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As an intermittent energy, wind power has the characteristics of randomness and uncontrollability. It is of great significance to
improve the accuracy of wind power forecasting. Currently, most models for wind power forecasting are based on wind speed
forecasting. However, it is stuck in a dilemma called “garbage in, garbage out,” which means it is difficult to improve the forecasting
accuracy without improving the accuracy of input data such as the wind speed. In this paper, a new model based on cloud theory
is proposed. It establishes a more accurate relational model between the wind power and wind speed, which has lots of catastrophe
points. Then, combined with the trend during adjacent time and the laws of historical data, the forecasting value will be corrected
by the theory of “section to point” correction. It significantly improves the stability of forecasting accuracy and reduces significant
forecasting errors at some particular points. At last, by analyzing the data of generation power and historical wind speed in Inner
Mongolia, China, it is proved that the proposed method can effectively improve the accuracy of wind speed forecasting.

1. Introduction

Wind power is a critical component of new energy. It can be
grid connected with some advantages like safety, reliability,
nonpollution, and being fuel-free, which has undergone rapid
growth worldwide in recent years. China also attaches great
significance to the development of wind energy resources.
However, as the scale of wind power keeps expanding, the
large scale of wind power grid connected proposed a severe
challenge to the security and stability of the grid because of
the constant changing of wind output with wind speed. In
order to improve the reliability of wind power consumption,
the accuracy of wind power prediction is very important [1].

There are mainly two wind power forecasting methods
at present. One is to forecast wind power by wind speed
according to the wind power formula [2–4]. The other is to
make statistical prediction based on historical data by adding
meteorological factors (wind speed, wind direction) as auxil-
iary forecasting [5, 6]. Regarding the first method, the wind
power depends on the wind speed of wind power station,
which is mainly influenced by the forecasting accuracy of
wind speed. However, the wind speed is changing irregularly

and the wind power and wind speed are both quantitative
data. It is difficult to establish the exact correlation between
the wind power and wind speed. In the second method, the
overreliance on historical data leads to the lower forecasting
accuracy when the catastrophe point occurs.

Most of the current methods can only forecast the “point
to point”wind power.Thesemethods establish a causalmodel
between the wind power and wind speed about each point
in time based on historical data, that is, to forecast the wind
power at particular time point according to the wind speed of
the same time point.

References [7, 8] forecasted the wind speed of wind
turbines based on physical method with the data of wind
speed and its direction, taking into account topographic
change and wake effect. And the method proposed is capable
of forecasting the wind power output by considering wind
power curve. However, it has significant influence on the
wind power forecasting accuracy, because some numerical
weather prediction (NWP) values cannot provide accurate
values at some catastrophe points. It has significant influence
on thewind power prediction accuracy. Reference [9] derived
the causality equation between the wind speed and wind
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power based on the grey theory. Similarly, this kind of
approach also leads to a significant error at the catastrophe
points. By building autoregressive moving average (ARMA)
model to predict wind speed, the paper results show that
when the wind speed experienced a large shock, the deviation
shocks accordingly. Besides, the longer the forecasting, the
greater the deviation. So this method is more suitable for
the ultra-short-term wind speed forecasting [10]. References
[11–13] established the association between the wind speed
and wind power through intelligent algorithms. The results
show that the forecasting accuracy is higher for a smooth
sequence, while forecasting accuracy is not very satisfactory
when data catastrophe points occur. In the “point to point”
approach proposed aboveweusually present different degrees
of trend inertia when forecasting the catastrophe points,
which therefore affect the forecasting accuracy.

Therefore, there aremainly twoways to improve the accu-
racy of wind power forecasting, which is of great significance:
first, how to establish an accurate association between wind
speed and wind power; second, how to ensure the stability of
the catastrophe points forecasting.

To this end, we use the “section to point” correctionmeth-
od of the wind power forecasting model to improve the fore-
casting accuracy. Firstly, the improved correlation between
thewind speed andwindpower is presented. To a large extent,
the stability of forecasting accuracy can be greatly enhanced
by reducing errors at catastrophe points.

2. Cloud Theory

2.1. Cloud Model. Dr. Li has proposed a cloud that depicts
uncertainty concept of natural language on the basis of
randomness and fuzziness [14]. It makes uncertain trans-
formation between qualitative concept expressed by natural
language and quantitative expression.

If 𝑈 is a quantitative universe represented with an accu-
rate value, 𝐶 is a qualitative concept in 𝑈, and quantitative
value 𝑥 ∈ 𝑈, x is a stochastic realization of qualitative concept
𝐶, and the certainty degree of𝑋 to𝐶 is a randomnumberwith
stability. Then, the distribution of 𝑋 in universe 𝑈 is called
Cloud.

First, all maps from 𝑥 ∈ 𝑈 to interval [0, 1] are a one-to-
many transformation. The membership degree of 𝑥 to 𝐶 is a
probability distribution but not a fixed value, whose graphic
looks like a cloud rather than a distinct curve. Second, cloud
consists of lots of droplets, and every droplet is a quantitative
concept transformed from a qualitative concept. One droplet
may be insignificant, but specification of cloud at different
times may make a difference. Therefore, the whole figure
of the cloud reflects quantitative concept characteristics.
Similarly, the distribution of droplets looks like clouds in the
sky, and we cannot see clear boundary nearby but we can
see a cloud at distance. That is why we name the figure as
cloud. Third, Mathematical Expected Curve of a cloud is its
membership degree curve from the point of fuzzy set theory.
Fourth, the thickness of the cloud is uneven. It is thicker
at waist because droplets are scattered, while it is thinner
at top and in the bottom, because droplets are concentrated
there. The thickness of cloud reflects the randomness of

membership degree. Thus, close to or far from the concept
center means the randomness of the membership degree is
small, while, as for droplets neither near nor far from concept
center, the randomness of the membership degree is big.

Cloud is an uncertain transformation model between
qualitative concept and quantitative value. Cloudmodel gen-
erally uses three numerical characteristics, Expectation Ex,
Entropy En, and Excess Entropy He, to represent a concept
as a whole, as shown in Figure 1.

Expectation Ex: it is the expectation of cloud entropy
in domain space. Generally speaking, it is a dot that can
best represent qualitative concept or a most typical sample of
quantified concept.

Entropy En: it is the uncertain measure of qualitative
concept.When the entropy is larger, the numerical range that
can be accepted by the concept becomes larger, which means
the concept is vaguer.

Hyper Entropy He is entropy of Entropy En, which
reflects dispersion of droplets. The larger Hyper Entropy He
is, the larger its dispersion,membership degree, and thickness
are.

We can see that the fuzziness and randomness are
integrated by three digital features of cloudmodel intomutual
maps of qualitative and quantitative concepts.

Normal cloud model is generally applied to express lan-
guage value; its Mathematical Expected Curve is as follows:

MEC
𝐴 (𝑥) = 𝑒

−((𝑥−Ex)2/2En2)
. (1)

Generation algorithm of normal cloud is as follows:

(1) 𝑥
𝑖
= 𝐺(Ex,En), generating normal randomness

𝑥
𝑖
, which takes Ex as its expectation and En as its

standard deviation;
(2) En󸀠

𝑖
= 𝐺(Ex,He), generating normal randomness

En󸀠
𝑖
, which takes En as its expectation and He𝑛 as its

standard deviation;

(3) calculate 𝜇
𝑖
= 𝑒
−((𝑥
𝑖
−Ex)2/2En󸀠2

𝑖
), and take (𝑥

𝑖
, 𝑢
𝑖
) as

droplets.

If three eigenvalues (Ex, En, He) of normal cloud is given.
Above algorithm can be applied to generate normal cloud

consists of an arbitrary number of droplets. Cloud generated
by this algorithm normally has uneven thickness, so these
three eigenvalues can depict the whole figure of the cloud and
nomore definition is required to definewaist, top and bottom
of the cloud.

2.2. Cloud Generator. Generation algorithm can be realized
not only by software, but also by hardware, which is named
cloud generator; four cloud generators are proposed in this
paper.

2.2.1. Forward Cloud Generator. It is a map from qualitative
aspect to quantitative aspect, which is on the basis of the
numerical characteristics of the cloud (Ex, En, He). Some 2-
𝑑 points-cloud droplets drop(𝑥, 𝑦) of normal cloud model is
generated. As shown in Figure 2.



Mathematical Problems in Engineering 3

0 1 2 3 4 5 6 7 8

Value

D
eg

re
e o

f m
em

be
rs

hi
p

Ex

He

0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

3En

Figure 1: Cloud numerical characteristics.
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Figure 2: The schematic diagram of forward cloud generator.

Following is the algorithm.
Input. The numerical characteristics (Ex, En, He) of 1-𝑑
qualitative concept and the number of cloud droplets𝑁.
Output. Quantitative value 𝑥 of 𝑁 cloud droplets and the
certainty degree 𝑦 of the concept.

(1) Generate a normal random number En󸀠, which takes
En as expectation and He as average variance.

(2) Generate a normal randomnumber 𝑥, which takes En
as expectation and En󸀠 as average variance.

(3) Calculate certainty degree

𝑦 = 𝑒
−(𝑥−𝐸

𝑥
)
2
/2(𝐸
󸀠

𝑛
)
2

. (2)

(4) 𝑋with the certainty degree𝑦 becomes a cloud droplet
in the universe.

(5) Repeat steps (1) to (4), until generating 𝑛 cloud drops
required.

2.2.2. Backward Cloud Generator. It is a model that realizes
conversion from quantitative value to qualitative concept.
It can convert an amount of accurate values to qualitative
concepts represented by the numerical characteristics (Ex,
En, He), as shown in Figure 3.

Following is the algorithm (a backward algorithmwithout
need of the certainty degree information).
Input. Sample dot 𝑥

𝑖
, where 𝑖 = 1, 2, . . . , 𝑛.

Output. The numerical characteristics (Ex, En, He) which
reflect qualitative concept.

Ex

He
EnCG−1Drop(x, y)

Figure 3: Schematic diagram of backward cloud generator.
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Figure 4: Schematic diagram of𝑋-conditional cloud generator.

(1) On the basis of 𝑥
𝑖
, sample average of this set of data is

calculated, as the following equation shows:

𝑋 =
1

𝑛

𝑛

∑

𝑖=1

𝑥
𝑖
. (3)

(2) Then calculate the first-order central absolute
moment𝑋󸀠 as follows:

𝑋
󸀠

=
1

𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖
− 𝑋

󵄨󵄨󵄨󵄨󵄨
. (4)

The sample variance 𝑆2 is as follows:

𝑆
2
=

1

𝑛 − 1

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑋)
2

. (5)

(3) The expected value is calculated as Ex = 𝑋, entropy
as En = √𝜋/2 × 𝑋

󸀠, and excess entropy as He =
√𝑆2 − En2.

2.2.3. 𝑋-Conditional Cloud Generator. Given a quantitative
value 𝑥 in the universe, through forward cloud generator, we
can get a certainty degree 𝑦, which is the qualitative concept
of quantitative value 𝑥, as shown in Figure 4.

Following is the algorithm.
Input. The numerical characteristics (Ex, En, He) of an
amount of qualitative concepts and quantitative value 𝑥.
Output. The certainty degree 𝑦, the qualitative concept of
quantitative value 𝑥.

(1) Generate normal random number En󸀠, which takes
En as the expectation and He as average variance.

(2) Calculate the certainty degree as (2).

2.2.4. 𝑌-Conditional Cloud Generator. Given a certainty
degree 𝑦, 𝑦 ∈ [0, 1]. Through normal cloud generator, we can
get a quantitative value 𝑥 that can conform to the certainty
degree 𝑦 in qualitative concept.The certainty degree 𝑥 carries
uncertainty every time, as shown in Figure 5.
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Figure 5: Schematic diagram of 𝑌-conditional cloud generator.

Following is the algorithm.
Input. The numerical characteristics (Ex, En, He) of an
amount of qualitative concepts and certainty degree 𝑦, 𝑦 ∈
[0, 1].
Output. The certainty degree 𝑦, the qualitative concept of
quantitative value 𝑥.

(1) Generate forward random number En󸀠, which takes
En as expectation and He as average variance.

(2) Calculate quantitative value 𝑥 = Ex ± En󸀠 ×√−2 ln𝑦.

2.3. Rule Generator. Single condition and single rule genera-
tor can be formally represented as

If𝐴 then𝐵, (6)

where 𝐴, 𝐵 are qualitative concepts. Take the rule “If wind
speed is fast, then generated power is high” as an example;
𝐴 represents qualitative concept “fast wind speed,” and
𝐵 represents qualitative concept “high generated power.”
Connect an antecedent cloud generator with a subsequent
cloud generator as shown in Figure 6; a single condition rule
is constructed.

3. ‘‘Section to Point’’ Correction
Method for Wind Power Forecasting
Based on Cloud Theory

First of all, the quantitative values of the wind speed and
wind power are converted to qualitative concepts which can
be expressed by nature language based on cloud transfor-
mation and backward cloud generator of cloud theory [15].
Then, multiple qualitative rules and corresponding reasoning
mechanism are constructed, and the wind power eigenvalue
which represents the characteristics of current cycle can be
obtained. Second, current cloud and historical cloud which
have the highest similarity with the current cloud are inte-
grated to create a new cloud through cloud synthesization.
Then, reasoning mechanisms between adjacent time sections
are established, and the “section to point” correction coeffi-
cient is concluded.The corrected forecasting can be obtained
through the wind power eigenvalue 𝑃 and correction coeffi-
cient 𝐶. The forecasting process is shown in Figure 7.

In this paper, the principle of improving forecasting
accuracy is mainly reflected by the following two aspects.

(1) Based on cloud theory, enhance the relevance
between data and decrease the information loss.

According to two consecutive years of Inner Mongolia
Wind Power sampling data, this paper selects twenty data

x

yi

Ex2
En2
He2

Ex1
En1
He1

CG1

CG2 Drop(x, y)

Drop(x, yi)

Figure 6: Rule generator.

Wind speed and wind power 
forecasting

Qualitative clouds of wind
speed and wind power 

Elastic coefficient between
the change rate of wind 
speed and wind power

Obtain wind power Obtain the correction

prediction value

eigenvalue P coefficient C

Taking P ∗ C as the wind power

Figure 7: Flowchart of wind power forecasting.

dots to calculate the wind speed forecasting value and the
wind power value, respectively. As shown in Figure 7, the
change of relative error of the wind speed has significant
impacts on predicted value of the wind power. It shows that
the uncertainty of the wind speed is the main reason for
undesirable accuracy of the wind power.

As quantitative data, if the reasoning formula between the
wind speed and wind power is deduced by numeric values,
correlation results will be inaccurate under the influence of
invisible factors. In this paper, quantitative and qualitative
data can be transformed effectively based on cloud theory.
Then accurate association rules considering invisible factors
are constructed by data mining. In this paper, the construc-
tion of forecastingmodel and the calculation of the “section to
point” correction coefficient are both based on cloud theory.
This is the guarantee of improving prediction accuracy in this
paper.

(2) With the help of change discipline of the adjacent
time, the “section to point” correction can slow
down tendency inertia caused by the wind speed
catastrophe.

Processed by cloud synthesization, the wind speed and
wind power data contain both the characteristics of current
trends and change laws of historical data. Based on this,
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correction coefficient calculated by this model can restrain
prediction fluctuation and significantly improve forecasting,
especially when the wind speed changes abruptly. Like a
“sword,” the “section to point” correction in this paper can
improve forecasting accuracy effectively.

3.1. Wind Power Eigenvalue Forecasting Based on Cloud
Theory. First, transform [16] the wind speed and wind power
data to multiple qualitative concepts, which are used for
concepts retrieval [17]. Then, mine association rules between
cloud concepts. At last, cloud reasoning [18] model is used
to obtain forecasted values. Figure 9 shows the forecasting
procedures.

3.1.1. Cloud Transformation and Concept Retrieval. The first
step of the wind power forecasting consists of cloud trans-
formation and concept abstracting. Then, cloud generator is
built based on association rules mining from similar cloud
concepts. So, wind power eigenvalue can be forecasted after
inputting the wind speed data.

3.1.2. Setting Up Cloud Generator. The 𝑋-condition cloud is
applied to input x, which is the nearest point to forecasted
value, and get the membership degree 𝑦

𝑖
(𝑖 = 1, 2, . . . , 7).

Then, take the cloud CG
𝑖
and its corresponding rule repre-

sented by max 𝑦
𝑖
as forward and backward clouds, which

comprise the 𝑌-condition cloud to get the forecasting value
𝑚. The rules generator is shown in Figure 10.

3.2. The Principle of “Section to Point” Correction. The
principle of “section to point” correction is correcting the
forecasted value of the wind power by cloud model, through
synthesization of change rules between wind speed and wind
power.

Data near the forecasting point is taken as basic sequence
in this paper. The step is taken as 𝑛, which means this basic
sequence’s counts are “𝑛.” Then a sequence of the highest
similarity is selected through historical data, and the two
sequences are integrated by cloud synthesization. Formula (7)

shows the algorithm of cloud synthesization, and results are
shown in Figure 11:

Ex = Ex
1
En
1
+ Ex
2
En
2

En
1
+ En
2

,

En = En
1
+ En
2
,

He = He
1
En
1
+He
2
En
2

En
1
+ En
2

.

(7)

As can be seen from Figure 8, the range of the basic cloud
is between 0 and 8; therefore forecasting value will be located
between 0 and 8 based on basic cloud. If the membership
degree of current wind speed in basic cloud is taken as 0.8,
the corresponding value is 4.4 (m/s) as shown in Figure 8.
After combining with historical cloud, the value changes to
7.3 (m/s) in synthesized cloud, but the membership degree is
less than 0.1 in basic cloud with the wind speed of 7.3 (m/s).
And the tendency inertia of catastrophe can be reduced by
using synthesized cloud.

As shown in Figure 12. The forecasted value will not only
contain the trend of adjacent wind speed sequence, but also
contain change laws of historical cloud. It equals correcting a
forecasting value through historical data in a period of time,
which is referred to as “section to point” correction in this
paper.

3.2.1. Data Processing. Before correction, the data of the wind
speed and wind power must be processed as follows.

(1) The wind speed change rate: the formula is shown as
follows:

𝑄
𝑡
=
𝑉
𝑡+1
− 𝑉
𝑡

𝑉
𝑡

. (8)

In formula (8),𝑉
𝑡
means the wind speed at the time point

𝑡. 𝑉
𝑡+1

means the wind speed at the next point.
(2) Elastic coefficient, which means the effect of the wind

speed while the wind power changes: the formula is
shown as follows:

𝐾
𝑡
=
(𝑃
𝑡+1
− 𝑃
𝑡
) /𝑃
𝑡

(𝑉
𝑡+1
− 𝑉
𝑡
) /𝑉
𝑡

. (9)

In formula (9), 𝑃
𝑡
, 𝑃
𝑡+1

means the wind power in the time
point 𝑡 and the next point 𝑡 + 1.

(3) Divide historical data.
A sequence is constructed according to these two types of

data mentioned based on the historical data:
𝑋 = (𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑡
) . (10)

𝑚means the time span value; then we can convert𝑋 to𝑌,
which is composed of 𝑚-dimensional vector, and the counts
are 𝑡 − 𝑚 + 1; formula (11) is shown as follows:

𝑌 =

[
[
[
[

[

𝐾
1

𝐾
2
⋅ ⋅ ⋅ 𝐾

𝑚

𝐾
2

𝐾
3
⋅ ⋅ ⋅ 𝐾

𝑚+1

.

.

.
.
.
. ⋅ ⋅ ⋅

.

.

.

𝐾
𝑡−𝑚+1

𝐾
𝑡−𝑚

⋅ ⋅ ⋅ 𝐾
𝑡

]
]
]
]

]

. (11)
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3.2.2. Correction Step. The process of “correction step” are
shown in Figure 13.

(1) Through backward cloud generator, three character-
istic numbers (Ex

1
,En
1
,He
1
) in current cloud are

generated by the present sequence𝑋
𝑛
.

(2) Then, three characteristic numbers (Ex
2
,En
2
,He
2
)

are generated by the historical sequence 𝑌
𝑛
which

has the highest similarity with 𝑋
𝑛
. The theory of

similarity comparison is as follows.

If current vector is 𝛼 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) and historical

vector is 𝑌
𝑖
, which means the 𝑖-dimension vector for 𝑌, it is

recorded as 𝛽, 1 ≤ 𝑖 ≤ 𝑡 − 𝑚 + 1. The formula is shown as
follows:

𝑟
𝛼𝛽
=

𝛼𝛽

|𝛼| ⋅
󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨

,

|𝛼| = √

𝑚

∑

𝑖=1

𝑥
2

𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

(12)
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𝑟
𝛼𝛽

means similarity coefficient of current sequence and
historical sequence. It should be readjusted if results are
negative:

𝑟
󸀠

𝛼𝛽
=

𝑟
𝑥𝑦
− 𝑚

𝑀 −𝑚
. (13)

In formula (13),𝑚 = min 𝑟
𝛼𝛽
;𝑀 = max 𝑟

𝛼𝛽
.

By comparing the number of 𝑟󸀠
𝛼𝛽
, the sequence which has

amaximumvalue is determined as the historical sequence𝑌
𝑛
.
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(3) Three characteristic numbers (Ex, En, He) are gener-
ated by cloud synthesization.

(4) Change rate of the wind speed and the elastic coeffi-
cient based on cloud generator forecasted, which are
used to obtain the value of the correction coefficient:

𝐶 = 𝑄
󸀠

𝑡
× 𝐾
󸀠

𝑡
. (14)

In formula (14), 𝐾󸀠
𝑡
means forecasted value of the elastic

coefficient and 𝑄󸀠
𝑡
means forecasted value of the wind speed

change rate.
(5) The forecasted value of wind power can be carried

out through multiplying the wind power eigenvalue
by the correction coefficient.

4. Case Study

In order to verify the effectiveness of forecasting model
proposed in this paper the wind speed and wind power data
for daily load forecasting are provided by a wind power
station in Inner Mongolia with a period of 60 days in 2013.
Among the data, the first 30 days are used for history database
matching, and the last 30 days are taken as forecasted
comparative data. Figure 14 shows the data of the wind speed
and wind power values in the first 30 days.

Step 1. Seven qualitative clouds are obtained after cloud
transformation and concept abstracting on the basis of the
wind power data in 2013. Its eigenvalues are shown in Table 1.

Table 1 also can be depicted by Figure 15.
Eight qualitative clouds are obtained after cloud transfor-

mation and concept abstracting based on the wind speed data
in 2013, whose eigenvalues are shown in Table 2.

Table 2 also can be depicted by Figure 16.
The a priori algorithm is applied tomining the association

rules between historical wind speed and wind power. 8 rules
that can satisfy the constraint of the minimum support
threshold and the minimum confidence threshold are deter-
mined. The rules are shown in Table 3.

Take average wind speed 6.2 (m/s) of the 30th day as
input value; then the corresponding 8th class qualitative
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Figure 14: Historical data for wind speed and power.
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Figure 15: Cloud chart after the wind power concept retrieval.

cloud would be activated. The cloud which has the highest
membership degree is taken as the forward rule. Also, Wind
speed 6.2 (m/s) corresponding to the qualitative concept of
“Slightly fast 2” will be drawn. According to the 5th rule,
wind power cloud which is named “high” is taken as the
backward rule. Current period wind power eigenvalue can be
calculated based on mining associated rules, and the value is
1238.4 (MW). This wind power eigenvalue also can be taken



8 Mathematical Problems in Engineering

Table 1: Eigenvalue of the qualitative concept of wind power.

Ex En He
Rather low 135 25 7.1
Low 530 132 9.3
Slightly low 900 121 5.2
Moderate 1200 80 6.2
Slightly high 1530 70 8.5
High 1965 60 10.2
Rather high 2290 50 12.3

Table 2: Eigenvalue of the qualitative concept of wind speed.

Ex En He
Rather slow 1.2 0.33 0.02
Slow 2.3 0.2 0.03
Slightly slow 3.2 0.3 0.06
Moderate 1 4.1 0.25 0.04
Moderate 2 5.0 0.32 0.03
Slightly fast 6.2 0.23 0.03
Fast 7.4 0.27 0.04
Rather fast 9.0 0.29 0.05

Table 3: Association rules after mining.

Rules Wind speed Wind power
Rule 1 Rather slow Rather low
Rule 2 Slow Low
Rule 3 Slightly slow Slightly low
Rule 4 Moderate 1 Moderate
Rule 5 Moderate 2 Slightly high
Rule 6 Slightly fast High
Rule 7 Fast Rather high
Rule 8 Rather fast Rather high

Table 4: Comparison table of relative error (%).

Maximum Minimum Mean
ARMA 42.32 0.51 16.59
Power eigenvalue 37.84 0.63 12.87

as forecasting value. Figure 17 shows forecast comparison in
the coming 15 days, and Table 4 shows the comparison table
of relative error.

When the wind power eigenvalue is taken as a predictive
value, forecasting precision is improved slightly comparing
with forecasting value by themodel ARMA (“point-to-point”
model). But the maximum errors of them are bigger, which
means both of them cannot make effective inhibition of
fluctuation at the catastrophe point.Therefore, the forecasted
value at the catastrophe point should be corrected, which is
the second step “section to point” correction.The steps are as
follows.

Step 2. (1) According to 5-day wind speed and wind power
data close to the forecasting point, the first sequence of
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Figure 16: Cloud chart after the wind speed concept retrieval.
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Figure 17: Prediction comparison chart.

the elasticity coefficient can be concluded as 𝛼. Then match
𝛽 with the highest similarity with 𝛼 in each sequence in the
first 30 days:

𝛼 = {−0.4291, −0.0419, 0.7656, −0.3008, 0.0430, 0.3106} ,

𝛽 = {−0.2032, −0.3086, 0.2780, 0.0774, −0.1009, 0.0604} .

(15)

These two sequences above can obtain two clouds by
backward cloud generator. Then, they are synthesized to
produce new forecasting clouds. By setting up rules generator,
it can be predicted that the elastic coefficient is 0.67. Similarly,
forecasting value of the wind speed change rate is 1.65.

(2)According to the change rate of thewind speed and the
elastic coefficient of forecasting value, correction coefficient
is 1.12. Finally, the forecasting value of corrected power is
1387.0 (MW).The result of the first step is shown in Figure 18,
and the Table 5 shows the comparison table of relative error.

The average relative error and the maximum relative
error are reduced after being corrected, and the forecasting
accuracy has improved. Particularly for catastrophe point
forecasting, the volatility of forecasting value is reduced,
which is of great importance for wind power grid security.
Figure 19 shows the simulation results in a fluctuated period.
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Figure 18: Prediction comparison after correction.
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Figure 19: Comparison chart in mutation points.

Table 5: Comparison table of relative error after correction (%).

Maximum Minimum Mean
ARMA 42.32 0.51 16.59
Power eigenvalue 37.84 0.62 12.87
After correction 26.21 0.32 10.87

Table 6: Comparison table of relative error in mutation points (%).

1 2 3 4 5
ARMA 42.32 39.21 32.42 36.23 33.24
Model in this paper 14.21 25.32 26.21 25.23 12.57

As can be seen from Table 6, model presented in this
paper has advantages in decreasing significant error and
average error, especially in catastrophe point.

5. Conclusion

As a “point to point” forecasting model, forecasting results
of ARMA are subject to the trend of adjacent time. Moreover,
huge error occurswhen encounteringwind speed catastrophe
points. Compared with ARMA, the average relative error
of this model is reduced by 3.72% in terms of prediction
accuracy. The improvement of prediction accuracy is shown
in the following two aspects.

First, it realizes the transformation between quantitative
data and qualitative data based on cloud theory. And it builds
an accurate correlation between wind speed and wind power,
which reduces the average relative error by 3.72%.

Second, catastrophe points forecasting realizes the “sec-
tion to point” correction and the current forecasting correc-
tion by cloud synthesization and historical data. It reduces the
trend inertia at catastrophe points and reduces the average
relative error by 2%. Particularly at catastrophe points, the
reduction can reach up to 11.63%.

Model proposed in this paper will improve the accuracy
of prediction as historical data continuously accumulates.
Given more historical data, it will be capable of attaining
sequences with higher similarity from adjacent data in a
broader space-time. Due to limited data in this paper, cloud
reasoning and sequence analyzing are only applied to wind
speed data which has significant influence on wind power. If
meteorological data are added, the prediction accuracy could
be further improved.
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