connect

Active device names

If result success

Activate virtual objects

User creates design

Convert design to XML

Send XML profile

Figure 2: Sequence of the operation of the visual service designer system based on CoAP proxy.

The XML is parsed and CoAP commands are generated
accordingly to operate the remote CoAP device. If no XML
profile file is found by the proxy, the names of the available
resources on the CoAP server are sent to the visual service
designer in order to create a new service, that is, XML profile.

As mentioned earlier, the proxy acts as a server for
the visual service designer. Once the designer initiates the
connection with the proxy, the names of the available
resources received from the remote CoAP server are sent
in a predefined string format. Upon the reception of the
resource names, the service designer activates the virtual
objects representing the resources. The user then uses simple
operations as drag-and-drop and property settings to create
a visual service design. The design is saved as an XML file
and can be reopened for updating the design flow. Once
the visual design is complete, the user can send the XML

profile to the proxy. Proxy saves the received XML profile
in a document and parses it to generate appropriate CoAP
commands in order to operate the remote CoAP device
according to the visual service design created by the user.

4. Implementation Details

This section provides an overview of the implementation
tools and technologies used to develop the system. As the
project has three main modules, the implementation tools
have been summarized in three separate tables. Table 1
shows the implementation technologies for the CoAP device
and resources used in this system. The CoAP device was
implemented using Intel Edison with the Arduino breakout
board. TinkerKit LED and thermistor modules have been
used as the resources defined as part of the CoAP server. For

International Journal of Distributed Sensor Networks 5

Table 1: Development environment for CoAP device.

CoAP device
CoAP server Intel Edison
CoAP resources TinkerKit sensor and actuator
CoAP library Libcoap library
Development environment Eclipse IoT Development Kit
Language C language

programming the CoAP server and defining the behavior of
the CoAP resources, Libcoap [31] library has been used. The
library is based on C language so we had to use the Eclipse
IoT Development Kit as the IDE for coding the CoAP device
module.

Table 2 summarizes the tools and technologies used for
the implementation of the CoAP proxy model which acts
as the programmable client for the automated operation of
CoAP devices. In order to generate CoAP commands from
our proxy module we utilized the Java based Californium
framework. The development environment for the proxy
module consists of Eclipse IDE for Java programming run
over Windows 7 64-bit operating system on a system with
Intel Xeon processor and 8GB ofmemory.The proxymodule
acts as client for the CoAP server while it acts as a server for
the visual designer.

Table 3 presents the tools and technologies to develop
the visual service designer module. As the functionality of
this module is to provide a graphical DIY interface for
programming the functionality of the CoAP client in order
to control the CoAP devices, it has been implemented using
C# .Net platform.The hardware used for the implementation
and execution of the visual service designer is the same as the
one explained in the previous paragraph.

5. Execution Results

This section shows the execution of the proposed system and
provides some snapshots illustrating the process of execution.
Figure 3 shows the execution of the CoAP server instance on
the Intel Edison board using the Eclipse IoTDevelopment Kit
IDE. The server initializes its own resources in the form of
LEDs and a thermistor. The hardware package of the CoAP
device with its resources is also shown in the same figure.The
hardware package consists of the Intel Edison with Arduino
breakout board along with the resources based on TinkerKit
LEDs and thermistor modules.

Figure 4 shows the execution of the CoAP proxy module.
The proxy module is implemented using the Java based
Californium framework. It acts as a client for the remote
CoAP server and gets the available resource names from
the CoAP server as soon as it establishes a connection with
the remote CoAP server. In the figure the proxy receives
the string representation of LED and temperature sensor
resources from the CoAP server upon connection.The proxy
then waits for the visual service designer to connect or
starts to execute an existing service profile sent by the visual
service designer. The figure shows the connection between

Table 2: Development environment for CoAP proxy module.

Proxy module
Operating system Windows 7 64 bits
CPU Intel Xeon E3-1230 V2 @ 3.3GHz × 2
Memory 8GB
Development environment Eclipse Luna
CoAP platform Californium
Language Java

Table 3: Development environment for the visual service designer
module.

Visual service designer
Operating system Windows 7 64 bits
CPU Intel Xeon E3-1230 V2 @ 3.3GHz × 2
Memory 8GB
Development environment Visual Studio Community
Framework .Net Framework 4.0
Language C# .Net

the designer and the proxy where the proxy sends the
string representation of resource names to the designer for
activating the virtual objects of the said resources.

Figure 5 shows the interface for the visual service designer
with the activated virtual objects (VOs). Only those virtual
objects are activated by the designer whose names are sent
by the proxy module. The user then uses drag-and-drop
and mouse clicks on the activated VOs to create a service
design. Figure 5 also shows an instance of service design
created by user.The design shows that the user has connected
temperature sensor VO with the LED VO. The connection
specifies that the temperature sensorwill produce an input for
the LED resource.Thebehavior of the temperature sensor and
the LED resource is then defined by the parameter settings of
the connection between the two VOs.

Figure 6 illustrates the parameter setting screen for the
connection between the input and output VO. The screen
shows that the temperature value from the thermistor will
be read in degree centigrade. When this value is over 23
degrees then the red LED will blink for 30 seconds. This
is a simple example of how easily the user can modify the
behavior of a remote CoAP device using simple actions such
as mouse clicks and value selection. This service design is
automatically converted to XML format and can be saved,
edited, or transported like any computer file. When the user
chooses to upload the new defined behavior to the remote
device, the XML file is sent to the CoAP proxy, which
parses the XML document according to a preprogrammed
scheme in order to extract the newly defined functionality.
Accordingly, the proxy generates CoAP commands based on
theCalifornium framework to execute the new commands on
the remote CoAP device.

Figure 7 shows the snapshots of the CoAP commands
execution on the CoAP server. The left portion of the figure
shows the parsing of the XML profile by the CoAP proxy in
order to extract the newly defined behavior of the remote

6 International Journal of Distributed Sensor Networks

Figure 3: Execution of the CoAP server on the Intel Edison board.

Figure 4: CoAP proxy execution in Eclipse environment.

Figure 5: Visual service designer interface.

Figure 6: Resource’s behavior definition through connection
parameter settings.

Figure 7: Execution of CoAP commands based on new behavior
definition.

CoAP resources. It also shows the generation of the CoAP
commands in a loop for the execution of newly defined
behavior. In this instance, CoAP get command is generated
at a predefined interval to get the temperature value from
the remote CoAP server. Once the value is above the defined
threshold value, that is, 23-degree centigrade, another CoAP
command is generated in order to blink the red LED on the
remote CoAP server. The right portion of Figure 6 shows the
red LED being blinked in response. The acknowledgement
from the blink action can also be seen on the left portion of
the figure after the temperature value greater than 23 degrees
has been recorded.

6. Comparison and Significance

As described in the introduction of this paper, to the best
of the authors’ knowledge, this implementation is the first
ever attempt towards the behavior customization of remote
constrained IoT devices (sensors and actuators). There are
only a few similar user interfaces such asNode-REDcurrently
being utilized by the research community and SAM, a Kick-
starter project, both of which are described in Introduction
of this paper. First and foremost, the DIY interface presented
in this paper is intended for customization of the behavior
of remote constrained IoT devices based on their resources
while the other two interfaces do not acquire the available
resources from the device; rather they just provide an inter-
face for visually creating a program for a specific device. The
interaction protocol developed as part of the presented DIY
interface enables it to communicate with remote devices (not
a specific type of devices) in order to receive the available
resources such as the sensors and actuators and enables the
user to modify the behavior of the remote device based on
the capabilities of those resources.

Node-RED and SAM are based on blocks of code repre-
sented visually for the user to combine them into a program
flow that is executed by the specific devices supported by
the two platforms, respectively. Our DIY interface prototype
is focused on any remote CoAP devices capable of sharing
information regarding their resources.The resources of those
devices and their capabilities are presented to a user in an
intuitive way to enable even nonprogrammer users to modify
or customize the behavior of those devices. The hardware
independence, resource based behavior customization, and
the DIY nature of the presented system makes it a significant
and ideal solution towards the programming and customiza-
tion of future IoT devices which will demand the general
masses to interact and customize the behavior of remote con-
strained devices in order to get services and fulfill their needs.

7. Conclusions

This paper presents a novel system offering simple and
intuitive interface for behavior customization of remote
IoT devices. As CoAP is growing in popularity in the IoT
paradigm, state-of-the-art Intel Edison board has been used
to implement CoAP server acting as a remote IoT device.
A Californium framework based CoAP proxy has been
developed as part of the system to act as a bridge between

International Journal of Distributed Sensor Networks 7

the visual interface for behavior customization of the device
and the remote CoAP device itself. Resources from a remote
device are represented as virtual objects on a graphical
design interface. The VOs are used to draw the behavior
model for the device and shared in the form of an XML
document. The proxy module operates the remote device
according to the behavior model by generating equivalent
CoAP commands.The novelty of the presented system is that
it provides a generic interface that is not limited to be used
with a specific hardware platform. The CoAP proxy makes it
useable with any CoAP device regardless of the underlying
hardware platform. To our knowledge, it is the first attempt
towards providing a simple DIY interface for programming
remote CoAP devices. As a part of the future works of
the presented project, we intend to improve the system
capabilities to handle multiple devices simultaneously and
to provide interface for designing the interaction behavior
among multiple remote IoT devices.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] M. Roelands, L. Claeys, M. Godon, M. Geerts, M. A. Feki,
and L. Trappeniers, “Enabling the masses to become creative in
smart spaces,” in Architecting the Internet of Things, pp. 37–64,
Springer, Berlin, Germany, 2011.

[2] L. Coetzee and J. Eksteen, “The internet of things—promise for
the future? An introduction,” in Proceedings of the IST-Africa
Conference (IST ’11), pp. 1–9, IEEE, Gaborone, Botswana, May
2011.

[3] International Telecommunication Union, ITU Internet Reports
2005: The Internet of Things. Executive Summary, International
Telecommunication Union, Geneva, Switzerland, 2005.

[4] S. Hamm, “The internet of things,” 2011, http://www.ibm.com/
ibm100/us/en/ideas/sep2011china.html.

[5] L. Atzori, A. Iera, and G. Morabito, “The internet of things: a
survey,”Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of Things (IoT): a vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29, no. 7,
pp. 1645–1660, 2013.

[7] J. Fenn and H. LeHong, Hype Cycle for Emerging Technologies,
Gartner Research, 2011.

[8] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Inter-
net of things: vision, applications and research challenges,” Ad
Hoc Networks, vol. 10, no. 7, pp. 1497–1516, 2012.

[9] D. Ventura, D. Casado-Mansilla, J. López-de-Armentia, P.
Garaizar, D. López-de-Ipiña, and V. Catania, “ARIIMA: a real
IoT implementation of a machine-learning architecture for
reducing energy consumption,” in Ubiquitous Computing and
Ambient Intelligence. Personalisation and User Adapted Services,
vol. 8867 of Lecture Notes in Computer Science, pp. 444–451,
Springer, Berlin, Germany, 2014.

[10] S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay,
“Towards the implementation of IoT for environmental condi-
tion monitoring in homes,” IEEE Sensors Journal, vol. 13, no. 10,
pp. 3846–3853, 2013.

[11] K. Gama, L. Touseau, and D. Donsez, “Combining heteroge-
neous service technologies for building an Internet of Things
middleware,” Computer Communications, vol. 35, no. 4, pp.
405–417, 2012.

[12] L. Atzori, A. Iera, and G. Morabito, “From “smart objects” to
“social objects”: the next evolutionary step of the internet of
things,” IEEE Communications Magazine, vol. 52, no. 1, pp. 97–
105, 2014.

[13] G. Xiao, J. Guo, L. D. Xu, and Z. Gong, “User interoperability
with heterogeneous IoT devices through transformation,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1486–
1496, 2014.

[14] C. Anderson, Makers: The New Industrial Revolution, Random
House, 2012.

[15] C. Bailey, “Making is connecting: the social meaning of creativ-
ity from DIY and knitting to YouTube and Web 2.0,” Cultural
Trends, vol. 22, no. 3-4, pp. 235–237, 2013.

[16] C. Leadbeater and P. Miller, The Pro-Am Revolution: How
Enthusiasts are Changing Our Society and Economy, Demos,
New York, NY, USA, 2004.

[17] D. De Roeck, K. Slegers, J. Criel et al., “I would DiYSE for it!:
a manifesto for do-it-yourself internet-of-things creation,” in
Proceedings of the 7th Nordic Conference on Human-Computer
Interaction: Making Sense Through Design (NordiCHI ’12), pp.
170–179, ACM, Copenhagen, Denmark, October 2012.

[18] What is Raspberry pi?, January 2015, https://www.raspberrypi
.org/help/what-is-a-raspberry-pi/.

[19] 2015, http://www.arduino.cc/.
[20] N. Villar, J. Scott, S. Hodges, K. Hammil, and C. Miller,

“.NET gadgeteer: a platform for custom devices,” in Pervasive
Computing, vol. 7319 of Lecture Notes in Computer Science, pp.
216–233, Springer, Berlin, Germany, 2012.

[21] SAM: The Ultimate Internet Connected Electronics Kit, Jan-
uary 2015, https://www.kickstarter.com/projects/1842650056/
sam-the-ultimate-internet-connected-electronics-ki.

[22] January 2015, https://www.kickstarter.com/.
[23] D. Mazzei, G. Fantoni, G. Montelisciani, and G. Baldi, “Internet

ofThings for designing smart objects,” inProceedings of the IEEE
World Forum on Internet of Things (WF-IoT ’14), pp. 293–297,
IEEE, Seoul, The Republic of Korea, March 2014.

[24] M. A. Feki, F. Kawsar, M. Boussard, and L. Trappeniers, “The
internet of things: the next technological revolution,”Computer,
vol. 46, no. 2, pp. 24–25, 2013.

[25] G. Scott and J. Chin, “A DIY approach to pervasive computing
for the Internet of things: a smart alarm clock,” in Proceedings of
the 5th Computer Science and Electronic Engineering Conference
(CEEC ’13), pp. 57–60, Colchester, UK, September 2013.

[26] P. P. Jayaraman, D. Palmer, A. Zaslavsky, and D. Geor-
gakopoulos, “Do-it-Yourself Digital Agriculture applications
with semantically enhanced IoT platform,” in Proceedings of the
IEEE 10th International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP ’15), pp. 1–6, IEEE,
Singapore, April 2015.

[27] Pachube—the Internet of Things Real-Time web service
and applications, January 2015, http://www.appropedia.org/
Pachube.

8 International Journal of Distributed Sensor Networks

[28] N. Heath, “How IBM’s Node-RED is hacking together the
internet of things,” 2015, http://www.techrepublic.com/article/
node-red/.

[29] A. R. M. Shelby and B. Hartke, “The Constrained Applica-
tion Protocol (CoAP),” IETF, 2014, https://tools.ietf.org/html/
rfc7252.

[30] January 2015, http://www.eclipse.org/californium/.
[31] 2015, https://github.com/authmillenon/libcoap.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

