
Research Article
Sensor Fault Tolerant Control of a Fast Steering
Mirror System Using Adaptive PI-Based Sliding Mode
Observer and Hardware Redundancy

Hongju Wang,1,2,3 Qiliang Bao,1,2 Wenshu Yang,2 Zidong Liu,1,2 and Jing Tian1,2

1Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Mailbox 350, Chengdu 610209, China
2Institute of Optics and Electronics, Chinese Academy of Sciences, Mailbox 350, Chengdu 610209, China
3University of Chinese Academy of Sciences, Beijing 100191, China

Correspondence should be addressed to Hongju Wang; ioe whj@163.com

Received 24 June 2014; Accepted 1 September 2014

Academic Editor: Ke Zhang

Copyright © 2015 Hongju Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this paper is to present a sensor fault-tolerant control (FTC) scheme for a two-axis fast steering mirror (FSM) system
with minimum power consumption and without changing the controller structure. In this paper, an adaptive PI-based sliding
mode observer (APISMO) is adopted firstly to estimate the fault signal, which does not require any prior knowledge of the fault.
The estimation is then used by the fault isolation logic to identify the fault. The redundant sensor would be powered up to replace
the faulty one when faults occur. During the backup sensor booting up, for maintaining the normal performance of the closed-loop
system approximately, a fault-free estimation of the position provided by the APISMO is used as feedback signal. Experimental
studies on a prototype system show that the proposed APISMO can effectively reconstruct the fault signals even when the two
primary position sensors are faulty simultaneously. Meanwhile, the effectiveness and performance of the proposed scheme have
been verified.

1. Introduction

The fast steering mirror (FSM) system is popularly applied in
situations that require a precision positioning, such as space
telescopes, adaptive optics, and free-space optical (FSO)
communications [1–3]. In most of the applications, the FSM
is adopted to steer the optical beam precisely. Extensive
researches have been carried out to improve the closed-loop
performance of FSM [4–6]. Most of the control strategies
depend on reliable sensor measurements. However, these
sensors are usually affected by failures such as offset, drift, and
disconnection, which would obviously result in overall per-
formance deterioration. Therefore, it is desirable to develop
a sensor FTC scheme for FSM.

To maintain a high level of reliability, the hardware
redundancy-based technique has been widely used by the
FSM system designed for space application [2, 3, 7]. Because
of mass and power constraints, it is still a challenge to
design a FTC scheme that provides required reliability with

minimum hardware redundancy. In addition, most sensors
and actuators havemoving parts and life limited components.
Another challenge is determining whether the redundant
sensors could be kept unpowered and activated only when
necessary [8].

Many approaches have been proposed to overcome the
aforementioned problems [9–13]. Among them, the analyti-
cal redundancy method is particularly effective. By develop-
ingmathematicalmodel of the system, analytical redundancy
approach could generate estimations of the measurable or
unmeasured variables.The estimations can be used to replace
the redundant hardware sensors or design fault diagnosis
(FD) scheme. To design an active FTC scheme, the first step is
to implement a FD scheme to monitor the system and isolate
the fault. Adaptive observer-based FD and sliding mode
observer-based FD are two extensively studied methods [14–
19]. When the faulty physical sensor has been detected
and isolated, its measurement would be replaced by the
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estimation, which is the so-called virtual sensor. A fault
reconstruction scheme using sliding mode observer is also
given in [18, 20, 21]. FTC scheme in terms of correcting
the measured output signals using reconstructed fault signals
is considered in [17, 21, 22]. However, neither the virtual
sensor nor measurement corrected by reconstructed signal
is as accurate as the fault-free physical sensor. FTC schemes
with only analytical redundancy would have a degraded
performance in case of sensor faults. That is one of the
reasons why the advanced analytical redundancy-based FTC
methods have not been really accepted by the aerospace end-
users [23].

This paper develops a FTC scheme for the FSM by
combining the sliding mode observer-based method and
hardware redundancy. The proposed method could improve
the performance of the FSM system with faulty sensors and
make it more acceptable to the end-users. A FSM model
is firstly developed. Based on the FSM model, an APISMO
building on the work [20] is proposed to reconstruct the
sensor faults faithfully. Different from the observer used
in [20], the discontinuous switching function used in con-
ventional SMO is replaced with an adaptive PI function
[24, 25]. The proposed APISMO does not require any prior
knowledge of the faults. The reconstructed information is
then used by the fault isolation logic to identify the fault
and power up the redundant sensors. The redundant sensors
are kept unpowered in fault-free case, which reduces the
power consumption. However, a period of time is required to
activate the backup sensors, during which the measurement
of the backup is uncertain. In this proposed scheme, a fault-
free estimation of the position provided by the APISMO is
used as feedback signal to maintain the desired performance
during the cold backup booting-up.

Froman industrial perspective, the proposed schemehere
is easier to be implemented than the conventional SMO. It
does not need to know the bounds of the faults and could
maintain the desired fault-free performance in failure case.
Compared with the FSM using triple modular redundancy
(TMR), the proposed scheme could maintain a higher level
of reliabilitywith only dual redundancy.Moreover, the redun-
dant sensors are unpowered in fault-free case. Furthermore,
the controller structure does not need to be changed in failure
case.

This paper is organized as follows. In Section 2, the con-
sidered FSM system and its dynamics model are described.
Section 3 presents the fault estimation method based on
the proposed APISMO. Section 4 introduces the proposed
FTC scheme with the hardware redundancy and the fault
isolation logic. Experimental results of the proposed scheme
are given in Section 5, followed by some concluding remarks
in Section 6.

2. FSM Model

2.1. System Description. A FSM is generally defined as a
mirror mounted to a flexure support system and driven by
actuators [6]. The prototype of a two-axis FSM is shown in
Figure 1. It consists of six important components: a mirror
assembly, a flexure suspension, a mirror base, voice coil
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Figure 1: Prototype of the fast steering mirror.
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Figure 2: Schematic diagram of FSM in single axis.

motors (VCMs), proximity sensors, and drive electronics.
Two voice-coils operating in push-pull manner are fixed on
the back of the mirror, rotating the mirror about the axis
that bisects them. Therefore, two actuator pairs are used to
produce two orthogonal rotations (𝜃

𝑥
, 𝜃
𝑦
). A flexure suspen-

sion system is used to support the mirror carrier which holds
the mirror. This system allows free rotation about orthog-
onal 𝑥- and 𝑦-axes while constraining piston, side-to-side,
and rotation about the normal axis [26].

2.2. Dynamics Model. To establish the dynamics model of a
two-axis FSM, it is assumed that the motions rotating about
the two orthogonal 𝑥- and 𝑦-axes are decoupling with each
other. The 𝑥-axis motion and 𝑦-axis motion follow the same
working principle. The motions can be equivalently repre-
sented by a sketch of spring-mass-dashpot system shown in
Figure 2 [27]. The dynamics model of the two-axis FSM can
be given as

(𝐽
𝑚

+ 2𝑚
𝑐
𝑙
2

) ̈𝜃
𝑚

+ 2𝐶
𝑚
𝑙
2 ̇𝜃
𝑚

+ 𝐾
𝑚
𝜃
𝑚

= 2𝐾
𝑓𝑚

𝑖
𝑚
𝑙, (1)
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where𝑚 = 𝑥 or 𝑦; here 𝐽
𝑚
is moment of inertia of the mirror

rotating about 𝑥- or 𝑦-axis. Parameters𝑚
𝑐
, 𝑙, 𝜃

𝑚
,𝐶

𝑚
, and𝐾

𝑚

represent mass of the voice-coil, the distance between actu-
ator and the axis, deflection angle, damping coefficient, and
spring constant, respectively; 𝐾

𝑓𝑚
is the force constant and

𝑖
𝑚
denotes the driving current.
The actuator driver receives voltage commands from

the controller and converts them to driving current. Its
dynamical characteristics satisfy Kirchhoff ’s voltage law

𝑈
𝑚

= 𝐿
𝑚

𝑑𝑖
𝑚

𝑑𝑡
+ 𝑖

𝑚
𝑅
𝑚

+ 𝑘
𝑏

̇𝑑
𝑚
, (2)

where 𝑈
𝑚
is the voltage and parameters 𝐿

𝑚
, 𝑅

𝑚
, 𝑘

𝑏
, and 𝑑

𝑚

represent the coil inductance, coil resistance, back electromo-
tive force constant, and the displacement of the coil.

The deflection angle is generally very small; thus the
displacement of the coil𝑑

𝑚
can be approximated as a function

of the deflection angle 𝜃
𝑚
; that is, 𝑑

𝑚
= 𝑙𝜃

𝑚
. Substituting (2)

into (1) yields

𝐿
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...
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𝑓𝑚

𝑙𝑈
𝑚
.

(3)

Rewrite (3) in a state-space form as

𝑋̇ (𝑡) = 𝐴𝑋 (𝑡) + 𝐵𝑢 (𝑡) , (4)

𝑋(𝑡) = [𝑥
1
(𝑡) , 𝑥

2
(𝑡) , 𝑥

3
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2
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3
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(5)

3. APISMO Design and Fault Reconstruction

In order to reconstruct the sensor fault signal, an APISMO
based on the dynamics model (4) is proposed in this section.
For better understanding, the preliminaries and design of the
conventional SMO are introduced firstly.

3.1. Preliminaries. This section introduces the preliminaries
for using a SMO to reconstruct sensor faults. Consider the
following linear system affected by sensor faults:

𝑋̇ (𝑡) = 𝐴𝑋 (𝑡) + 𝐵𝑢 (𝑡) , (6)

𝑌 (𝑡) = 𝐶𝑋 (𝑡) + 𝐹𝑓
𝑖
(𝑡) , (7)

where 𝐴 ∈ 𝑅
𝑛×𝑛, 𝐵 ∈ 𝑅

𝑛×𝑚, 𝐶 ∈ 𝑅
𝑝×𝑛, and 𝐹 ∈ 𝑅

𝑝×𝑟. The
matrices 𝐶 and 𝐹 are full row and column rank, respectively.

The function 𝑓
𝑖
(𝑡) is unknown but bounded sensor fault

signal.
An effective way to reconstruct the sensor fault 𝑓

𝑖
(𝑡) is

introducing a filter first [18, 22]. Define a new state 𝑍
𝑓
,

satisfying

𝑍̇
𝑓
(𝑡) = −𝐴

𝑓
𝑍
𝑓
(𝑡) + 𝐴

𝑓
𝑌 (𝑡) , (8)

where −𝐴
𝑓

∈ 𝑅
𝑝×𝑝 is a stable matrix. Substituting (7) into (8)

yields

𝑍̇
𝑓
(𝑡) = −𝐴

𝑓
𝑍
𝑓
(𝑡) + 𝐴

𝑓
𝐶𝑋 (𝑡) + 𝐴

𝑓
𝐹𝑓

𝑖
(𝑡) . (9)
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By combining (6) and (9) and defining new states 𝑋
𝑎

=

col(𝑋(𝑡), 𝑍𝑓(𝑡)), an augmented system can be given as

[
𝑋̇(𝑡)

𝑍̇
𝑓
(𝑡)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑋
𝑎

= [
𝐴 0

𝐴
𝑓
𝐶 −𝐴

𝑓

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
𝑎

[
𝑋 (𝑡)

𝑍
𝑓
(𝑡)

] + [
𝐵

0
]

⏟⏟⏟⏟⏟⏟⏟

𝐵
𝑎

𝑢 (𝑡)

+ [
0

𝐴
𝑓
𝐹
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐹
𝑎

𝑓
𝑖
(𝑡) ,

𝑍
𝑓
(𝑡) = [0 𝐼

𝑝
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐶
𝑎

[
𝑋 (𝑡)

𝑍
𝑓
(𝑡)

] .

(10)

3.2. Conventional SlidingMode Observer for Fault Reconstruc-
tion. Considering the new dynamical system in (10), the
conventional SMO is constructed as [20]

̇̂
𝑋
𝑎
= 𝐴

𝑎
𝑋
𝑎
+ 𝐵

𝑎
𝑢 (𝑡) − 𝐺

𝑙
𝑒
𝑦
(𝑡) + 𝐺

𝑛
V. (11)

In (11), the discontinuous term V is

V =

{{

{{

{

−𝜌
󵄩󵄩󵄩󵄩𝐹2

󵄩󵄩󵄩󵄩

𝑃
0
𝑒
𝑦

󵄩󵄩󵄩󵄩󵄩
𝑃
0
𝑒
𝑦

󵄩󵄩󵄩󵄩󵄩

if 𝑒
𝑦

̸= 0,

0 otherwise,
(12)

where 𝑒
𝑦
= 𝐶

𝑎
𝑋
𝑎
− 𝑍

𝑓
is the output estimation error and 𝑃

0

is a symmetric positive definite (s.p.d.) matrix. The matrices
𝐺
𝑙
,𝐺

𝑛
, 𝐹

2
, and 𝑃

0
will be described later.The scalar 𝜌must be

upper bound on the faults.
It has been proven in [20] that a SMO of the form (11) and

(12) which is not affected by the fault 𝑓
𝑖
(𝑡) exists if and only if

(A1) rank (𝐶
𝑎
𝐹
𝑎
) = 𝑟,

(A2) invariant zeros of (𝐴
𝑎
, 𝐹

𝑎
, 𝐶

𝑎
) are stable.

Then if the assumptions (A1) and (A2) are satisfied [20],
there exists a change of coordinates𝑋

𝑎
= 𝑇

𝑎
𝑋
𝑎
, in which the

new triple (𝐴
𝑎
, 𝐹

𝑎
, 𝐶

𝑎
) has the following structure:

𝐴
𝑎
= [

𝐴
11

𝐴
12

𝐴
21

𝐴
22

] , 𝐹
𝑎
= [

0

𝐹
2

] ,

𝐶
𝑎
= [0 𝐼

𝑝
] ,

(13)

where 𝐴
11

∈ 𝑅
𝑛×𝑛 is a stable matrix, 𝐴

12
∈ 𝑅

𝑛×𝑝, 𝐴
21

∈ 𝑅
𝑝×𝑛,

𝐴
22

∈ 𝑅
𝑝×𝑝, 𝐹

2
∈ 𝑅

𝑝×𝑟.
Considering the structure (13), the observer gains in (11)

can be obtained as

𝐺
𝑙
= 𝑇

−1

𝑎
[

𝐴
12

𝐴
22

− 𝐴
𝑠

] , 𝐺
𝑛
= 𝑇

−1

𝑎
[
0

𝐼
𝑝

] , (14)

where 𝐴
𝑠
is a stable matrix which is chosen to make (𝐴

𝑎
−

𝐺
𝑙
𝐶
𝑎
) stable. The matrix 𝑃

0
is the unique solution to the

Lyapunov equation of 𝐴
𝑠
[20].

On condition that the assumptions (A1) and (A2) are
satisfied, it could be shown that an ideal sliding motion takes
place on the surface (15) in finite time:

𝑆
0
= {𝑒 : 𝐶

𝑎
𝑒 = 0} . (15)

During the ideal sliding motion, 𝑒
𝑦

= 0 and ̇𝑒
𝑦

= 0, the
discontinuous signal V will take on average a value to com-
pensate for the fault signal whilemaintaining a slidingmotion
[20, 22]. The average quantity can be computed online as

V
𝛿
= −𝜌

󵄩󵄩󵄩󵄩𝐹2
󵄩󵄩󵄩󵄩

𝑃
0
𝑒
𝑦

󵄩󵄩󵄩󵄩󵄩
𝑃
0
𝑒
𝑦

󵄩󵄩󵄩󵄩󵄩
+ 𝛿

, (16)

where 𝛿 is a small positive scalar.
Consequently, a fault reconstruction signal is

𝑓
𝑖
(𝑡) ≈ −𝜌

󵄩󵄩󵄩󵄩𝐹2
󵄩󵄩󵄩󵄩 (𝐹

𝑇

2
𝐹
2
)
−1

𝐹
𝑇

2

𝑃
0
𝑒
𝑦

󵄩󵄩󵄩󵄩󵄩
𝑃
0
𝑒
𝑦

󵄩󵄩󵄩󵄩󵄩
+ 𝛿

. (17)

For details, see [20, 22].
In fact, design of the conventional SMO needs to know

the upper bounds of the faults in advance. However, in prac-
tice, these bounds are difficult to obtain.Many literatures take
an approximate upper estimation of the faults signal as scalar
𝜌. However, some additional dynamics would be introduced
by this method. Moreover, if the fault is larger than the scalar
𝜌, the conventional method cannot reconstruct the fault
properly.

3.3. APISMO Design and Fault Reconstruction. To overcome
the problems associated with the conventional SMO, an
APISMO building on the conventional SMO is proposed
by replacing the saturation function in (16) with a contin-
uous term determined by an adaptive PI algorithm. The
proposed APISMO has the same structure with the observer
in Section 3.2, except that the saturation function is replaced
with an adaptive PI function.

The proposed PI function in APISMO takes the sliding
surface function 𝑆

0
as the input.The PI function is defined as

VPI = 𝑘
𝑝
𝑒
𝑦
(𝑡) + 𝑘

𝑖
∫ 𝑒

𝑦
(𝑡) 𝑑𝑡, (18)

where the sliding surface function𝐶
𝑎
𝑒 = 𝑒

𝑦
and 𝑘

𝑝
and 𝑘

𝑖
are

the proportional gain and integral gain.
Substitute (18) into (11) and take a change of coordinates

𝑋 = [𝑥
1

𝑥
2
]
𝑇

= 𝑇
𝑎
𝑋
𝑎
. In the new coordinate system, the

APISMO can be defined as
̇̂𝑥
1
(𝑡) = 𝐴

11
𝑥
1
(𝑡) + 𝐴

12
𝑥
2
(𝑡) + 𝐵

1
𝑢 (𝑡) − 𝐴

12
𝑒
𝑦
(𝑡) ,

̇̂𝑥
2
(𝑡) = 𝐴

21
𝑥
1
(𝑡) + 𝐴

22
𝑥
2
(𝑡) + 𝐵

2
𝑢 (𝑡)

− (𝐴
22

− 𝐴
𝑠
) 𝑒

𝑦
(𝑡) + VPI,

𝑌̂ (𝑡) = 𝑥
2
(𝑡) .

(19)

In the new coordinate system, defining new states 𝑋 =

[𝑥
1
, 𝑥

2
]
𝑇

= 𝑇
𝑎
𝑋
𝑎
, then the dynamical system given by (10)

has a structure as

[
𝑥̇
1
(𝑡)

𝑥̇
2
(𝑡)

] = [
𝐴
11

𝐴
12

𝐴
21

𝐴
22

] [
𝑥
1
(𝑡)

𝑥
2
(𝑡)

] + [
𝐵
1

𝐵
2

] 𝑢 (𝑡) + [
0

𝐹
2

]𝑓
𝑖
(𝑡) ,

𝑌 (𝑡) = [0 𝐼
𝑝
] [

𝑥
1
(𝑡)

𝑥
2
(𝑡)

] .

(20)
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Define the state vector of the estimation error as

𝐸 = [𝑒
1

𝑒
2
]
𝑇

= 𝑋 − 𝑋 = [𝑥
1
− 𝑥

1
𝑥
2
− 𝑥

2
]
𝑇

. (21)

By taking the first derivative of (21) and substituting (19)
and (20), we have

̇𝑒
1
(𝑡) = 𝐴

11
𝑒
1
(𝑡) , (22)

̇𝑒
𝑦
(𝑡) = 𝐴

21
𝑒
1
(𝑡) + 𝐴

𝑠
𝑒
𝑦
(𝑡) + 𝑘

𝑝
𝑒
𝑦
(𝑡)

+ 𝑘
𝑖
∫ 𝑒

𝑦
(𝑡) 𝑑𝑡 − 𝐹

2
𝑓
𝑖
(𝑡) ,

(23)

where 𝑒
𝑦
(𝑡) = 𝑒

2
(𝑡) in this situation.

For reconstructing sensor faults properly, the sliding
surface 𝑆

0
in (15) must be reachable. The reachability of the

sliding surface 𝑆
0
is determined by the proportional gain 𝑘

𝑝

and integral gain 𝑘
𝑖
according to the following theorem.

Theorem 1. Under the assumptions (A1) and (A2), for the
error system given by (22) and (23), the sliding mode surface 𝑆

0

in (15) is asymptotically reachable, that is, 𝑒
𝑦

→ 0 as 𝑡 → ∞,
if and only if 𝑘

𝑖
̸= 0 and the roots of

𝑠
2

− 𝐴
𝑠
𝑠 − 𝑘

𝑝
𝑠 − 𝑘

𝑖
= 0 (24)

have negative real parts, where 𝑠 is the Laplace transform
operator.

Proof. Considering that most aerospace systems have self-
testing at startup, it is reasonable to assume that there exist no
faults at initial time.Therefore,𝑓

𝑖
(𝑡) has zero initial value and

𝑒
1
(𝑡) could have a nonzero initial value, then decomposing

𝑒
1
(𝑡) as

𝑒
1
(𝑡) = 𝑒

10
(0) + 𝑒

11
(𝑡) , (25)

where 𝑒
10
(0) ≡ 𝑒

1
(0) is the initial value of 𝑒

1
(𝑡) and 𝑒

11
(𝑡) is

the other part of 𝑒
1
(𝑡) and has zero initial value.

Substituting (25) into (23) yields

̇𝑒
𝑦
(𝑡) = 𝐴

21
𝑒
10

(0) + 𝐴
21
𝑒
11

(𝑡) + 𝐴
𝑠
𝑒
𝑦
(𝑡) + 𝑘

𝑝
𝑒
𝑦
(𝑡)

+ 𝑘
𝑖
∫ 𝑒

𝑦
(𝑡) 𝑑𝑡 − 𝐹

2
𝑓
𝑖
(𝑡) .

(26)

The system defined by (26) can be regarded as a linear
systemwith three inputs, that is, 𝑒

10
(0), 𝑒

11
(𝑡), and𝑓

𝑖
(𝑡).Then

this linear system could be decomposed into three subsys-
tems. Each subsystem takes one of the inputs, that is, 𝑒

10
(0),

𝑒
11
(𝑡), and 𝑓

𝑖
(𝑡), as its input while its output being a part of

𝑒
𝑦
(𝑡), that is, 𝑒

𝑦𝑛
(𝑡), 𝑛 = 1, 2, 3. For the slidingmode surface 𝑆

0

in (15) to be asymptotically reachable, that is, 𝑒
𝑦

→ 0 as 𝑡 →

∞, the error system (26) must be stable. That is, all the three
subsystems must be stable. Following that, each subsystem
is examined.

Thefirst subsystemhas 𝑒
11
(𝑡) as input and 𝑒

𝑦1
(𝑡) as output.

The transfer function can be obtained as
𝑒
𝑦1

(𝑠)

𝑒
11

(𝑠)
=

𝑠𝐴
21

𝑠2 − 𝐴
𝑠
𝑠 − 𝑘

𝑝
𝑠 − 𝑘

𝑖

. (27)

It can be seen that the first subsystem (27) is asymptoti-
cally stable if and only if the roots of (24) have negative real
parts and 𝑘

𝑖
̸= 0.

According to the assumptions (A1) and (A2), the matrix
𝐴
11
is stable, and then 𝑒

11
(∞) → 0. Applying the final value

theorem to 𝑒
𝑦1

(𝑠) yields

𝑒
𝑦1

(∞) = lim
𝑠→0

𝑠 ∗ 𝑠𝐴
21
𝑒
11

(𝑠)

𝑠2 − 𝐴
𝑠
𝑠 − 𝑘

𝑝
𝑠 − 𝑘

𝑖

= 0. (28)

It is easy to find that the remaining two subsystems are
asymptotically stable if and only if the roots of (24) have
negative real parts and 𝑘

𝑖
̸= 0 and

𝑒
𝑦
2

(∞) = 0, 𝑒
𝑦
3

(∞) = 0. (29)

Therefore, the error system given by (23) or (26) is asymp-
totically stable if and only if the roots of (24) have negative
real parts and 𝑘

𝑖
̸= 0. Given the stability condition is satisfied,

then

𝑒
𝑦
(∞) = 𝑒

𝑦1
(∞) + 𝑒

𝑦2
(∞) + 𝑒

𝑦3
(∞) = 0. (30)

That is, the sliding mode surface 𝑆
0
in (15) is asymptoti-

cally reachable.
According toTheorem 1, for a given proportional gain 𝑘

𝑝

of the APISMO, there exists a nonzero integral gain 𝑘
∗

𝑖
such

that the sliding surface (15) is asymptotically reachable; that is,
with VPI = 𝑘

𝑝
𝑒
𝑦
(𝑡) + 𝑘

∗

𝑖
∫ 𝑒

𝑦
(𝑡)𝑑𝑡, the condition ̇𝑆

0
𝑆
0
< −𝜂|𝑆

0
|

is satisfied, where 𝜂 is a positive scalar [25].

Defining the integral gain estimation error as (31) and a
Lyapunov function as (32)

𝑘̃
𝑖
= 𝑘

∗

𝑖
− 𝑘

𝑖
, (31)

𝑉 =
1

2
(𝑠
2

0
+ 𝛼𝑘̃

2

𝑖
) , (32)

where 𝛼 is a positive constant. Taking the first derivative of𝑉
yields

𝑉̇ = 𝑠
0

̇𝑠
0
+ 𝛼𝑘̃

𝑖

̇̃
𝑘
𝑖
. (33)

Substituting (23) and (31) into (33) results in

𝑉̇ = 𝑒
𝑦
(𝑡) [𝐴

21
𝑒
1
(𝑡) + 𝐴

𝑠
𝑒
𝑦
(𝑡) + 𝑘

𝑝
𝑒
𝑦
(𝑡)

+ 𝑘
∗

𝑖
∫ 𝑒

𝑦
(𝑡) 𝑑𝑡 − 𝐹

2
𝑓
𝑖
(𝑡)]

− 𝑘̃𝑒
𝑦
(𝑡) ∫ 𝑒

𝑦
(𝑡) 𝑑𝑡 + 𝛼𝑘̃

𝑖

̇̃
𝑘
𝑖

≤ −𝜂
󵄨󵄨󵄨󵄨𝑠0

󵄨󵄨󵄨󵄨 − 𝑘̃ [𝑒
𝑦
(𝑡) ∫ 𝑒

𝑦
(𝑡) 𝑑𝑡 − 𝛼

̇̃
𝑘
𝑖
] .

(34)

Thus the adaptive law for 𝑘
𝑖
can be obtained as

̇̃
𝑘
𝑖
=

1

𝛼
𝑒
𝑦
(𝑡) ∫ 𝑒

𝑦
(𝑡) 𝑑𝑡. (35)
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x̂2(t)
] + [[
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𝛼
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Figure 3: Schematic diagram of the proposed APISMO implementation.
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Figure 4: Schematic diagram of the proposed FTC scheme.

Finally, the sensor fault can be reconstructed properly by
the APISMO as

𝑓
𝑖
(𝑡) ≈ − (𝐹

𝑇

2
𝐹
2
)
−1

𝐹
𝑇

2
VPI

≈ −(𝐹
𝑇

2
𝐹
2
)
−1

𝐹
𝑇

2
[𝑘

𝑝
𝑒
𝑦
(𝑡) + 𝑘

𝑖
∫ 𝑒

𝑦
(𝑡) 𝑑𝑡] ,

(36)

where the adaptive law for 𝑘
𝑖
is

̇̃
𝑘
𝑖
=

1

𝛼
𝑒
𝑦
(𝑡) ∫ 𝑒

𝑦
(𝑡) 𝑑𝑡 = 𝛾𝑒

𝑦
(𝑡) ∫ 𝑒

𝑦
(𝑡) 𝑑𝑡, (37)

where 𝛾 = 1/𝛼.
For better understanding, a schematic representation of

the proposed APISMO and fault reconstruction is shown in
Figure 3.

4. Fault-Tolerant Control Design

In this section, to improve the performance of the systemwith
only SMO-based FTC scheme, a FTC scheme for FSM is

presented by combining the proposed APISMO and the
hardware redundancy. Position sensors installed with dual
redundancy are used in the proposed FTC scheme. Figure 4
shows the block diagram of the proposed FTC scheme.

4.1. Redundancy Design. At the design stage of the FSM, the
sensors were installed with dual redundancy. The redundant
sensors are functionally identical to the primary sensors by
placing them at symmetrical locations of the primary ones.
The placements of the sensors are illustrated in Figure 5. 𝐷

1

and 𝐷
2
denote the primary sensor probes; 𝐷

3
and 𝐷

4
are

redundant ones. Four proximity probe tips are placed at 90
degrees from each other and 45 degrees from each VCM.The
distances between each probe tip and the 𝑥- and 𝑦-axes are
equal, which is denoted by 𝑙.

The proximity sensor system provides an output voltage
that is directly proportional to the distance between probe tip
and the moving mirror. Since deflection angle of the mirror
is generally very small, the output voltage of the proximity



Mathematical Problems in Engineering 7

l

l

VCA VCA

VCA

VCA

Y

X

D1 D2

D3 D4

Figure 5: The placement of the sensors.
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Figure 6: Schematic diagram of the fault isolation logic.

sensor system can be used to approximate the deflection angle
by the following equation:

𝐷
1
= 𝑘𝑙 (𝜃

𝑥
+ 𝜃

𝑦
) , 𝐷

4
= −𝑘𝑙 (𝜃

𝑥
+ 𝜃

𝑦
) ,

𝐷
2
= 𝑘𝑙 (𝜃

𝑥
− 𝜃

𝑦
) , 𝐷

3
= −𝑘𝑙 (𝜃

𝑥
− 𝜃

𝑦
) ,

(38)

where 𝐷
1
, 𝐷

2
, 𝐷

3
, and 𝐷

4
are the output voltages of the four

sensors and 𝑘 is the proportional scalar of the sensor.

4.2. Fault Isolation Logic. In order to keep the feedback signal
used by controller free from sensor faults, fault isolation
logic shown in Figure 6 is adopted. In fault-free case, the
reconstructed fault signal in (36) is approximately zero. The
measurements of the primary sensors are used as feedback
signals. If the reconstructed signal exceeds a threshold, the
counter Counter FD begins to work simultaneously, which is
used to obtain information on how long a threshold has been
crossed. If the value of the counter is greater than or equal
to 𝑁 counter-steps, the measurement 𝐷

𝑖
is identified to be

faulty; a signal would be sent out to power on the redundancy.
Since a period of time is required to activate the cold

backup sensor, during the cold backup booting up, the mea-
surement of the backup is uncertain. A fault-free estimation

of the position provided by the APISMO is used as feedback
signal to maintain the desired performance. The counter
Counter SW is used to calculate the activation time and send
out switch signal. After the backup is activated, the faulty
sensor is replaced by the redundant one and themeasurement
of the redundant sensor is used as feedback signal.

5. Experimental Results

In this section, to validate the effectiveness of the proposed
scheme, a series of experimental studies were conducted on a
prototype of the FSM.

5.1. Experimental Setup. The experimental setup of a FSM
system is depicted in Figure 7. The tilt of the mirror relative
to the fixed base is measured by four proximity sensors
placed as in Figure 5. The proximity sensor system provides
a measuring range of 2mm and an output of 20V/mm.
In addition, an embedded computer MICROSPACE PC/104
(fromDigital Logic corp.) equipped with a PC/104 expansion
board Diamond-MM-16-AT (from Diamond Systems Corp.)
offering 12-bit D/A converter and 16-bit A/D converter is
adopted to produce excitation voltage signals and acquire
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Figure 7: Experimental setup of a fast steering mirror system.

the sensor readings. The APISMO, fault isolation logic, and
conventional PI control algorithms are developed withMAT-
LAB/Simulink software and downloaded to MICROSPACE
PC/104 to realize a real-time fault-tolerant control. The
sampling interval used in the experiments is 200𝜇s.

5.2. Plant Model Identification. The mathematical model of
the FSM can be identified by using a dynamical signal
analyzer. The swept-sine waves applied to the actuators have
the amplitude of 0.3 V and frequency range of 1–2000Hz.The
position responses of the steering mirror in two orthogonal
directions are recorded using a sampling rate of 5 kHz. With
a push-pull pair of actuators driven, the magnitudes of the
output displacement in passive axis are 20 dB lower than that
in the major axis, which indicates that the two axial motions
of the steering mirror are decoupled [28]. Transfer function
𝐺
𝑝𝑥

of the plant rotating about 𝑥-axis can be identified by
using the input-output data sets.

The identified third-order transfer function is

𝐺
𝑝𝑥

(𝑠) =
275100

𝑠3 + 2861𝑠2 + 155400𝑠 + 1.715 × 108
. (39)

In the same way, transfer function 𝐺
𝑝𝑦

of the plant
rotating about 𝑦-axis can be obtained as

𝐺
𝑝𝑦

(𝑠) =
244000

𝑠3 + 2543𝑠2 + 154600𝑠 + 1.903 × 108
. (40)

The identified models 𝐺
𝑝𝑥

in (39) and 𝐺
𝑝𝑦

in (40) and
the frequency responses of the FSM obtained from the
experimental data are shown in Figure 8.

Comparing (3) with the inverse Laplace transform of (39)
and (40) yields the system matrix 𝐴 and input distribution
matrix 𝐵 of the state-space model (4)

𝐴 =

[
[
[
[
[
[
[

[

0 1 0 0 0 0

0 0 1 0 0 0

−171500000 −155400 −2861 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 −190300000 −154600 −2543

]
]
]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[
[
[

[

0 0

0 0

275100 0

0 0

0 0

0 244000

]
]
]
]
]
]
]

]

.

(41)
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Figure 8: Frequency responses of 𝑥- and 𝑦-axes, respectively.

The fault distribution matrix 𝐹 in (7) is defined as 𝐹 =

𝐼
2
. In (38), the scale 𝑘 of the proximity sensors is 20V/mm.

The distance between each probe tip and the rotation axis 𝑙 is
5.02 cm. Thus, the output matrix 𝐶 has the form

𝐶 = [
1003.94 0 0 1003.94 0 0

1003.94 0 0 −1003.94 0 0
] . (42)

5.3. Reconstruction of Sensor Faults. In this section, the fault
reconstruction performance of the proposed APISMO is
verified by being compared with that of the conventional
SMO. A conventional SMO is designed firstly. The influence
of filter matrix 𝐴

𝑓
on the performance of fault estimation

system has been investigated in [29]. Here, the matrix was
chosen as 𝐴

𝑓
= 1500𝐼

2
. It can be seen that system matrix

𝐴 given in (41) is stable; therefore, the conditions (A1) and
(A2) are satisfied.The design parameters (from (14) and (16))
were chosen as 𝐴

𝑠
= −50𝐼

2
and 𝛿 = 0.1. Assuming that the

upper bound of the faults is 0.4mm, the scalar 𝜌 was set as
𝜌 = 8.The positive-definitematrix𝑃

0
(from (16)) was selected

by solving the Lyapunov function of 𝐴
𝑠
. The associated gains

in (14) were obtained as

𝐺
𝑙
=

[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

−950 0 0

0 −950 0

0 0 −950

]
]
]
]
]
]
]
]
]
]
]
]

]

, 𝐺
𝑛
=

[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

]
]
]
]
]
]
]
]
]
]
]
]

]

. (43)

The associated gains for the APISMO were the same as
that in (43).The parameters for the adaptive PI function were
chosen as 𝑘

𝑝
= 1000𝐼

2
, 𝑘

𝑖-initial = 𝐼
2
, and 𝛾 = 0.01.

In the experiments, the two primary sensors were cor-
rupted by the faults illustrated in Figure 9 simultaneously.The
system is open-loop system. The value of the fault acting on
sensor 𝐷

1
is smaller than the scalar 𝜌, whereas the value of

the fault acting on sensor 𝐷
2
is larger than the scalar. It is

shown in Figure 10 that the proposed APISMO reconstructs
the fault faithfully. In comparison, Figure 11 shows the fault
signal reconstructed by the conventional SMO. It can be seen
fromFigures 10(a) and 11(a) that bothmethods could obtain a
very proper reconstruction when the difference between the
fault signal and the scalar 𝜌 is not significant. However, as
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Figure 9: (a) Fault acting on sensor 𝐷
1
. (b) Fault acting on sensor 𝐷
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Figure 10: (a) Fault acting on sensor𝐷
1
and its reconstruction by APISMO. (b) Fault acting on sensor𝐷

2
and its reconstruction by APISMO.

shown in Figure 11(b), when the fault signal is larger than the
scalar 𝜌, the conventional SMO cannot reconstruct the fault
signal properly.

Figure 12 shows the positions measured by the two
primary sensors and the estimated positions provided by
APISMO when faults occur. It is observed that, in the
presence of faults, the estimated outputs by APISMO are

maintaining the accurate values. Consequently, the perfor-
mance of the control system could be kept approximately by
the estimation during the backup booting up.

5.4. Fault-Tolerant Control Implementation. The perfor-
mance of the proposed FTC scheme is verified by several
experimental studies conducted hereinafter.
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Figure 11: (a) Fault acting on sensor 𝐷
1
and its reconstruction by conventional SMO (CSMO). (b) Fault acting on sensor 𝐷

2
and its

reconstruction by conventional SMO (CSMO).
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Figure 12: (a) Position measured by sensor 𝐷
1
and the position estimated by APISMO when fault occurs. (b) Position measured by sensor

𝐷
2
and the position estimated by APISMO when fault occurs.

Since the FSM was designed as a decoupled parallel-
kinematic structure, for the purpose of validating the pro-
posed FTC scheme, only one traditional PI controller has
been designed to handle the mirror rotating about 𝑥-axis.
The design parameter for fault isolation was chosen as 𝑁 =

10 cycles of the counter, equaling 2ms at 200𝜇s sampling

time.This value represents a reasonable compromise between
accuracy and short isolation time. The threshold was chosen
as 0.1 V, that is, 5 𝜇m.The sensor fault acting on 𝐷

1
is shown

in Figure 13(a). For the purpose of comparison, Figure 13(b)
shows the position tracking error provided by the traditional
PI controller in fault-free case. When fault in Figure 13(a) is
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Figure 13: (a) Sensor fault signal acting on 𝐷
1
. (b) The position tracking error of the PI controller in fault-free case.
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Figure 14: The position tracking error in the presence of fault (a) when the FTC scheme is not adopted, (b) when the FTC scheme is
implemented.

acting on the primary sensor𝐷
1
, the tracking error provided

by the PI controller without the FTC scheme is shown in
Figure 14(a). It is obvious that the tracking performance of
the control system is degraded.

The proposed FTC scheme illustrated in Figure 4 has
been implemented to maintain the desired performance in
the presence of sensor fault. The position tracking error
of the proposed FTC scheme is shown in Figure 14(b). As

seen in Figure 14(b), when the reconstructed fault signal has
exceeded the threshold for about 2ms, the fault would be
detected and isolated by the logic, and the estimation of the
position provided by the APISMO would be used by the
controller. After the backup is activated, the measurement of
the redundant sensor would be used as feedback signal. It can
be seen that the proposed FTC scheme could maintain near
to desired performance when fault occurs.
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6. Conclusion

In this paper, a novel FTC scheme for the fast steering
mirror system was proposed by integrating an adaptive PI-
based sliding mode observer and hardware redundancy. The
controller structure did not need to be changed.Theproposed
scheme adopted an APISMO to reconstruct the fault signal.
The advantage of this method is that it does not require
any prior knowledge of the faults and has no chattering.
The reachability of the sliding surface has been examined. In
order to keep the controller free from the sensor faults, fault
isolation logic was used to identify the fault and power
up the redundant sensor. During the cold backup booting
up, the performance of the control system was maintained
approximately by estimations of the position provided by the
APISMO. Experiments have been conducted to verify the
scheme.The experimental results confirmed that FSM system
with the proposed FTC scheme could maintain a good
tracking despite the presence of the fault.

Since the proposed FTC scheme is easy to be imple-
mented and does not require any prior knowledge of the
faults, it can be widely extended to other types of beam con-
trol systems. In the experiments, since only the position signal
was measured, there was no freedom left to deal with the
measurement noises and model uncertainties. Nevertheless,
experimental results showed that the effect of the noises and
uncertainties on the FTC was not significant. Future works
will focus on dealing with measurement noises and model
uncertainties.
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