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We present and study existing digital differential analyzer (DDA) algorithms for circle generation, including an improved two-step
DDA algorithm which can be implemented solely in terms of elementary shifts, addition, and subtraction.

1. Introduction

Digital interpolation algorithms are widely used in machine
tools with numerical control, graphics displays and plotters,
and manipulation robots. Circles and circular arcs frequently
appear in computer graphics, computer-controlled printing,
and automated control; see [1]. One of most popular methods
for generation of circles and arcs is known as digital differen-
tial analyzer (DDA). Digital circular interpolators (or angular
sweep generators) based on DDA approach are widely used
[2–6]. There are many papers where characteristics research
results of such interpolators are systematized [7, 8].

In this paper a new improved two-step algorithm for
DDA circle generation is presented. In paper [9] the idea
of applying a Nystrom two-step scheme to circle generation
appeared for the first time. Our next paper [10] developed
theoretical and geometric aspects of this method. In the
present paper we focus on practical and experimental issues.
Moreover, herewe consider circles of arbitrary radius𝑅, while
in [9, 10] we assumed 𝑅 = 1.

The accuracy of this method is higher than the accuracy
of other known algorithms. Because of its simplicity (it uses
only elementary shift, addition, and subtraction); thismethod
can also be used in numerical control, planning mechanisms,
and so forth.

2. DDA Algorithms

The general class of DDA algorithms for circles generation is
based on obvious trigonometric transformations describing
rotation of vector 𝑅 in the coordinate plane 𝑥-𝑦 (Figure 1);

𝑥
𝑛+1
= 𝑅 sin (𝛼 + Δ𝛼) = 𝑅 sin𝛼 cosΔ𝛼 + 𝑅 cos𝛼 sinΔ𝛼

= 𝑥
𝑛
cosΔ𝛼 + 𝑦

𝑛
sinΔ𝛼,

𝑦
𝑛+1
= 𝑅 cos (𝛼 + Δ𝛼) = 𝑅 cos𝛼 cosΔ𝛼 + 𝑅 sin𝛼 sinΔ𝛼

= 𝑦
𝑛
cosΔ𝛼 − 𝑥

𝑛
sinΔ𝛼.

(1)

Advantages of DDA algorithms include simplicity and high
speed in generating circle point coordinate 𝑥

𝑛+1
, 𝑦
𝑛+1

.
SubstitutingΔ𝛼 = 𝜀 = 2−𝑚, where𝑚 is an integer (usually
𝑚 ≥ 3), we rewrite (1) as

𝑥
𝑛+1
= 𝑥
𝑛
cos 𝜀 + 𝑦

𝑛
sin 𝜀, 𝑦

𝑛+1
= 𝑦
𝑛
cos 𝜀 − 𝑥

𝑛
sin 𝜀,

(2)

which, obviously, can be expressed by a rotation matrix 𝐴:

𝐴 = [
cos 𝜀 − sin 𝜀
sin 𝜀 cos 𝜀 ] . (3)

Hindawi Publishing Corporation
Modelling and Simulation in Engineering
Volume 2014, Article ID 916539, 6 pages
http://dx.doi.org/10.1155/2014/916539

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194210122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Modelling and Simulation in Engineering

y

x

𝛼
Δ𝛼

R

xn , yn

xn+1, yn+1

Figure 1: Rotation of vector 𝑅 in the coordinate plane 𝑥-𝑦.

To avoid expensive computation of trigonometric func-
tions DDA algorithms use simpler (cheaper) expressions
instead of cos 𝜀 and sin 𝜀. For example, by replacing trigono-
metric functions by truncated Taylor series one gets so-
called simultaneous DDA algorithms [3].The determinant of
the rotation matrix is 1. Matrices of DDA algorithms have
different determinants and det𝐴 ≈ 1 only approximately.
The closer it equals 1 the more accurate is the corresponding
circular interpolator [2]. Approximating cos 𝜀 ≈ 1 and sin 𝜀 ≈
𝜀, we obtain the simplest (and least accurate) DDA algorithm
[2, 11]:

𝑥
𝑛+1
= 𝑥
𝑛
+ 𝜀𝑦
𝑛
, 𝑦

𝑛+1
= 𝑦
𝑛
− 𝜀𝑥
𝑛
, det𝐴 = 1 + 𝜀2.

(4)

Much more accurate algorithm is obtained using cos 𝜀 ≈ 1 −
(𝜀
2

/2) and sin 𝜀 ≈ 𝜀 [7, 12, 13]:

𝑥
𝑛+1
= (1 −
𝜀
2

2
)𝑥
𝑛
+ 𝜀𝑦
𝑛
, 𝑦

𝑛+1
= (1 −
𝜀
2

2
)𝑦
𝑛
− 𝜀𝑥
𝑛
,

det𝐴 = 1 + 𝜀
4

4
.

(5)

Approximating cos 𝜀 and sin 𝜀 with first two terms of Taylor
series, we obtain the following algorithm [14]:

𝑥
𝑛+1
= (1 −
𝜀
2

2
)𝑥
𝑛
+ (𝜀 −
𝜀
3

6
)𝑦
𝑛
,

𝑦
𝑛+1
= (1 −
𝜀
2

2
)𝑦
𝑛
− (𝜀 −
𝜀
3

6
)𝑥
𝑛
,

det𝐴 = 1 − 𝜀
4

4
+
𝜀
6

36
.

(6)

Another second order scheme, different form truncated Tay-
lor series, is proposed in [2]:

𝑥
𝑛+1
= (1 −
𝜀
2

2
)𝑥
𝑛
+ (𝜀 −
𝜀
3

4
)𝑦
𝑛
,

𝑦
𝑛+1
= (1 −
𝜀
2

2
)𝑦
𝑛
− (𝜀 −
𝜀
3

4
)𝑥
𝑛
,

det𝐴 = 1 − 𝜀
4

4
+
𝜀
6

16
.

(7)

All the above DDA algorithms have systematic radial error at
each step, which is defined as

Δ𝑅
𝑛
= √𝑥2
𝑛
+ 𝑦2
𝑛
− 𝑅. (8)

In [7], given the recurrence relations for algorithms that do
not have radial errors

𝑥
𝑛+1
=
4 − 𝜀
2

4 + 𝜀2
𝑥
𝑛
+
4𝜀

4 + 𝜀2
𝑦
𝑛
,

𝑦
𝑛+1
=
4 − 𝜀
2

4 + 𝜀2
𝑦
𝑛
−
4𝜀

4 + 𝜀2
𝑥
𝑛
.

(9)

However, implementation of these algorithms requires float-
ing point operations [7]. Replacing the coefficients of (9) with
the first two terms of Taylor series [2], we obtain

4 − 𝜀
2

4 + 𝜀2
≈ 1 −
𝜀
2

2
,

4𝜀

4 + 𝜀2
≈ 𝜀 −
𝜀
3

4
.

(10)

As a result we obtain, obviously, algorithm given by (7).
A lower level of radial error with much simpler hardware

implementation can be achieved using the following algo-
rithm [3, 13]:

𝑥
𝑛+1
= (1 −
𝜀
2

2
)𝑥
𝑛
+ (𝜀 −
𝜀
3

8
)𝑦
𝑛
,

𝑦
𝑛+1
= (1 −
𝜀
2

2
)𝑦
𝑛
− (𝜀 −
𝜀
3

8
)𝑥
𝑛
,

det𝐴 = 1 + 𝜀
6

64
.

(11)

Another scheme worthwhile to be mentioned is the so-called
“magic circle” interpolator [5, 7, 15]:

𝑥
𝑛+1
= 𝑥
𝑛
+ 𝜀𝑦
𝑛
, 𝑦

𝑛+1
= (1 − 𝜀

2

) 𝑦
𝑛
− 𝜀𝑥
𝑛
,

det𝐴 = 1.
(12)

This interpolator is more accurate than the simplest scheme
(4) and requires the use of only two multipliers. However, in
practice it is not used for large 𝜀, because then the generated
“circle” becomes an ellipse [2, 15].
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Table 1: Maximum values of the absolute radial error (𝑅 = 2𝑚).

Number of algorithms 𝑚 = 3 𝑚 = 5 𝑚 = 6 𝑚 = 8 𝑚 = 10 𝑚 = 12

(4) 3.972 3.332 3.234 3.159 3.145 3.142

(5) 0.012 0.771𝑒 − 3 0.192𝑒 − 3 0.120𝑒 − 4 0.749𝑒 − 6 0.468𝑒 − 7

(6) −0.41𝑒 − 2 −0.257𝑒 − 3 −0.641𝑒 − 4 −0.400𝑒 − 5 −0.25𝑒 − 6 −0.156𝑒 − 7

(7) −0.012 −0.771𝑒 − 3 −0.192𝑒 − 3 −0.120𝑒 − 4 −0.74𝑒 − 6 −0.468𝑒 − 7

(11) 0.12𝑒 − 4 0.47𝑒 − 7 0.29𝑒 − 8 0.11𝑒 − 10 0.45𝑒 − 13 0.17𝑒 − 15

(12) 0.262 0.253 0.251 0.250 0.250 0.250

(13) 0.262 0.252 0.251 0.250 0.250 −0.250

(14) −0.063 −0.015 −0.781𝑒 − 2 −0.195𝑒 − 2 −0.48𝑒 − 3 −0.122𝑒 − 3

(15) −2.677 −3.020 −3.079 −3.124 −3.136 −3.140

(16) 0.18𝑒 − 7 0.31𝑒 − 6 0.12𝑒 − 5 0.19𝑒 − 4 0.30𝑒 − 3 0.49𝑒 − 2

There is also a group of sequential DDA algorithms [12].
Here are some of them:

𝑥
𝑛+1
= 𝑥
𝑛
+ 𝜀𝑦
𝑛
, 𝑦

𝑛+1
= 𝑦
𝑛
− 𝜀𝑥
𝑛+1
, (13)

𝑥
𝑛+1
= 𝑥
𝑛
+ 𝜀𝑦
𝑛
, 𝑦

𝑛+1
= 𝑦
𝑛
− 𝜀𝑥
𝑛+1
,

𝑦
𝑛+2
= 𝑦
𝑛+1
− 𝜀𝑥
𝑛+1
, 𝑥

𝑛+2
= 𝑥
𝑛+1
+ 𝜀𝑦
𝑛+2
,

(14)

𝑥
𝑛+1
= (1 −
𝜀
2

2
)𝑥
𝑛
+ 𝜀𝑦
𝑛
, 𝑦

𝑛+1
= (1 −
𝜀
2

2
)𝑦
𝑛
− 𝜀𝑥
𝑛+1
.

(15)

Two-step algorithm:

𝑥
𝑛+2
= 𝑥
𝑛+1

cos 𝜀 − 𝑥
𝑛
, 𝑦

𝑛+2
= 𝑦
𝑛+1

cos 𝜀 − 𝑦
𝑛

(16)

with initial conditions: 𝑥
0
= 𝑅, 𝑦

0
= 0, 𝑥

1
= 𝑅 cos 𝜀, and

𝑦
1
= 𝑅 sin 𝜀, is known as a “direct” or biquad form of the

circular interpolator [14]. Note that its implementation needs
only two multipliers.

In the process of circle points generation radial errors
accumulate, and the law of accumulation is specific to a given
algorithm. Note that in most cases, the circle radius is chosen
to satisfy condition 2𝑚−1 ≤ 𝑅 ≤ 2𝑚 [2, 12, 15]. Obviously,
the greatest error will occur when 𝑅 = 2𝑚. In Table 1 we give
maximum values of the absolute radial systematic errors for
𝑅 = 2

𝑚 and 𝑛 = 2𝜋(1/𝜀) = [2𝜋2𝑚], that is, for the full circle
generation. Initial conditions are chosen to be 𝑥

0
= 0, 𝑦

0
= 𝑅.

Apart from radial error an important role in such devices
(especially in computer numerical control (CNC) interpola-
tors) is played by the chord error 𝐸ch [7], which should not
exceed one basic length unit (BLU). Unlike radial error, the
chord error does not accumulate. In [7] it is shown that for
faster circle point generation for most accurate methods (5)–
(7), (9) Δ𝛼 can be chosen from condition Δ𝛼 = √8/𝑅 at
𝐸ch = 1 (we recall that Δ𝛼 ≡ 𝜀); that is

𝑅 ≤ 2
2𝑚+3

𝐸ch or 𝑅 ≤ 22𝑚+3. (17)

Since the CNC systems radius can reach value 𝑅max = 10
8

BLU, the CNC interpolators angles range Δ𝛼 = 𝜀 = 2−𝑚,
where 𝑚 = 3, 12 overlapping all possible radius values range
(the though adopted algorithms can work and at𝑚 > 12).

In Table 2 we give maximum values of absolute radial
systematic error for most accurate algorithms in case 𝑅 =
2
2𝑚+3.

From these results we see that algorithm (11) is the most
accurate.Therefore, in next sections we choose algorithm (11)
in order to compare it with two new circular interpolators
introduced in [10].

3. New DDA Algorithms

In the proposed two-step DDA algorithm the values 𝑥
𝑛+2

and
𝑦
𝑛+2

are determined by the following formula:

𝑥
𝑛+2
= 𝑥
𝑛
− 2 ⋅ sin 𝜀 ⋅ 𝑦

𝑛+1
, 𝑦

𝑛+2
= 𝑦
𝑛
+ 2 ⋅ sin 𝜀 ⋅ 𝑥

𝑛+1
.

(18)

This is an exact algorithmwhich can be derived as follows (for
another approach, see [10]). We consider the rotation from
the point 𝑥

𝑛
, 𝑦
𝑛
to 𝑥
𝑛+2

, 𝑦
𝑛+2

; see Figure 2. Hence, we obtain
the following equations:

𝑥
𝑛+1
= 𝑥
𝑛
cos 𝜀 − 𝑦

𝑛
sin 𝜀, 𝑦

𝑛+1
= 𝑦
𝑛
cos 𝜀 + 𝑥

𝑛
sin 𝜀,

(19)

𝑥
𝑛+2
= 𝑥
𝑛+1

cos 𝜀 − 𝑦
𝑛+1

sin 𝜀,

𝑦
𝑛+2
= 𝑦
𝑛+1

cos 𝜀 + 𝑥
𝑛+1

sin 𝜀.
(20)

From (20) we obtain values 𝑥
𝑛+1

and −𝑦
𝑛+1

:

𝑥
𝑛+1
=
𝑦
𝑛+2
− 𝑦
𝑛+1

cos 𝜀
sin 𝜀

,

−𝑦
𝑛+1
=
𝑥
𝑛+2
− 𝑥
𝑛+1

cos 𝜀
sin 𝜀

.

(21)

Substituting values given by (21) into (20) we get

𝑥
𝑛+2
− 2𝑥
𝑛+1

cos 𝜀 + 𝑥
𝑛
= 0,

𝑦
𝑛+2
− 2𝑦
𝑛+1

cos 𝜀 + 𝑦
𝑛
= 0.

(22)

Here we recognize the exact discretization of the classical
harmonic oscillator equation [16, 17]. From (22) it follows that

𝑥
𝑛+1
=
𝑥
𝑛+2
+ 𝑥
𝑛

2 cos 𝜀
, 𝑦

𝑛+1
=
𝑦
𝑛+2
+ 𝑦
𝑛

2 cos 𝜀
. (23)
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Table 2: Maximum values of the absolute radial error (𝑅 = 22𝑚+3).

Number of algorithms 𝑚 = 3 𝑚 = 5 𝑚 = 6 𝑚 = 8 𝑚 = 10 𝑚 = 12

(5) 0.7975 0.1973 0.984𝑒 − 1 0.246𝑒 − 1 0.614𝑒 − 2 0.153𝑒 − 2

(6) −0.2642 −0.657𝑒 − 1 −0.328𝑒 − 1 −0.818𝑒 − 2 −0.205𝑒 − 2 −0.511𝑒 − 3

(7) −0.7932 −0.1972 −0.984𝑒 − 1 −0.246𝑒 − 1 0.614𝑒 − 2 0.153𝑒 − 2

(11) 0.78𝑒 − 3 0.12𝑒 − 4 0.15𝑒 − 5 0.23𝑒 − 7 0.37𝑒 − 9 0.57𝑒 − 11

Substituting obtained values in (21), we get

𝑥
𝑛+1
=
𝑦
𝑛+2
− ((𝑦
𝑛+2
+ 𝑦
𝑛
) /2 cos 𝜀) cos 𝜀

sin 𝜀
,

−𝑦
𝑛+1
=
𝑥
𝑛+2
− ((𝑥
𝑛+2
+ 𝑥
𝑛
) /2 cos 𝜀) cos 𝜀

sin 𝜀

(24)

which can easily be reduced to

𝑥
𝑛+1
=
𝑦
𝑛+2
− 𝑦
𝑛

2 sin 𝜀
, −𝑦

𝑛+1
=
𝑥
𝑛+2
− 𝑥
𝑛

2 sin 𝜀
, (25)

that is, to (18). The algorithm works with initial conditions:
𝑥
0
= 𝑅, 𝑦

0
= 0, 𝑥

1
= 𝑅 cos 𝜀, and 𝑦

1
= 𝑅 sin 𝜀, where 𝑅 = 2𝑚

(𝑚 is an integer). Approximating sin 𝜀 ≈ 𝜀 one can transform
(18) into another two-step algorithm:

𝑥
𝑛+2
= 𝑥
𝑛
− 2 ⋅ 𝜀 ⋅ 𝑦

𝑛+1
, 𝑦

𝑛+2
= 𝑦
𝑛
+ 2 ⋅ 𝜀 ⋅ 𝑥

𝑛+1
, (26)

with 𝑥
0
= 𝑅, 𝑦

0
= 0, 𝑥

1
= 𝑅√1 − 𝜀2, 𝑦

1
= 𝑅. This algorithm

was first proposed in [9]; see also [10].
Functional diagram of interpolator which reproduces

(26) is shown in Figure 3. Interpolator contains 6 registers
(Register 1, Register 2, Register 3, Register 4, Output—𝑥

𝑛+2,
,

and Output—𝑦
𝑛+2

), 2 multipliers (Right Shift Register 1 Right
Shift Register 2), subtracter and adder.

In this scheme, at the beginning (before the interpolator
starts) values of 𝑥

0
and 𝑦

0
are recorded in Register 2 and

Register 4, respectively, while values of 𝑥
1
and𝑦
1
are recorded

in Register 1 and Register 3. Then, values of 𝑥
𝑛+1

and 𝑥
𝑛
are

stored in Register 1 and Register 2, and values of 𝑦
𝑛+1

and 𝑦
𝑛
.

are stored in Register 3 and Register 4. Right Shift Register
1 and Right Shift Register 2 perform multiplication of values
𝑦
𝑛+1

and 𝑥
𝑛+1

by 2𝜀. Thus, at outputs of subtractor and adder
parallel binary codes are formed in accordance with (26).
Rounded values are recorded inOutput𝑥

𝑛+2
andOutput𝑦

𝑛+2
.

Table 3 contains maximum values of absolute radial
systematic error of proposed algorithm, given by (26), after
full circle simulation in the case

𝑑 = 24, 𝑑 = 32,

𝜀 = 2
−𝑚

, 𝑅 = 2
𝑚

, 𝑚 = 3, . . . , 10,

𝑛 = 2𝜋
1

𝜀
,

(27)

where 𝑑 is structure elements datapath (in bits) and 𝑛 is
number of iterations. Table 4 contains the same data for case
𝑅 = 2

2𝑚+3. Note that results given in Tables 1 and 2 do not
include round-off errors; hence they do not depend on 𝑑.

y

x
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𝜀

xn

yn

xn+1

yn+1

xn+2

yn+2

xn , yn

xn+1, yn+1
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Figure 2: Generation of 3 subsequent points along the circle.

Register 1 

Register 1 

Register 2 

Register 2 
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Register 4 

Output Output 
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Round Round

xn yn

xn+1 yn+1

xn+2 yn+2

+
+

++ −
−

Figure 3: Functional diagram for the circular interpolator (26).

Analogical data for algorithm given by (11) are given in
Table 5 (we consider, as before, case (27)). Table 6 contains
the same data for 𝑅 = 22𝑚+3.

Comparing errors in Tables 3 and 5, and in Tables 4 and
6, we see that the absolute radial errors of our algorithm (26)
(Tables 3 and 4) are smaller than errors of well-known algo-
rithm (11) (see Tables 5 and 6). For example, we can compare
values of errors at 𝑅 = 2𝑚 (𝑚 = 10) and 𝑑 = 24 given in
Tables 3 and 5. Consequently, we will get that an absolute
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Figure 5: Number of correct bits of result as a function of𝑚 at 𝑅 =
2
2𝑚+3 and 𝑑 = 24.

Table 3: Maximum values of the absolute radial error (𝑅 = 2𝑚) for
proposed Algorithm (26).

𝑚

Absolute radial error
𝑑 = 24 𝑑 = 32

Max Min Max Min
3 7.712𝑒 − 8 −2.567𝑒 − 7 4.377𝑒 − 10 −9.137𝑒 − 10

4 1.215𝑒 − 7 −6.462𝑒 − 7 1.284𝑒 − 9 −2.666𝑒 − 9

5 2.458𝑒 − 7 −1.267𝑒 − 6 9.422𝑒 − 10 −5.362𝑒 − 9

6 4.643𝑒 − 7 −2.645𝑒 − 6 2.223𝑒 − 9 −8.292𝑒 − 9

7 7.045𝑒 − 7 −4.942𝑒 − 6 3.614𝑒 − 9 −1.856𝑒 − 8

8 1.655𝑒 − 6 −9.678𝑒 − 6 6.936𝑒 − 9 −3.794𝑒 − 8

9 3.258𝑒 − 6 −1.898𝑒 − 5 1.245𝑒 − 8 −7.470𝑒 − 8

10 6.758𝑒 − 6 −3.761𝑒 − 5 2.510𝑒 − 8 −1.456𝑒 − 7

radial error is smaller by (max(Table 5))/(max(Table 3)) =
(1.267𝑒 − 5)/(6.792𝑒 − 6) = 1.876 times.

We also see that the smaller is 𝑚, the greater is the
difference between the corresponding errors of both algo-
rithms. For example, for (𝑚 = 3) and 𝑑 = 32 we obtain
that an absolute radial error is smaller by (max(Table 6))/
(max(Table 4)) = (7.781𝑒−4)/(4.533𝑒−10) ≈ 1716523 times.

Finally, Figures 4, 5, 6, and 7 present numbers of correct
bits as a function of 𝑚, for 𝑅 = 2𝑚 and 𝑅 = 22𝑚+3 and for
𝑑 = 24 and 𝑑 = 32, respectively.

Table 4: Maximum values of the absolute radial error (𝑅 = 22𝑚+3)
for proposed Algorithm (26).

𝑚

Absolute radial error
𝑑 = 24 𝑑 = 32

Max Min Max Min
3 6.965𝑒 − 8 −3.866𝑒 − 7 4.533𝑒 − 10 −1.671𝑒 − 9

4 1.768𝑒 − 7 −8.276𝑒 − 7 4.654𝑒 − 10 −3.550𝑒 − 9

5 3.010𝑒 − 7 −1.176𝑒 − 6 1.260𝑒 − 9 −5.494𝑒 − 9

6 4.245𝑒 − 7 −2.292𝑒 − 6 1.923𝑒 − 9 −9.138𝑒 − 9

7 8.948𝑒 − 7 −5.040𝑒 − 6 3.707𝑒 − 9 −1.927𝑒 − 8

8 1.454𝑒 − 6 −9.834𝑒 − 6 8.918𝑒 − 9 −3.704𝑒 − 8

9 3.424𝑒 − 6 −1.936𝑒 − 5 1.307𝑒 − 8 −7.389𝑒 − 8

10 6.792𝑒 − 6 −3.648𝑒 − 5 2.792𝑒 − 8 −1.437𝑒 − 7
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Figure 6: Number of correct bits of result as a function of𝑚 at 𝑅 =
2
𝑚 and 𝑑 = 32.

Table 5: Maximum values of the absolute radial error (𝑅 = 2𝑚) for
Algorithm (11).

𝑚

Absolute radial error
𝑑 = 24 𝑑 = 32

Max Min Max Min
3 1.214𝑒 − 5 0 1.215𝑒 − 5 0

4 9.641𝑒 − 7 −8.277𝑒 − 7 7.525𝑒 − 7 0

5 5.496𝑒 − 7 −2.386𝑒 − 6 4.552𝑒 − 8 0

6 5.508𝑒 − 7 −4.660𝑒 − 6 5.781𝑒 − 9 −1.682𝑒 − 8

7 1.235𝑒 − 6 −9.674𝑒 − 6 6.069𝑒 − 9 −3.579𝑒 − 8

8 4.009𝑒 − 6 −1.858𝑒 − 5 1.524𝑒 − 8 −7.158𝑒 − 8

9 6.478𝑒 − 6 −3.651𝑒 − 5 2.034𝑒 − 8 −1.484𝑒 − 7

10 1.268𝑒 − 5 −7.285𝑒 − 5 5.564𝑒 − 8 −2.853𝑒 − 7

Presented figures clearly show that the proposed algo-
rithm (26) yields greater number of correct bits in compar-
ison to algorithm (11).

4. Conclusion

A new circle generation DDA algorithm has been proposed.
In terms of hardware implementation and precision of circle
generation the proposed DDA algorithm for circle interpola-
tor ismore efficient as comparedwith existing algorithms.We
hope that the proposed algorithm will find some applications
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Figure 7: Number of correct bits of result as a function of𝑚 at 𝑅 =
2
2𝑚+3 and 𝑑 = 32.

Table 6: Maximum values of the absolute radial error (𝑅 = 22𝑚+3)
for Algorithm (11).

𝑚

Absolute radial error
𝑑 = 24 𝑑 = 32

Max Min Max Min
3 7.780𝑒 − 4 0 7.781𝑒 − 4 0

4 9.650𝑒 − 5 0 9.632𝑒 − 5 0

5 1.165𝑒 − 5 0 1.204𝑒 − 5 0

6 2.469𝑒 − 6 −3.933𝑒 − 6 1.501𝑒 − 6 0

7 1.731𝑒 − 6 −9.497𝑒 − 6 1.878𝑒 − 7 0

8 2.359𝑒 − 6 −1.942𝑒 − 5 3.598𝑒 − 8 −6.302𝑒 − 8

9 5.371𝑒 − 6 −3.779𝑒 − 5 2.655𝑒 − 8 −1.421𝑒 − 7

10 1.057𝑒 − 5 −7.478𝑒 − 5 5.028𝑒 − 8 −2.914𝑒 − 7

in computer graphics (display screens), computer-controlled
printing, automated control, and so forth.
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