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This paper deals with the problems of the robust stochastic stability and stabilization for a class of uncertain discrete-time stochastic
systems with interval time-varying delays and nonlinear disturbances. By utilizing a new Lyapunov-Krasovskii functional and
some well-known inequalities, some new delay-dependent criteria are developed to guarantee the robust stochastic stability of
a class of uncertain discrete-time stochastic systems in terms of the linear matrix inequality (LMI). Then based on the state
feedback controller, the delay-dependent sufficient conditions of robust stochastic stabilization for a class of uncertain discrete-time
stochastic systems with interval time-varying delays are established. The controller gain is designed to ensure the robust stochastic
stability of the closed-loop system. Finally, illustrative examples are given to demonstrate the effectiveness of the proposed method.

1. Introduction

In the past decade, the stability analyses (see, e.g., feedback
stabilization for discrete-time nonlinear systems, robustness
of exponential stability, and optimal stabilizing compensator)
and discrete-time stochastic systems have been extensively
studied because of their potential applications (see, e.g., [1–3]
and the references therein). On the other hand, time delays,
both time-varying and constant, are frequently encountered
in various biological, engineering, and economic systems
[4, 5].The stability analysis and control of time-delay systems
have been widely studied during the past years [6–9]. In [6],
robust delay-dependent stability and stabilization methods
for a class of nonlinear discrete-time systems with time-
varying delays were proposed. In [8], the robust stabilization
problem for uncertain linear systems with interval time-
varying delays was investigated. Some delay-dependent sta-
bility criteria were derived based on an improvedWirtinger’s
inequality.

On the other hand, the research on stochastic systems
has aroused much interest in the past few years, because
stochastic modeling has come to play an important role in
many real systems [10]. In [11], a robust delay-distribution-
dependent stochastic stability analysis was conducted for

a class of discrete-time stochastic delayed neural networks
with parameter uncertainties. The robust stability and sta-
bilization of a class of nonlinear discrete stochastic systems
were reported in [7]. In [12], the global exponential stability of
switched stochastic neural networkswith time-varying delays
was considered. Authors in [13] studied the robust stability of
discrete-time stochastic neural networks with time-varying
delays, and the stability analysis problem for stochastic neural
networks becomes increasingly significant. In [14], themean-
square exponential stability problem for stochastic discrete-
time recurrent neural networks with time-varying discrete
and distributed delays was investigated. In [15], the delay-
probability-distribution-dependent robust stability problem
for a class of uncertain stochastic neural networks with time-
varying delay was investigated, and some stability criteria
were proposed.

In this paper, we contribute to the further development of
robust stability and feedback stabilization methods for a class
of uncertain nonlinear discrete-time stochastic systems with
interval time-varying delays. The parameter uncertainties
are time-varying matrices which are norm-bounded, and
the unknown nonlinear time-varying perturbations with
time-varying delay are quadratically bounded. Comparing
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with [3, 7, 8], the stochastic nonlinearity and parameter
uncertainties and unknown nonlinearities with time-varying
delays are considered for discrete-time stochastic systems
and therefore the model in this paper may be more general.
The main contributions of this paper can be summarized
as follows. (1) The system model is comprehensive that
covers stochastic nonlinearity, parameter uncertainties, and
the unknown nonlinearities that are time-varying perturba-
tions with time-varying delay, thereby better reflecting the
reality. (2) An appropriate Lyapunov-Krasovskii functional
is constructed to exhibit the delay-dependent dynamics,
and delay-dependent robustly stochastic stability analysis is
performed to characterize linear matrix inequalities- (LMI-)
based conditions under which the discrete-time nonlinear
stochastic delay system which does not contain control is
robustly stochastically stable. (3) Robust feedback stabiliza-
tion methods are provided based on state feedback control.
The new sufficient conditions are established under which
the closed-loop system is robustly stochastically stable and
the calculation method of the control gain is given. (4) The
result presented in this paper designs a state feedback control
law that stabilizes the closed-loop system and is maximally
robust with respect to considered nonlinear perturbations.
(5) Numerical simulation examples are used to demonstrate
the effectiveness and applicability of the obtained results.
(6) By introducing some parameters 𝜖

1
, 𝜖
2
, 𝜌
1
, and 𝜌

2
, our

method leads to less conservatism comparedwith the existing
ones.

The remainder of this paper is organized as follows.
In Section 2, the problem description and preliminaries are
stated and some lemmas and a definition are given. In
Section 3, by using Lyapunov-Krasovskii functional, novel
LMI sufficient conditions for the robust stochastic stability
of a class of uncertain discrete-time stochastic systems with
interval time-varying delays and nonlinear disturbances are
derived. Furthermore, the robust stochastic stabilizable crite-
ria for uncertain nonlinear discrete-time stochastic delayed
systems are presented. In Section 4, two numeric examples
are given to illustrate the results. Finally, some conclusions
are drawn in Section 5.

Notations.𝑁+ denotes the set of all real nonnegative integers
and R𝑛 and R𝑛×𝑚 denote the 𝑛-dimensional Euclidean space
and the set of all 𝑛 × 𝑚 real matrices, respectively. The super-
scripts 𝑇 and −1 denote the matrix transposition and matrix
inverse, respectively. 𝜆min(⋅) means the smallest eigenvalue
of a matrix. E{⋅} stands for the mathematical expectation
operator with respect to the given probability measure 𝑃.
The asterisk ∗ in a matrix is used to denote term that is
induced by symmetry. 𝐼 is the identitymatrixwith compatible
dimension.

2. Problem Formulation

Consider the uncertain nonlinear discrete stochastic system
with time-varying delay described by

𝑥 (𝑘 + 1) = (𝐴
0
+ Δ𝐴
0
(𝑘)) 𝑥 (𝑘)

+ (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑘)) 𝑥 (𝑘 − 𝜏 (𝑘))

+ (𝐴
1
+ Δ𝐴
1
(𝑘)) 𝑥 (𝑘) 𝜉 (𝑘) + 𝑓 (𝑘, 𝑥 (𝑘))

+ 𝑔 (𝑘, 𝑥 (𝑘 − 𝜏 (𝑘))) + (𝐵 + Δ𝐵 (𝑘)) 𝑢 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state vector and 𝑘 ∈ 𝐼[𝑘
0
,∞) =

{𝑘
0
, 𝑘
0

+ 1, . . .}. 𝜉(𝑘) ∈ R is a sequence of identically,
independently normally distributed random function with

E [𝜉 (𝑘)] = 0,

E [𝜉
2
(𝑘)] = 1,

E [𝜉 (𝑖) 𝜉 (𝑗)] = 0, (𝑖 ̸= 𝑗) ,

(2)

and 𝑢(𝑘) ∈ R𝑚 is the control input. The positive integer 𝜏(𝑘)
denotes the time-varying delay satisfying

𝜏
𝑚

≤ 𝜏 (𝑘) ≤ 𝜏
𝑀
, ∀𝑘 ∈ 𝑁

+
, (3)

where 𝜏
𝑀

and 𝜏
𝑚
are known positive integers, respectively,

and 𝐴
0

∈ R𝑛×𝑛, 𝐴
1

∈ R𝑛×𝑛, and 𝐵 ∈ R𝑛×𝑚, whereas
matrices Δ𝐴

0
(𝑘), Δ𝐴

𝑑
(𝑘), Δ𝐴

1
(𝑘), and Δ𝐵(𝑘) represent the

time-varying parameter uncertainties and are assumed to
satisfy the following condition:

(Δ𝐴
0
(𝑘) Δ𝐴

𝑑
(𝑘) Δ𝐴

1
(𝑘) Δ𝐵 (𝑘))

= 𝐷𝐻 (𝑘) (𝑁1 𝑁
2

𝑁
3

𝑁
4) ,

(4)

where 𝐷 and 𝑁
𝑖
(𝑖 = 1, 2, 3, 4) are known constant matrices

and 𝐻(𝑘) is the unknown time-varying matrix-valued func-
tion satisfying the following condition:

𝐻
𝑇
(𝑘)𝐻 (𝑘) ≤ 𝐼. (5)

The crucial assumptions about the nonlinear functions
𝑓(𝑘, 𝑥(𝑘)) and 𝑔(𝑘, 𝑥(𝑘 − 𝜏(𝑘))) are that they are uncertain
and satisfy the following quadratic inequalities for all (𝑘, 𝑥) ∈
𝐼[𝑘
0
,∞) ×R𝑛:

𝑓
𝑇
(𝑘, 𝑥 (𝑘)) 𝑓 (𝑘, 𝑥 (𝑘)) ≤ 𝛼

2
𝑥
𝑇
(𝑘) 𝐹
𝑇
𝐹𝑥 (𝑘) ,

𝑔
𝑇
(𝑘, 𝑥 (𝑘 − 𝜏 (𝑘))) 𝑔 (𝑘, 𝑥 (𝑘 − 𝜏 (𝑘)))

≤ 𝛽
2
𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝐺

𝑇
𝐺𝑥 (𝑘 − 𝜏 (𝑘)) .

(6)

At the end of this section, we introduce a definition and
some lemmas for the development of our results.

Definition 1 (see [7]). System (1) with 𝑢(𝑘) ≡ 0 is said to be
robustly stochastically stable with margins 𝛼 and 𝛽, if there
exists a constant 𝑇(𝑥(𝑘

0
), 𝛼, 𝛽) such that

E[

[

∞

∑
𝑘=𝑘0

𝑥
𝑇
(𝑘) 𝑥 (𝑘) | 𝑥 (𝑘

0
)]

]

≤ 𝑇 (𝑥 (𝑘
0
) , 𝛼, 𝛽) . (7)
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Lemma 2 (Schur complements). Given constant matrices𝑀,
𝐿, and 𝑄 of appropriate dimensions, where 𝑀 = 𝑀

𝑇 and 𝑄 >

0, then𝑀 + 𝐿𝑇𝑄𝐿 < 0 if and only if

(
𝑀 𝐿𝑇

𝐿 −𝑄−1
) < 0. (8)

Lemma 3 (see [16]). Let 𝐸, 𝐻, and 𝐹 be real matrices of
appropriate dimensions with 𝐹 satisfying 𝐹𝑇𝐹 ≤ 𝐼. Then one
has the following inequality. For any scalar 𝜌 > 0,

𝐸𝐹𝐻 + 𝐻
𝑇
𝐹
𝑇
𝐸
𝑇
≤ 𝜌𝐸𝐸

𝑇
+ 𝜌
−1
𝐻
𝑇
𝐻. (9)

3. Main Results

The following result presents a sufficient condition of the
robustly stochastic stability for system (1).

Theorem 4. For given integers 𝜏
𝑀

> 0 and 𝜏
𝑚

> 0, system
(1) with 𝑢(𝑘) = 0 is robustly stochastically stable with margins
𝛼 and 𝛽, if there exist positive scalars 𝜌

1
, 𝜌
2
, 𝜖
1
, and 𝜖

2
and

symmetric positive-definite matrices 𝑃 and 𝑆 of appropriate
dimensions satisfying the following LMI:

(
(
(
(
(
(
(
(
(
(
(

(

Φ
11

𝜌
1
𝑁𝑇
1
𝑁
2

𝐴𝑇
0
𝑃 𝐴𝑇

0
𝑃 𝐴𝑇

0
𝑃 𝐴𝑇
1
𝑃 0 0

∗ Φ
22

𝐴𝑇
𝑑
𝑃 𝐴𝑇

𝑑
𝑃 𝐴𝑇

𝑑
𝑃 0 0 0

∗ ∗ 𝑃 − 𝜖
1
𝐼 𝑃 0 0 𝑃𝐷 0

∗ ∗ ∗ 𝑃 − 𝜖
2
𝐼 0 0 𝑃𝐷 0

∗ ∗ ∗ ∗ −𝑃 0 𝑃𝐷 0

∗ ∗ ∗ ∗ 0 −𝑃 0 𝑃𝐷

∗ ∗ ∗ ∗ ∗ ∗ −𝜌
1
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜌
2
𝐼

)
)
)
)
)
)
)
)
)
)
)

)

< 0, (10)

where

Φ
11

= (𝜏
𝑀

− 𝜏
𝑚
+ 1) 𝑆 − 𝑃 + 𝜌

1
𝑁
𝑇

1
𝑁
1
+ 𝜌
2
𝑁
𝑇

3
𝑁
3

+ 𝜖
1
𝛼
2
𝐹
𝑇
𝐹,

Φ
22

= −𝑆 + 𝜌
1
𝑁
𝑇

2
𝑁
2
+ 𝜖
2
𝛽
2
𝐺
𝑇
𝐺.

(11)

Proof. Consider the following Lyapunov-Krasovskii func-
tional for system (1):

𝑉 (𝑘) =

3

∑
𝑖=1

𝑉
𝑖
(𝑘) , (12)

where

𝑉
1
(𝑘) = 𝑥

𝑇
(𝑘) 𝑃𝑥 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑
𝑖=𝑘−𝜏(𝑘)

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖) ,

𝑉
3
(𝑘) =

−𝜏𝑚

∑
𝑗=−𝜏𝑀+1

𝑘−1

∑
𝑖=𝑘+𝑗

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖) .

(13)

Then, the difference of 𝑉
𝑖
(𝑘), 𝑖 = 1, 2, along the solution of

system (1) is given by

Δ𝑉
1
(𝑘) = 𝑥

𝑇
(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝑥

𝑇
(𝑘) 𝑃𝑥 (𝑘) , (14)

Δ𝑉
2
(𝑘) =

𝑘

∑
𝑖=𝑘+1−𝜏(𝑘+1)

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖) −

𝑘−1

∑
𝑖=𝑘−𝜏(𝑘)

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖)

=

𝑘−𝜏𝑚

∑
𝑖=𝑘+1−𝜏(𝑘+1)

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖) + 𝑥

𝑇
(𝑘) 𝑆𝑥 (𝑘)

− 𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝑆𝑥 (𝑘 − 𝜏 (𝑘))

+

𝑘−1

∑
𝑖=𝑘+1−𝜏𝑚

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖)

−

𝑘−1

∑
𝑖=𝑘+1−𝜏(𝑘)

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖) .

(15)

Since 𝜏
𝑚

≤ 𝜏(𝑘) ≤ 𝜏
𝑀
, we have

𝑘−1

∑
𝑖=𝑘+1−𝜏𝑚

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖) −

𝑘−1

∑
𝑖=𝑘+1−𝜏(𝑘)

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖) ≤ 0,

𝑘−𝜏𝑚

∑
𝑖=𝑘+1−𝜏(𝑘+1)

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖) ≤

𝑘−𝜏𝑚

∑
𝑖=𝑘+1−𝜏𝑀

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖) .

(16)
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Then we get

Δ𝑉
2
(𝑘) ≤

𝑘−𝜏𝑚

∑
𝑖=𝑘+1−𝜏𝑀

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖) + 𝑥

𝑇
(𝑘) 𝑆𝑥 (𝑘)

− 𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝑆𝑥 (𝑘 − 𝜏 (𝑘)) .

(17)

The difference of 𝑉
3
(𝑘) is given by

Δ𝑉
3
(𝑘)

=

−𝜏𝑚

∑
𝑗=−𝜏𝑀+1

𝑘

∑
𝑖=𝑘+𝑗+1

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖)

−

−𝜏𝑚

∑
𝑗=−𝜏𝑀+1

𝑘−1

∑
𝑖=𝑘+𝑗

𝑥
𝑇
(𝑖) 𝑆𝑥 (𝑖)

=

−𝜏𝑚

∑
𝑗=−𝜏𝑀+1

[𝑥
𝑇
(𝑘) 𝑆𝑥 (𝑘) − 𝑥

𝑇
(𝑘 + 𝑗) 𝑆𝑥 (𝑘 + 𝑗)]

= (𝜏
𝑀

− 𝜏
𝑚
) 𝑥
𝑇
(𝑘) 𝑆𝑥 (𝑘)

−

𝑘−𝜏𝑚

∑
𝑗=−𝜏𝑀+𝑘+1

𝑥
𝑇
(𝑗) 𝑆𝑥 (𝑗) .

(18)

From (17) and (18), we obtain

Δ𝑉
2
(𝑘) + Δ𝑉

3
(𝑘) ≤ 𝑥

𝑇
(𝑘) 𝑆𝑥 (𝑘)

− 𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝑆𝑥 (𝑘 − 𝜏 (𝑘))

+ (𝜏
𝑀

− 𝜏
𝑚
) 𝑥
𝑇
(𝑘) 𝑆𝑥 (𝑘) .

(19)

From (14) and (19), it follows that

Δ𝑉 (𝑘) ≤ 𝑥
𝑇
(𝑘 + 1) 𝑃𝑥 (𝑘 + 1)

+ 𝑥
𝑇
(𝑘) [(𝜏

𝑀
− 𝜏
𝑚
+ 1) 𝑆 − 𝑃] 𝑥 (𝑘)

− 𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝑆𝑥 (𝑘 − 𝜏 (𝑘)) .

(20)

According to (6), we have

𝜖
1
𝛼
2
𝑥
𝑇
(𝑘) 𝐹
𝑇
𝐹𝑥 (𝑘) − 𝜖

1
𝑓
𝑇
(𝑘, 𝑥 (𝑘)) 𝑓 (𝑘, 𝑥 (𝑘)) ≥ 0,

𝜖
2
𝛽
2
𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝐺

𝑇
𝐺𝑥 (𝑘 − 𝜏 (𝑘))

− 𝜖
2
𝑔
𝑇
(𝑘, 𝑥 (𝑘 − 𝜏 (𝑘))) 𝑔 (𝑘, 𝑥 (𝑘 − 𝜏 (𝑘))) ≥ 0.

(21)

From (20) and (21), we get

Δ𝑉 (𝑘)

≤ 𝑥
𝑇
(𝑘 + 1) 𝑃𝑥 (𝑘 + 1)

+ 𝑥
𝑇
(𝑘) [(𝜏

𝑀
− 𝜏
𝑚
+ 1) 𝑆 − 𝑃] 𝑥 (𝑘)

− 𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝑆𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝜖
1
𝛼
2
𝑥
𝑇
(𝑘) 𝐹
𝑇
𝐹𝑥 (𝑘)

− 𝜖
1
𝑓
𝑇
(𝑘, 𝑥 (𝑘)) 𝑓 (𝑘, 𝑥 (𝑘))

+ 𝜖
2
𝛽
2
𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝐺

𝑇
𝐺𝑥 (𝑘 − 𝜏 (𝑘))

− 𝜖
2
𝑔
𝑇
(𝑘, 𝑥 (𝑘 − 𝜏 (𝑘))) 𝑔 (𝑘, 𝑥 (𝑘 − 𝜏 (𝑘))) .

(22)

Let us denote
𝐴
0
= 𝐴
0
+ Δ𝐴
0
(𝑘) ,

𝐴
𝑑
= 𝐴
𝑑
+ Δ𝐴
𝑑
(𝑘) ,

𝐴
1
= 𝐴
1
+ Δ𝐴
1
(𝑘) .

(23)

Taking the mathematical expectation, we get

E {Δ𝑉 (𝑘)} ≤ E {[𝑥
𝑇
(𝑘) 𝐴
0

𝑇

+ 𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝐴

𝑑

𝑇

+ 𝜉
𝑇
(𝑘) 𝑥
𝑇
(𝑘) 𝐴
1

𝑇

+ 𝑓
𝑇
+ 𝑔
𝑇
] 𝑃 [𝐴

0
𝑥 (𝑘)

+ 𝐴
𝑑
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐴

1
𝑥 (𝑘) 𝜉 (𝑘) + 𝑓 + 𝑔]

− 𝑥
𝑇
(𝑘) [(𝜏

𝑀
− 𝜏
𝑚
+ 1) 𝑆 − 𝑃] 𝑥 (𝑘) − 𝑥

𝑇
(𝑘

− 𝜏 (𝑘)) 𝑆𝑥 (𝑘 − 𝜏 (𝑘)) + 𝜖
1
𝛼
2
𝑥
𝑇
(𝑘) 𝐹
𝑇
𝐹𝑥 (𝑘)

− 𝜖
1
𝑓
𝑇
(𝑘, 𝑥 (𝑘)) 𝑓 (𝑘, 𝑥 (𝑘)) + 𝜖

2
𝛽
2
𝑥
𝑇
(𝑘 − 𝜏 (𝑘))

⋅ 𝐺
𝑇
𝐺𝑥 (𝑘 − 𝜏 (𝑘)) − 𝜖

2
𝑔
𝑇
(𝑘, 𝑥 (𝑘 − 𝜏 (𝑘)))

⋅ 𝑔 (𝑘, 𝑥 (𝑘 − 𝜏 (𝑘)))} .

(24)

It is easy to see that

E {Δ𝑉 (𝑘)} ≤ E {𝑥
𝑇
(𝑘) [𝜖
1
𝛼
2
𝐹
𝑇
𝐹 + 𝐴

0

𝑇

𝑃𝐴
0

+ 𝐴
1

𝑇

𝑃𝐴
1
+ (𝜏
𝑀

− 𝜏
𝑚
+ 1) 𝑆 − 𝑃] 𝑥 (𝑘) + 𝑥

𝑇
(𝑘)

⋅ 𝐴
0

𝑇

𝑃𝐴
𝑑
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝑥

𝑇
(𝑘) 𝐴
0

𝑇

𝑃𝑓 + 𝑥
𝑇
(𝑘)

⋅ 𝐴
0

𝑇

𝑃𝑔 + 𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝐴

𝑑

𝑇

𝑃𝐴
0
𝑥 (𝑘) + 𝑥

𝑇
(𝑘

− 𝜏 (𝑘)) [𝜖
2
𝛽
2
𝐺
𝑇
𝐺 + 𝐴

𝑑

𝑇

𝑃𝐴
𝑑
− 𝑆] 𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝐴

𝑑

𝑇

𝑃𝑓 + 𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) 𝐴

𝑑

𝑇

𝑃𝑔

+ 𝑓
𝑇
𝑃𝐴
0
𝑥 (𝑘) + 𝑓

𝑇
𝑃𝐴
𝑑
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝑓

𝑇
[𝑃

− 𝜖
1
𝐼] 𝑓 + 𝑓

𝑇
𝑃𝑔 + 𝑔

𝑇
𝑃𝐴
0
𝑥 (𝑘) + 𝑔

𝑇
𝑃𝐴
𝑑
𝑥 (𝑘

− 𝜏 (𝑘)) + 𝑔
𝑇
𝑃𝑓 + 𝑔

𝑇
[𝑃 − 𝜖

2
𝐼] 𝑔} .

(25)

This reduces to

E {Δ𝑉 (𝑘)} ≤ E {�̃�
𝑇
(𝑘)Ω�̃� (𝑘)} , (26)
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where

�̃� (𝑘)

= (𝑥𝑇 (𝑘) 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) 𝑓𝑇 (𝑘, 𝑥 (𝑘)) 𝑔𝑇 (𝑘, 𝑥 (𝑘 − 𝜏 (𝑘))))
𝑇

,

(27)

Ω

=
(
(

(

Π 𝐴
0

𝑇

𝑃𝐴
𝑑

𝐴
0

𝑇

𝑃 𝐴
0

𝑇

𝑃

𝐴
𝑑

𝑇

𝑃𝐴
0

𝜖
2
𝛽2𝐺𝑇𝐺 + 𝐴

𝑑

𝑇

𝑃𝐴
𝑑
− 𝑆 𝐴

𝑑

𝑇

𝑃 𝐴
𝑑

𝑇

𝑃

𝑃𝐴
0

𝑃𝐴
𝑑

𝑃 − 𝜖
1
𝐼 𝑃

𝑃𝐴
0

𝑃𝐴
𝑑

𝑃 𝑃 − 𝜖
2
𝐼

)
)

)

,
(28)

withΠ = 𝜖
1
𝛼2𝐹𝑇𝐹+𝐴

0

𝑇

𝑃𝐴
0
+𝐴
1

𝑇

𝑃𝐴
1
+(𝜏
𝑀

−𝜏
𝑚
+1)𝑆−𝑃.

Applying Lemma 2, we get thatΩ < 0 if and only if

Ω

=

(
(
(
(
(
(
(
(
(

(

Π 0 𝐴
0

𝑇

𝑃 𝐴
0

𝑇

𝑃 𝐴
0

𝑇

𝑃 𝐴
1

𝑇

𝑃

∗ 𝜖
2
𝛽2𝐺𝑇𝐺 − 𝑆 𝐴

𝑑

𝑇

𝑃 𝐴
𝑑

𝑇

𝑃 𝐴
𝑑

𝑇

𝑃 0

∗ ∗ 𝑃 − 𝜖
1
𝐼 𝑃 0 0

∗ ∗ ∗ 𝑃 − 𝜖
2
𝐼 0 0

∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ −𝑃

)
)
)
)
)
)
)
)
)

)

< 0,

(29)

where Π = 𝜖
1
𝛼2𝐹𝑇𝐹 + (𝜏

𝑀
− 𝜏
𝑚
+ 1)𝑆 − 𝑃.

We obtain from formula (23) that

Ω = Φ + ΔΦ
0
(𝑘) + ΔΦ

1
(𝑘) , (30)

where

Φ

=

(
(
(
(
(
(
(
(

(

Π 0 𝐴𝑇
0
𝑃 𝐴𝑇

0
𝑃 𝐴𝑇

0
𝑃 𝐴𝑇
1
𝑃

∗ 𝜖
2
𝛽2𝐺𝑇𝐺 − 𝑆 𝐴𝑇

𝑑
𝑃 𝐴𝑇

𝑑
𝑃 𝐴𝑇

𝑑
𝑃 0

∗ ∗ 𝑃 − 𝜖
1
𝐼 𝑃 0 0

∗ ∗ ∗ 𝑃 − 𝜖
2
𝐼 0 0

∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ −𝑃

)
)
)
)
)
)
)
)

)

,

ΔΦ
0
(𝑘)

=

(
(
(
(
(
(
(

(

0 0 Δ𝐴
𝑇

0
(𝑘) 𝑃 Δ𝐴𝑇

0
(𝑘) 𝑃 Δ𝐴𝑇

0
(𝑘) 𝑃 0

∗ 0 Δ𝐴
𝑇

𝑑
(𝑘) 𝑃 Δ𝐴𝑇

𝑑
(𝑘) 𝑃 Δ𝐴𝑇

𝑑
(𝑘) 𝑃 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0

)
)
)
)
)
)
)

)

,

ΔΦ
1
(𝑘) =

(
(
(
(
(
(

(

0 0 0 0 0 Δ𝐴𝑇
1
(𝑘) 𝑃

∗ 0 0 0 0 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0

)
)
)
)
)
)

)

.

(31)

From (4) and Lemma 3, we have

ΔΦ
0
(𝑘) =

(
(
(
(
(
(
(

(

0 0 𝑁
𝑇

1
𝐻𝑇 (𝑘)𝐷

𝑇𝑃 𝑁𝑇
1
𝐻𝑇 (𝑘)𝐷

𝑇𝑃 𝑁𝑇
1
𝐻𝑇 (𝑘)𝐷

𝑇𝑃 0

∗ 0 𝑁𝑇
2
𝐻𝑇 (𝑘)𝐷

𝑇𝑃 𝑁𝑇
2
𝐻𝑇 (𝑘)𝐷

𝑇𝑃 𝑁𝑇
2
𝐻𝑇 (𝑘)D𝑇𝑃 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0

)
)
)
)
)
)
)

)

=

(
(
(
(
(

(

0

0

𝑃𝐷

𝑃𝐷

𝑃𝐷

0

)
)
)
)
)

)

𝐻(𝑘) (𝑁1 𝑁
2

0 0 0 0) +

(
(
(
(
(
(

(

𝑁
𝑇

1

𝑁𝑇
2

0

0

0

0

)
)
)
)
)
)

)

𝐻
𝑇
(𝑘) (0 0 𝐷𝑇𝑃 𝐷𝑇𝑃 𝐷𝑇𝑃 0)
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≤ 𝜌
−1

1

(
(
(
(
(

(

0

0

𝑃𝐷

𝑃𝐷

𝑃𝐷

0

)
)
)
)
)

)

(0 0 𝐷
𝑇𝑃 𝐷𝑇𝑃 𝐷𝑇𝑃 0) + 𝜌

1

(
(
(
(
(

(

𝑁
𝑇

1

𝑁𝑇
2

0

0

0

0

)
)
)
)
)

)

(𝑁1 𝑁
2

0 0 0 0) .

(32)

Similarly, it is not difficult to verify that

ΔΦ
1
(𝑘) ≤

(
(
(
(
(

(

0 0 0 0 0 0

∗ 0 0 0 0 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 𝜌−1
2

𝑃𝐷𝐷𝑇𝑃

)
)
)
)
)

)

+

(
(
(
(
(

(

𝜌
2
𝑁𝑇
3
𝑁
3

0 0 0 0 0

∗ 0 0 0 0 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0

)
)
)
)
)

)

.

(33)

From (30), (32), and (33), we get

Ω ≤

(
(
(
(
(
(

(

Π
11

𝜌
1
𝑁𝑇
1
𝑁
2

𝐴𝑇
0
𝑃 𝐴𝑇

0
𝑃 𝐴𝑇

0
𝑃 𝐴𝑇

1
𝑃

∗ Π
22

𝐴𝑇
𝑑
𝑃 𝐴𝑇

𝑑
𝑃 𝐴𝑇

𝑑
𝑃 0

∗ ∗ Π
33

𝑃 + 𝜌−1
1

𝑃𝐷𝐷𝑇𝑃 𝜌−1
1

𝑃𝐷𝐷𝑇𝑃 0

∗ ∗ ∗ Π
44

𝜌−1
1

𝑃𝐷𝐷𝑇𝑃 0

∗ ∗ ∗ ∗ Π
55

0

∗ ∗ ∗ ∗ ∗ Π
66

)
)
)
)
)
)

)

, (34)

where

Π
11

= 𝜖
1
𝛼
2
𝐹
𝑇
𝐹 + (𝜏

𝑀
− 𝜏
𝑚
+ 1) 𝑆 − 𝑃 + 𝜌

1
𝑁
𝑇

1
𝑁
1

+ 𝜌
2
𝑁
𝑇

3
𝑁
3
,

Π
22

= 𝜖
2
𝛽
2
𝐺
𝑇
𝐺 − 𝑆 + 𝜌

1
𝑁
𝑇

2
𝑁
2
,

Π
33

= 𝑃 − 𝜖
1
𝐼 + 𝜌
−1

1
𝑃𝐷𝐷
𝑇
𝑃,

Π
44

= 𝑃 − 𝜖
2
𝐼 + 𝜌
−1

1
𝑃𝐷𝐷
𝑇
𝑃,

Π
55

= −𝑃 + 𝜌
−1

1
𝑃𝐷𝐷
𝑇
𝑃,

Π
66

= −𝑃 + 𝜌
−1

2
𝑃𝐷𝐷
𝑇
𝑃.

(35)

From (10), we get thatΩ < 0, which impliesΩ < 0.Hence,
we have

3

∑
𝑖=1

Δ𝑉
𝑖
(𝑘) ≤ −𝜆min (−Ω) �̃�

𝑇
(𝑘) �̃� (𝑘) . (36)

Taking expected value and summing up both sides of the
above equation for 𝑇 ≥ 𝑘

0
, we have

E [𝑉 (𝑇, 𝑥 (𝑇))] − E [𝑉 (𝑘
0
, 𝑥 (𝑘
0
))]

= E[

[

𝑇−1

∑
𝑘=𝑘0

Δ𝑉 (𝑘, 𝑥 (𝑘)) | 𝑥 (𝑘
0
)]

]

≤ −𝜆min (−Ω)E[

[

𝑇

∑
𝑘=𝑘0

�̃�
𝑇
(𝑘) �̃� (𝑘) | 𝑥 (𝑘

0
)]

]

.

(37)

Thus,

𝜆min (−Ω)E[

[

𝑇

∑
𝑘=𝑘0

�̃�
𝑇
(𝑘) �̃� (𝑘) | 𝑥 (𝑘

0
)]

]

≤ E [𝑉 (𝑘
0
, 𝑥 (𝑘
0
))] − E [𝑉 (𝑇, 𝑥 (𝑇))]

≤ E [𝑉 (𝑘
0
, 𝑥 (𝑘
0
))] .

(38)
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We get

E[

[

𝑇

∑
𝑘=𝑘0

�̃�
𝑇
(𝑘) �̃� (𝑘) | 𝑥 (𝑘

0
)]

]

≤
E [𝑉 (𝑘

0
, 𝑥 (𝑘
0
))]

𝜆min (−Ω)
. (39)

Obviously, ‖𝑥‖ ≤ ‖�̃�‖ and this leads to

E[

[

𝑇

∑
𝑘=𝑘0

𝑥
𝑇
(𝑘) 𝑥 (𝑘) | 𝑥 (𝑘

0
)]

]

≤
E [𝑉 (𝑘

0
, 𝑥 (𝑘
0
))]

𝜆min (−Ω)
, (40)

which leads to the robust stochastic stability of (1) with 𝑢(𝑘) =

0 with margins 𝛼 and 𝛽. This completes the proof of the
theorem.

Remark 5. In [7], the stochastic stability analysis problem
had been studied for discrete-time system with stochastic

disturbance. But the time-delay and parameter uncertainties
and unknown nonlinearities with time-varying delays were
not considered in [7]. In this paper, we consider the time-
delay and parameter uncertainties and the unknown non-
linear time-varying perturbations with time-varying delay.
Comparing with [7], the model that is given by uncertain
nonlinear discrete-time stochastic system (1) is a more gen-
eral one.

Remark 6. In this paper, scalars 𝜖
1
, 𝜖
2
, 𝜌
1
, and 𝜌

2
are intro-

duced with the aim to obtain a tractable matrix condition,
while the conservatismdoes not increasemuch. Compared to
[7], by choosing these scalars appropriately, the conservatism
can be further reduced.

We have reformulated this theorem as an optimization
problem which is given below as a separated theorem.

Theorem 7. Let 𝛾
0
and 𝛾

1
be the optimal solutions of the

following optimization problem:

maximize 𝛾, �̃�

subject to 𝑃 > 0,

𝑆 > 0,

𝜌
1
> 0,

𝜌
2
> 0,

for some 𝜖
1
> 0, 𝜖

2
> 0,

(
(
(
(
(
(
(
(
(
(
(

(

Φ
11

𝜌
1
𝑁
𝑇

1
𝑁
2

𝐴
𝑇

0
𝑃 𝐴

𝑇

0
𝑃 𝐴

𝑇

0
𝑃 𝐴
𝑇

1
𝑃 0 0

∗ Φ
22

𝐴𝑇
𝑑
𝑃 𝐴𝑇

𝑑
𝑃 𝐴𝑇

𝑑
𝑃 0 0 0

∗ ∗ 𝑃 − 𝜖
1
𝐼 𝑃 0 0 𝑃𝐷 0

∗ ∗ ∗ 𝑃 − 𝜖
2
𝐼 0 0 𝑃𝐷 0

∗ ∗ ∗ ∗ −𝑃 0 𝑃𝐷 0

∗ ∗ ∗ ∗ 0 −𝑃 0 𝑃𝐷

∗ ∗ ∗ ∗ ∗ ∗ −𝜌
1
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜌
2
𝐼

)
)
)
)
)
)
)
)
)
)
)

)

< 0,

(41)

where

Φ
11

= (𝜏
𝑀

− 𝜏
𝑚
+ 1) 𝑆 − 𝑃 + 𝜌

1
𝑁
𝑇

1
𝑁
1
+ 𝜌
2
𝑁
𝑇

3
𝑁
3

+ 𝛾𝐹
𝑇
𝐹,

Φ
22

= −𝑆 + 𝜌
1
𝑁
𝑇

2
𝑁
2
+ �̃�𝐺
𝑇
𝐺.

(42)

Then, for any 0 < 𝛾 ≤ 𝛾
0
and 0 < �̃� ≤ 𝛾

1
, system (1) with 𝑢(𝑘) =

0 is robustly stochastically stable with margins 𝛼 = √𝛾/𝜖
1
and

𝛽 = √�̃�/𝜖
2
.

We now consider the problem of robustly stochastic stability
of system (1).

Theorem 8. System (1) is robustly stochastically stabilizable
with margins 𝛼 and 𝛽 under the controller 𝑢(𝑘) = 𝐾𝑥(𝑘)

with 𝐾 = 𝑌𝑋
−1, if there exist positive scalars 𝜌

1
, 𝜌
2
, and

𝜌
3
, symmetric positive-definite matrices 𝑋 and 𝑄, and any

matrix 𝑌 of appropriate dimensions satisfying the following
LMI:
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(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−𝑋 0 𝐽
𝑇 𝐽𝑇 𝐽𝑇 𝑋𝐴𝑇

1
𝑋 𝑋𝑁𝑇

1
𝑋𝑁𝑇
3

𝑌𝑇𝑁𝑇
4

𝑋𝐹𝑇 0

∗ Ξ
22

𝑋𝐴𝑇
𝑑

𝑋𝐴𝑇
𝑑

𝑋𝐴𝑇
𝑑

0 0 𝑋𝑁𝑇
2

0 0 0 𝑋𝐺𝑇

∗ ∗ Ξ
33

Ξ
34

Ξ
35

0 0 0 0 0 0 0

∗ ∗ ∗ Ξ
44

Ξ
45

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ Ξ
55

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ξ
66

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ξ
77

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜌
1
𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜌
2
𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜌
3
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛼−2𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛽−2𝐼

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

< 0, (43)

where

Ξ
22

= 𝑄 − 2𝑋,

Ξ
33

= 𝐼 − 𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
34

= 𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
35

= 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
44

= 𝐼 − 𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
45

= 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
55

= −𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
66

= −𝑋 + 𝜌
2
𝐷𝐷
𝑇
,

Ξ
77

= − (𝜏
𝑀

− 𝜏
𝑚
+ 1)
−1

𝑄,

𝐽 = 𝐴
0
𝑋 + 𝐵𝑌.

(44)

Proof. Substituting 𝑢(𝑘) = 𝐾𝑥(𝑘) into (1) yields the dynamics
of the closed-loop system described by

𝑥 (𝑘 + 1) = [𝐴
0
+ Δ𝐴
0
(𝑘) + (𝐵 + Δ𝐵 (𝑘))𝐾] 𝑥 (𝑘)

+ (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑘)) 𝑥 (𝑘 − 𝜏 (𝑘))

+ (𝐴
1
+ Δ𝐴
1
(𝑘)) 𝑥 (𝑘) 𝜉 (𝑘)

+ 𝑓 (𝑘, 𝑥 (𝑘)) + 𝑔 (𝑘, 𝑥 (𝑘 − 𝜏 (𝑘)))

= [𝐴
0
+ 𝐵𝐾] 𝑥 (𝑘) + 𝐴

𝑑
𝑥 (𝑘 − 𝜏

𝑘
)

+ 𝐴
1
𝑥 (𝑘) 𝜉 (𝑘) + 𝑓 (𝑘, 𝑥 (𝑘))

+ 𝑔 (𝑘, 𝑥 (𝑘 − 𝜏 (𝑘))) .

(45)

Denote �̂� = 𝐴
0
+ 𝐵𝐾.

Similar to the proof of Theorem 4, we get that the
closed-loop system (45) is stochastically stable if there exist
symmetric positive-definite matrices 𝑃 and 𝑆 satisfying the
following LMI:

Ψ

=

(
(
(
(
(
(

(

Π
11

0 𝐴
0

𝑇

𝑃 𝐴
0

𝑇

𝑃 𝐴
0

𝑇

𝑃 𝐴
1

𝑇

𝑃

∗ 𝛽2𝐺𝑇𝐺 − 𝑆 𝐴
𝑑

𝑇

𝑃 𝐴
𝑑

𝑇

𝑃 𝐴
𝑑

𝑇

𝑃 0

∗ ∗ 𝑃 − 𝐼 𝑃 0 0

∗ ∗ ∗ 𝑃 − 𝐼 0 0

∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ −𝑃

)
)
)
)
)
)

)

< 0,

(46)

where Π
11

= 𝛼2𝐹𝑇𝐹 + (𝜏
𝑀

− 𝜏
𝑚
+ 1)𝑆 − 𝑃.
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We have

Ψ ≤

(
(
(
(
(

(

𝑊
11

𝜌−1
1

𝑁𝑇
1
𝑁
2

𝐴𝑇
0
𝑃 + 𝐾𝑇𝐵𝑇𝑃 𝐴𝑇

0
𝑃 + 𝐾𝑇𝐵𝑇𝑃 𝐴𝑇

0
𝑃 + 𝐾𝑇𝐵𝑇𝑃 𝐴𝑇

1
𝑃

∗ 𝑊
22

𝐴𝑇
𝑑
𝑃 𝐴𝑇

𝑑
𝑃 𝐴𝑇

𝑑
𝑃 0

∗ ∗ 𝑊
33

𝑊
34

𝑊
35

0

∗ ∗ ∗ 𝑊
44

𝑊
45

0

∗ ∗ ∗ ∗ 𝑊
55

0

∗ ∗ ∗ ∗ ∗ 𝑊
66

)
)
)
)
)

)

, (47)

where

𝑊
11

= 𝛼
2
𝐹
𝑇
𝐹 + (𝜏

𝑀
− 𝜏
𝑚
+ 1) 𝑆 − 𝑃 + 𝜌

−1

1
𝑁
𝑇

1
𝑁
1

+ 𝜌
−1

2
𝑁
𝑇

3
𝑁
3
+ 𝜌
−1

3
𝐾
𝑇
𝑁
𝑇

4
𝑁
4
𝐾,

𝑊
22

= 𝛽
2
𝐺
𝑇
𝐺 − 𝑆 + 𝜌

−1

1
𝑁
𝑇

2
𝑁
2
,

𝑊
33

= 𝑃 − 𝐼 + 𝜌
1
𝑃𝐷𝐷
𝑇
𝑃 + 𝜌
3
𝑃𝐷𝐷
𝑇
𝑃,

𝑊
34

= 𝑃 + 𝜌
1
𝑃𝐷𝐷
𝑇
𝑃 + 𝜌
3
𝑃𝐷𝐷
𝑇
𝑃,

𝑊
35

= 𝜌
1
𝑃𝐷𝐷
𝑇
𝑃 + 𝜌
3
𝑃𝐷𝐷
𝑇
𝑃,

𝑊
44

= 𝑃 − 𝐼 + 𝜌
1
𝑃𝐷𝐷
𝑇
𝑃 + 𝜌
3
𝑃𝐷𝐷
𝑇
𝑃,

𝑊
45

= 𝜌
1
𝑃𝐷𝐷
𝑇
𝑃 + 𝜌
3
𝑃𝐷𝐷
𝑇
𝑃,

𝑊
55

= −𝑃 + 𝜌
1
𝑃𝐷𝐷
𝑇
𝑃 + 𝜌
3
𝑃𝐷𝐷
𝑇
𝑃,

𝑊
66

= −𝑃 + 𝜌
2
𝑃𝐷𝐷
𝑇
𝑃.

(48)

Let 𝑃−1 = 𝑋, 𝑄 = 𝑆−1, and pre- and postmultiplying (47) by
diag{𝑋,𝑋,𝑋,𝑋,𝑋,𝑋} yield

Ψ = diag {𝑋,𝑋,𝑋,𝑋,𝑋,𝑋}Ψ diag {𝑋,𝑋,𝑋,𝑋,𝑋,𝑋}

=

(
(
(
(
(

(

𝑊
11

𝜌−1
1

𝑋𝑁𝑇
1
𝑁
2
𝑋 𝑋𝐴𝑇

0
+ 𝑋𝐾𝑇𝐵𝑇 𝑋𝐴𝑇

0
+ 𝑋𝐾𝑇𝐵𝑇 𝑋𝐴𝑇

0
+ 𝑋𝐾𝑇𝐵𝑇 𝑋𝐴𝑇

1

∗ 𝑊
22

𝑋𝐴𝑇
𝑑

𝑋𝐴𝑇
𝑑

𝑋𝐴𝑇
𝑑

0

∗ ∗ 𝑊
33

𝑊
34

𝑊
35

0

∗ ∗ ∗ 𝑊
44

𝑊
45

0

∗ ∗ ∗ ∗ 𝑊
55

0

∗ ∗ ∗ ∗ ∗ 𝑊
66

)
)
)
)
)

)

,
(49)

where

𝑊
11

= 𝛼
2
𝑋𝐹
𝑇
𝐹𝑋 + (𝜏

𝑀
− 𝜏
𝑚
+ 1)𝑋𝑆𝑋 − 𝑋

+ 𝜌
−1

1
X𝑁
𝑇

1
𝑁
1
𝑋 + 𝜌

−1

2
𝑋𝑁
𝑇

3
𝑁
3
𝑋

+ 𝜌
−1

3
𝑋𝐾
𝑇
𝑁
𝑇

4
𝑁
4
𝐾𝑋,

𝑊
22

= 𝛽
2
𝑋𝐺
𝑇
𝐺𝑋 − 𝑋𝑆𝑋 + 𝜌

−1

1
𝑋𝑁
𝑇

2
𝑁
2
𝑋,

𝑊
33

= 𝑋 − 𝑋
2
+ 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
34

= 𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
35

= 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
44

= 𝑋 − 𝑋
2
+ 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
45

= 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
55

= −𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
66

= −𝑋 + 𝜌
2
𝐷𝐷
𝑇
.

(50)

Using the well-known relationships

𝑋 + 𝑋
−1

≥ 2𝐼,

𝑊
𝑇
− 2𝑋 ≥ 𝑋

𝑇
𝑊
−1
𝑋,

(51)

we can get

𝑋 − 𝑋
2
≤ 𝐼 − 𝑋,

𝑋
𝑇
𝑊
−1
𝑋 ≥ 𝑋 + 𝑋

𝑇
− 𝑊.

(52)
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Using (52) and the gain matrix𝐾 = 𝑌𝑋−1, we obtain

Ψ ≤

(
(
(
(

(

𝑊
11

𝜌−1
1

𝑋𝑁𝑇
1
𝑁
2
𝑋 𝑋𝐴𝑇

0
+ 𝑌𝑇𝐵𝑇 𝑋𝐴𝑇

0
+ 𝑌𝑇𝐵𝑇 𝑋𝐴𝑇

0
+ 𝑌𝑇𝐵𝑇 𝑋𝐴𝑇

1

∗ 𝑊
22

𝑋𝐴𝑇
𝑑

𝑋𝐴𝑇
𝑑

𝑋𝐴𝑇
𝑑

0

∗ ∗ 𝑊
33

𝑊
34

𝑊
35

0

∗ ∗ ∗ 𝑊
44

𝑊
45

0

∗ ∗ ∗ ∗ 𝑊
55

0

∗ ∗ ∗ ∗ ∗ 𝑊
66

)
)
)
)

)

, (53)

where

𝑊
11

= 𝛼
2
𝑋𝐹
𝑇
𝐹𝑋 + (𝜏

𝑀
− 𝜏
𝑚
+ 1)𝑋𝑆𝑋 − 𝑋

+ 𝜌
−1

1
𝑋𝑁
𝑇

1
𝑁
1
𝑋 + 𝜌

−1

2
𝑋𝑁
𝑇

3
𝑁
3
𝑋

+ 𝜌
−1

3
𝑌
𝑇
𝑁
𝑇

4
𝑁
4
𝑌,

𝑊
22

= 𝛽
2
𝑋𝐺
𝑇
𝐺𝑋 + 𝑆

−1
− 2𝑋 + 𝜌

−1

1
𝑋𝑁
𝑇

2
𝑁
2
𝑋,

𝑊
33

= 𝐼 − 𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
34

= 𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
35

= 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
44

= 𝐼 − 𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
45

= 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
55

= −𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

𝑊
66

= −𝑋 + 𝜌
2
𝐷𝐷
𝑇
.

(54)

We have known that Ψ < 0 is equivalent to Ψ < 0. By
Lemma 2, we get LMI (43) implying that Ψ < 0, which
concludes the proof of the theorem.

Remark 9. The proposed feedback controller can ensure
stochastic stability of the closed-loop system in Theorem 8.
If 𝛼 and 𝛽 are given, the feasibility problem of LMI can be
solved to get a suitable stabilization controller gain.

We have reformulated this theorem as an optimization
problem which is given below as a separated theorem.

Theorem 10. Let 𝛾
0
and 𝛾

1
be the optimal solutions of the

following optimization problem:

minimize 𝛾, �̃�

subject to 𝑋 > 0,

𝑄 > 0,

𝜌
1
> 0,

𝜌
2
> 0,

𝜌
3
> 0,

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−𝑋 0 𝐽
𝑇 𝐽𝑇 𝐽𝑇 𝑋𝐴𝑇

1
𝑋 𝑋𝑁𝑇

1
𝑋𝑁𝑇
3

𝑌𝑇𝑁𝑇
4

𝑋𝐹𝑇 0

∗ Ξ
22

𝑋𝐴𝑇
𝑑

𝑋𝐴𝑇
𝑑

𝑋𝐴𝑇
𝑑

0 0 𝑋𝑁𝑇
2

0 0 0 𝑋𝐺𝑇

∗ ∗ Ξ
33

Ξ
34

Ξ
35

0 0 0 0 0 0 0

∗ ∗ ∗ Ξ
44

Ξ
45

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ Ξ
55

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ξ
66

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ξ
77

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜌
1
𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜌
2
𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜌
3
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −�̃�𝐼

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

< 0,

(55)
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with

Ξ
22

= 𝑄 − 2𝑋,

Ξ
33

= 𝐼 − 𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
34

= 𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
35

= 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
44

= 𝐼 − 𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
45

= 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
55

= −𝑋 + 𝜌
1
𝐷𝐷
𝑇
+ 𝜌
3
𝐷𝐷
𝑇
,

Ξ
66

= −𝑋 + 𝜌
2
𝐷𝐷
𝑇
,

Ξ
77

= − (𝜏
𝑀

− 𝜏
𝑚
+ 1)
−1

𝑄,

𝐽 = 𝐴
0
𝑋 + 𝐵𝑌.

(56)

Then, for any 𝛾 ≥ 𝛾
0
and �̃� ≥ 𝛾

1
, system (1) with 𝑢(𝑘) = 𝐾𝑥(𝑘),

where𝐾 = 𝑌𝑋−1, is robustly stochastically stable with margins
𝛼 = 1/√𝛾 and 𝛽 = 1/√�̃�.

Remark 11. Unlike robust control results available in the
literature [17, 18], the result presented in this paper designs
a linear control law that stabilizes the closed-loop system
and is maximally robust with respect to considered nonlinear
perturbations.

Remark 12. In [19], by using a linear controller, delay-
dependent sufficient conditions of stabilization for a class
of nonlinear discrete-time systems with varying time delay
were given. However, the system in [19] did not involve
stochastic disturbance. In [7], authors considered the robust
state feedback stability and stabilization of nonlinear discrete-
time stochastic system, but the stochastic system in [7] did
not include time delay. Compared with [7, 19], the results
obtained in this paper have a greater range of applications.

Remark 13. In this paper, we use the linear state feedback con-
trol law which has many applications in stochastic stability
analysis and control synthesizing. For example, in [20], for the
robust stabilization problem, a linear state feedback controller
was designed, which ensured that the closed-loop systemwas
robustly stochastically stable with maximal decay rate. In [7],
a linear state feedback controller was used to explore the
stabilization of a class of nonlinear discrete-time stochastic
systems. In [21], asymptotic stabilization of a discrete-time
switched stochastic system was investigated based on a linear
state feedback controller.

4. Numerical Examples

In this section, two numerical examples are provided to
illustrate the usefulness of the proposed criteria.

Example 1. Consider system (1) with 𝑢(𝑘) = 0 and the
following parameters:

𝐴
0
= (

0.3 0.2

0.2 0.3
) ,

𝐴
𝑑
= (

0.5 0.16

0.16 0.4
) ,

𝐴
1
= (

−0.12 0.08

0.08 −0.1
) ,

𝐹 = 𝐺 = (
1 0

0 1
) ,

𝐷 = (
−0.3 0.1

0.1 −0.3
) ,

𝑁
1
= (

0.1 0.1

0.1 0.1
) ,

𝑁
2
= (

−0.1 0.1

0.1 0.1
) ,

𝑁
3
= (

−0.1 0.1

0.1 −0.1
) ,

𝜏 (𝑘) = 2 + sin 𝑘𝜋

2
,

𝜏
𝑀

= 3,

𝜏
𝑚

= 1,

𝜖
1
= 𝜖
2
= 1,

𝛼 = 0.8,

𝛽 = 1.5.

(57)

By using Matlab LMI Toolbox, we solve LMI (10) and
obtain the feasible solutions as follows:

𝑃 = (
0.2115 −0.1316

−0.1316 0.2679
) ,

𝑆 = (
0.0290 −0.0322

−0.0322 0.0466
) ,

𝜌
1
= 0.1018,

𝜌
2
= 0.5570.

(58)

The simulation of the state response of 𝑥(𝑘) under initial
condition 𝑥(0) = (−1, 1)

𝑇 is given in Figure 1.
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Figure 1: State trajectories of the open-loop system.

Example 2. We consider the uncertain nonlinear discrete
stochastic system (1) with the following parameters:

𝐴
0
= (

0.5 2

1.8 1
) ,

𝐴
𝑑
= (

0.1 −0.4

−0.5 0.5
) ,

𝐴
1
= (

−0.12 0.08

0.08 −0.1
) ,

𝐵 = (
0.2 −0.3

−0.3 0.2
) ,

𝐷 = (
0.1 0.1

0.1 −0.03
) ,

𝑁
1
= (

0.1 0.2

0.2 0.1
) ,

𝑁
2
= (

0.1 0.1

0.1 0.1
) ,

𝑁
3
= (

0.1 0.1

0.1 0.1
) ,

𝑁
4
= (

0.1 0.1

0.1 0.1
) ,

𝐹 = 𝐺 = 𝐼 = (
1 0

0 1
) ,

𝜏 (𝑘) = 2 + sin 𝑘𝜋

2
.

(59)
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Figure 2: State trajectories of the closed-loop system.

Given that 𝛼 = 1.25, 𝛽 = 0.8, 𝜏
𝑀

= 3, and 𝜏
𝑚

= 1, then the
solution of LMI (40) is

𝑋 = (
0.1730 −0.0646

−0.0646 0.1673
) ,

𝑄 = (
0.1183 −0.0670

−0.0670 0.1003
) ,

𝑌 = (
1.1881 0.6066

0.6066 1.1076
) ,

𝜌
1
= 0.1337,

𝜌
2
= 0.2596,

𝜌
3
= 0.1738.

(60)

By the formula𝐾 = 𝑌𝑋−1, we get the controller gain

𝐾 = (
9.6041 7.3341

6.9836 9.3173
) . (61)

Figure 2 shows the simulation results for states 𝑥
1
(𝑘) and

𝑥
2
(𝑘) under initial condition 𝑥(0) = (−1, 1)

𝑇. Simulation
results demonstrate that our proposed design is very effective.

5. Conclusions

In this paper, we have investigated the robust stochastic
stability and stabilization for a class of uncertain non-
linear discrete-time stochastic systems with interval time-
varying delays and nonlinear disturbances. The nonlinear
disturbances are more complex with uncertainty and time-
varying delays. By constructing a new Lyapunov-Krasovskii
functional and utilizing some well-known inequalities, we
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present novel delay-dependent criteria which guarantee the
robust stochastic stability of a class of uncertain discrete-time
stochastic systems. Then based on a state feedback control
law, we give the delay-dependent sufficient conditions of
robust stochastic stabilization for a class of uncertain discrete-
time stochastic systems with interval time-varying delays,
and the controller gain is designed. In this paper, we convert
the complex stability analysis problem into the resolvable
LMI problem.The results of this paper can be easily extended
to the global exponential stability problem.
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