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This paper describes the stability analysis of a helicopter with an underslung external load system.The Lyapunov second method is
considered for the stability analysis. The system is considered as a cascade connection of uncertain nonlinear system. The stability
analysis is conducted to ensure the stabilisation of the helicopter system and the positioning of the underslung load at hover
condition. Stability analysis and numerical results proved that if desired condition for the stability is met, then it is possible to
locate the load at the specified position or its neighbourhood.

1. Introduction

Recently, research on helicopter carrying external underslung
loads has gained great attention in the aerospace research
community for the past few decades due to the reevaluation
and extension of the ADS-33 and the inherent stability
problems associated with this system [1–3]. Helicopters have
the ability to carry large and bulky loads externally on a sling.
This capability is important in many applications, ranging
from lifting heavy loads to saving life. Importantly, when
lives are under risk and rapid rescue operations are needed,
this operation is vital. The stability of the helicopter will be
disturbed by the underslung load, which is a huge obstacle
for an accurate pickup or placement of the loads [4]. Thus, it
is necessary to resolve the stability problems associated with
the system to ensure the stabilisation of the helicopter system
and the positioning of the underslung load under various
complicated situations.

From the review of popular helicopter control methods,
it is clear that, in the past years, considerable attention has
been paid to the design of controller to obtain a satisfactory
helicopter handling quality [5]. The control problem has
been tackled using different approaches ranging from linear
quadratic control [6], eigenstructure assignment [7], classical
SISO techniques [8], to sliding mode control [9]. Apart
from the methods emphasised above there are many other

techniques which are reported for complex modern control
system design ranging from quantitative feedback theory to
singular perturbation method [10].

The extensive studies of the reported controller design
methods evidenced that the helicopter control and the control
of a helicopter with an external underslung load are very
active research areas.The research in this area is mainlymoti-
vated by the factor that the current control methods cannot
provide full satisfaction to the desired design requirements
on flight handling quality, stability, robustness, and so forth.

In this paper, stability analysis for the helicopter with
an underslung external load system is discussed. The key
advantage of the proposed method is that the analysis takes
the system uncertainty into account. The proposed method
can give a guaranteed stability region for the systems consid-
ered. The paper begins by presenting a mathematical model
of the system and then describing the stability analysis with
a numerical example to illustrate the applicability, accuracy,
and effectiveness of the proposed method.

2. System Model

Considering the control of a helicopter with an underslung
load, the dynamical models of both the helicopter and load
have some terms which are uncertain. The uncertainties
may arise from the helicopter to carry an unknown load or
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the immeasurable parameters in the dynamical models. The
uncertainties may also arise from computational errors of
the dynamical effects such as aerodynamics. Therefore for
a realistic model uncertainties must be taken into account
during the controller design.

A mathematical model of the helicopter described in [11]
and an underslung load model presented in [4] are adopted
in this work. Considering the two models, a mathematical
model for a helicopter carrying an underslung load can be
obtained.

Firstly, the underslung load is considered to be suspended
from a single suspension point that is subject to motion
and therefore modelled as a driven spherical pendulum. The
equations that describe the load dynamics are obtained by
first considering motion with reference to the longitudinal
suspension angle 𝜃

𝐿
in the 𝑋-𝑍 plane (Figure 1). This is then

repeated for the lateral case involving 𝜑
𝐿
and the 𝑌-𝑍 plane.

These are then combined to obtain the model for the motion
of the load. The underslung load system has six inputs,
longitudinal, lateral, and vertical velocities together with
the corresponding accelerations of the helicopter, whilst the
outputs are the longitudinal and lateral directional suspen-
sion angles. The load is subject to an isotropic aerodynamic
force (proportional to the square of its airspeed) such as
what would be experienced by a spherical shaped load.
Aerodynamic interaction with the helicopter that may occur,
for example, due to rotor downwash, has been ignored.
Finally, the sling itself is assumed to be rigid and contribute
zero aerodynamic force of its own. With these assumptions,
the equations governing the load motion can be derived as
follows.

For the case of the longitudinal motion in the𝑋-𝑍 plane,
the mathematical model is described below:
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The helicopter model is considered as the second subsystem.
To simplify the analysis, the linear helicopter model [4] is
considered,which is expressed in the state space form �̇�
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For linearization, it is assumed that the external forces 𝑋,
𝑌, and 𝑍 and moments 𝐿, 𝑀, and 𝑁 can be represented as

analytic functions of the disturbedmotion variables and their
derivatives [4]. Thus the forces and moments can be written
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Figure 1: Coordinate system for the longitudinal motion in the𝑋-𝑍
plane.

in Taylor’s expansion form. Then, the linearized equations of
motion about a general trim condition can be written as in
the state space form �̇� = 𝐴𝑥 + 𝐵𝑢 and the system matrix 𝐴

and control matrix 𝐵 are derived from the partial derivatives
of the nonlinear function 𝐹, that is,
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𝐴 = (
𝜕𝐹

𝜕𝑥
)

𝑥=𝑥
𝑒

,

𝐵 = (
𝜕𝐹

𝜕𝑢
)

𝑥=𝑥
𝑒

.

(4)

Now, the longitudinal rotational motion is described by the
pitch angle 𝜃 and pitch rate 𝑞 together with the translation
motion components 𝑢, 𝑤 so the equation of longitudinal
motion can be written as follows:
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Using (8) the system model can be rearranged to include the
variables 𝜃 and 𝑞 into the loadmodel. For the stability analysis
purpose, an extra term is introduced into the system model,
which is zero with the expression
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where 𝜅
𝑖
> 0 (𝑖 = 1, 2) are small positive constants.

With this arrangement for the longitudinal motion of the
helicopter with an underslung load combined system model
can be written as follows:
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𝜃
𝐿
2

𝑞

(𝑋
21
𝜃 + 𝑋

22
𝑞)

]
]
]
]
]
]
]

]

𝐺
1
(𝜃
𝐿 (𝑡)) =

[
[
[
[
[
[
[
[
[

[

0 0

𝑘
𝐷
sign (�̇�

𝐿
) cos 𝜃

𝐿
1

𝑀
𝐿
𝑙
𝑥

𝑘
𝐷
sign (�̇�

𝐿
) sin 𝜃

𝐿
1

𝑀
𝐿
𝑙
𝑥

0 0

0 0

]
]
]
]
]
]
]
]
]

]

𝑞 (𝜃
𝐿 (𝑡) , 𝑥𝐻 (𝑡))

=
[
[

[

0

cos 𝜃
𝐿
1

𝑙
𝑥

�̇� +
sin 𝜃
𝐿
1

𝑙
𝑥

�̇� −
2𝑘
𝐷

𝑀
𝐿

(sign (�̇�
𝐿
) cos2 𝜃

𝐿
1

𝑢 + sign (�̇�
𝐿
) sin2 𝜃

𝐿
1

𝑤) 𝜃
𝐿
2

−
𝜅
1
𝑘
𝐷
sign (�̇�

𝐿
) cos 𝜃

𝐿
1

𝑢

𝑀
𝐿
𝑙
𝑥

−
𝜅
2
𝑘
𝐷
sign (�̇�

𝐿
) cos 𝜃

𝐿
1

𝑤

𝑀
𝐿
𝑙
𝑥

]
]

]

𝐻(𝑡, 𝜃
𝐿 (𝑡) , 𝑥𝐻 (𝑡)) =

[
[
[
[
[

[

0

0

(𝑎
11
𝑢 + 𝑎
12
𝑤)

𝑋
23
𝑢 + 𝑋

24
𝑤

]
]
]
]
]

]

,

𝑓
2
(𝜃
𝐿 (𝑡) , 𝑥𝐻 (𝑡)) = [

(𝑋
31
𝜃 + 𝑋

32
𝑞 + 𝑋

33
𝑢 + 𝑋

34
𝑤)

(𝑋
41
𝜃 + 𝑋

42
𝑞 + 𝑋

43
𝑢 + 𝑋

44
𝑤)

] ,

𝐺
2
= [

𝑋
𝜃
1𝑠

𝑋
𝜃
0

𝑍
𝜃
1𝑠

𝑍
𝜃
0

] .

(12)
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Figure 2: Coordinate system for the lateralmotion in the𝑌-𝑍 plane.

It is assumed that the longitudinal motion is primarily
controlled by longitudinal cyclic commands (𝜃

1𝑠
) and main

rotor collective 𝜃
0
.

For the case of the lateral motion in the 𝑌-𝑍 plane, with
the coordinate system described in Figure 2, the load model
is

�̈�
𝐿
𝑦𝑧

= −
𝑔

𝑙
𝑦

sin𝜑
𝐿
𝑦𝑧

+

cos𝜑
𝐿
𝑦𝑧

𝑙
𝑦

�̈�
0
+

sin𝜑
𝐿
𝑦𝑧

𝑙
𝑦

�̈�
0

+

𝑘
𝐷
sign (�̇�

𝐿
) cos𝜑

𝐿
𝑦𝑧

𝑀
𝐿
𝑙
𝑦

�̇�
2

0

+

𝑘
𝐷
sign (�̇�

𝐿
) sin𝜑

𝐿
𝑦𝑧

𝑀
𝐿
𝑙
𝑦

�̇�
2

0

−
2𝑘
𝐷

𝑀
𝐿

(sign (�̇�
𝐿
) cos2 𝜑

𝐿
𝑦𝑧

�̇�
0

+ sign (�̇�
𝐿
) sin2 𝜑

𝐿
𝑦𝑧

�̇�
0
) �̇�
𝐿
− 𝑘
𝜑
�̇�
𝐿

+
𝑘
𝐷
𝑙
𝑦

𝑀
𝐿

[sign (�̇�
𝐿
) cos3 𝜑

𝐿
𝑦𝑧

+ sign (�̇�
𝐿
) sin3 𝜑

𝐿
𝑦𝑧

]

⋅ �̇�
2

𝐿
𝑦𝑧

.

(13)

Define �̃�
𝐿
= [𝜑𝐿 �̇�

𝐿
]
𝑇

= [𝜑𝐿
1

𝜑
𝐿
2
]
𝑇; then the model can be

written as follows:

�̇�
𝐿
1

= 𝜑
𝐿
2

(14a)

�̇�
𝐿
2

=
−𝑔

𝑙
𝑦

sin𝜑
𝐿
1

+
𝑘
𝐷
𝑙
𝑦

𝑀
𝐿

[sign (�̇�
𝐿
) cos3 𝜑

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜑

𝐿
1

] 𝜑
2

𝐿
2

− 𝑘
𝜑
𝜑
𝐿
2

+ (
𝑘
𝐷
sign (�̇�

𝐿
) cos𝜑

𝐿
1

𝑀
𝐿
𝑙
𝑦

) �̇�
2

0

+ (
𝑘
𝐷
sign (�̇�

𝐿
) sin𝜑

𝐿
1

𝑀
𝐿
𝑙
𝑦

) �̇�
2

0
+
cos𝜑
𝐿
1

𝑙
𝑦

�̈�
0

+
sin𝜑
𝐿
1

𝑙
𝑦

�̈�
0
−
2𝑘
𝐷

𝑀
𝐿

(sign (�̇�
𝐿
) cos2 𝜑

𝐿
1

�̇�
0

+ sign (�̇�
𝐿
) sin2 𝜑

𝐿
1

�̇�
0
) 𝜑
𝐿
2

.

(14b)

Now, for the helicopter model the lateral rotational motion is
described by the roll angle 𝜙 and roll rate 𝑝 together with the
translationmotion components V, 𝑤 so the equation of lateral
motion can be written as follows:

[
[
[
[
[

[

�̇�

�̇�

V̇

�̇�

]
]
]
]
]

]

=

[
[
[
[
[
[

[

0 1 0 0

0 𝐿
𝑝

𝐿V 𝐿
𝑤

𝑔 (𝑌
𝑝
− 𝑤
𝑒
) 𝑌V 𝑌

𝑤

0 (𝑍
𝑝
− V
𝑒
) 𝑍V 𝑍

𝑤

]
]
]
]
]
]

]

[
[
[
[
[

[

𝜙

𝑝

V

𝑤

]
]
]
]
]

]

+

[
[
[
[
[

[

0 0

𝐿
𝜃
1𝑐

𝐿
𝜃
0𝑇

𝑌
𝜃
1𝑐

𝑌
𝜃
0𝑇

𝑍
𝜃
1𝑐

𝑍
𝜃
0𝑇

]
]
]
]
]

]

[
𝜃
1𝑐

𝜃
0𝑇

] ,

(15)

now using a linear transformation 𝑇
1
such that 𝑥

𝐻
(𝑡) =

𝑇
1
𝑧(𝑡) and 𝑇

1
is defined by

𝑇
1
=

[
[
[
[
[

[

1 0 0 0

0 1 𝑏
11

𝑏
12

0 0 1 0

0 0 0 1

]
]
]
]
]

]

, (16)

where

𝑏
11

= −
𝑍
𝜃
1𝑐

𝐿
𝜃
0𝑇

− 𝑍
𝜃
0𝑇

𝐿
𝜃
1𝑐

𝑌
𝜃
1𝑐

𝑍
𝜃
0𝑇

− 𝑍
𝜃
1𝑐

𝑌
𝜃
0𝑇

,

𝑏
12

= −
𝑌
𝜃
0𝑇

𝐿
𝜃
1𝑐

− 𝑌
𝜃
1𝑐

𝐿
𝜃
0𝑇

𝑌
𝜃
1𝑐

𝑍
𝜃
0𝑇

− 𝑍
𝜃
1𝑐

𝑌
𝜃
0𝑇

.

(17)
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Let 𝑝 = (𝑝 − 𝑏
11
V − 𝑏
12
𝑤); then (15) can be written in the

following form:

[
[
[
[
[
[

[

�̇�

�̇�

V̇

�̇�

]
]
]
]
]
]

]

=

[
[
[
[
[

[

𝑌
11

𝑌
12

𝑌
13

𝑌
14

𝑌
21

𝑌
22

𝑌
23

𝑌
24

𝑌
31

𝑌
32

𝑌
33

𝑌
34

𝑌
41

𝑌
42

𝑌
43

𝑌
44

]
]
]
]
]

]

[
[
[
[
[

[

𝜙

𝑝

V

𝑤

]
]
]
]
]

]

+

[
[
[
[
[

[

0 0

𝑁
21

𝑁
22

𝑌
𝜃
1𝑐

𝑌
𝜃
0𝑇

𝑍
𝜃
1𝑐

𝑍
𝜃
0𝑇

]
]
]
]
]

]

[
𝜃
1𝑐

𝜃
0𝑇

] ,

(18)

where

𝑌
11

= 0,

𝑌
12

= 1,

𝑌
13

= 𝑏
11
,

𝑌
14

= 𝑏
12
,

𝑌
21

= − (𝑏
11
𝑔) ,

𝑌
22

= (𝐿
𝑝
− 𝑏
11
(𝑌
𝑝
+ 𝑤
𝑒
) − 𝑏
12
(𝑍
𝑝
− V
𝑒
)) ,

𝑌
23

= (𝐿
𝑝
− 𝑏
11
(𝑌
𝑝
+ 𝑤
𝑒
) − 𝑏
12
(𝑍
𝑝
− V
𝑒
)) 𝑏
11

+ (𝐿
𝑝
− 𝑏
11
𝑌V − 𝑏

12
𝑍V) ,

𝑌
24

= (𝐿
𝑝
− 𝑏
11
(𝑌
𝑝
+ 𝑤
𝑒
) − 𝑏
12
(𝑍
𝑝
− V
𝑒
)) 𝑏
12

+ (𝐿
𝑝
− 𝑏
11
𝑌
𝑤
− 𝑏
12
𝑍
𝑤
) ,

𝑌
31

= 𝑔,

𝑌
32

= (𝑌
𝑝
+ 𝑤
𝑒
) ,

𝑌
33

= ((𝑌
𝑝
+ 𝑤
𝑒
) 𝑏
11
+ 𝑌V) ,

𝑌
34

= ((𝑌
𝑝
+ 𝑤
𝑒
) 𝑏
12
+ 𝑌
𝑤
) ,

𝑌
41

= 0,

𝑌
42

= (𝑍
𝑝
− V
𝑒
) ,

𝑌
43

= ((𝑍
𝑝
− V
𝑒
) 𝑏
11
+ 𝑍V) ,

𝑌
44

= ((𝑍
𝑝
− V
𝑒
) 𝑏
12
+ 𝑍
𝑤
) ,

𝑁
21

= (𝐿
𝜃
1𝑐

− 𝑏
11
𝑌
𝜃
1𝑐

− 𝑏
12
𝑍
𝜃
1𝑐

) ,

𝑁
22

= (𝐿
𝜃
0𝑇

− 𝑏
11
𝑌
𝜃
0𝑇

− 𝑏
12
𝑍
𝜃
0𝑇

) .

(19)

Using (18) the helicopter with underslung load for lateral
motion in the 𝑌-𝑍 plane can be described by

�̇�
𝐿
(𝑡)

= 𝑓
1
(𝜑
𝐿
(𝑡))

+ 𝐺
1
(𝜑
𝐿
(𝑡)) [𝑝 (𝑥

𝐻 (𝑡)) + 𝑞 (𝜑
𝐿
(𝑡) , 𝑥𝐻 (𝑡))]

+ 𝐻 (𝑡, 𝜑
𝐿
, 𝑥
𝐻 (𝑡))

(20a)

�̇�
𝐻 (𝑡) = 𝑓

2
(𝜑
𝐿
(𝑡) , 𝑥𝐻 (𝑡)) + 𝐺

2
�̂� (𝑡) , (20b)

where

�̇�
𝐿
(𝑡) = [�̇�

𝐿
1

�̇�
𝐿
2

�̇� �̇�]
𝑇

,

𝑝 (𝑥
𝐻 (𝑡)) = [V2 𝑤

2
]
𝑇

,

𝑓
1
(𝜑
𝐿
(𝑡)) =

[
[
[
[
[
[
[

[

𝜑
𝐿
2

−𝑔

𝑙
𝑦

sin𝜑
𝐿
1

+
𝑘
𝐷
𝑙
𝑦

𝑀
𝐿

(sign (�̇�
𝐿
) cos3 𝜑

𝐿
1

+ sin (�̇�
𝐿
) sin3 𝜑

𝐿
1

) 𝜑
2

𝐿
2

− 𝑘
𝜑
𝜑
𝐿
2

𝑝

(−𝑏
11
𝑔𝜙 + (𝐿

𝑝
− 𝑏
11
(𝑌
𝑝
+ 𝑤
𝑒
) − 𝑏
12
(𝑍
𝑝
− V
𝑒
)) 𝑝)

]
]
]
]
]
]
]

]

,

𝐺
1
(𝜑
𝐿
(𝑡)) =

[
[
[
[
[
[
[
[

[

0 0

(
𝑘
𝐷
sign (�̇�

𝐿
) cos𝜑

𝐿
1

𝑀
𝐿
𝑙
𝑦

) (
𝑘
𝐷
sign (�̇�

𝐿
) sin𝜑

𝐿
1

𝑀
𝐿
𝑙
𝑦

)

0 0

0 0

]
]
]
]
]
]
]
]

]

,

𝑞 (𝜑
𝐿
(𝑡) , 𝑥𝐻 (𝑡)) =

[
[

[

0

cos𝜑
𝐿
1

𝑙
𝑦

V̇ +
sin𝜑
𝐿
1

𝑙
𝑦

�̇� −
2𝑘
𝐷

𝑀
𝐿

(sign (�̇�
𝐿
) cos2 𝜑

𝐿
1

V + sign (�̇�
𝐿
) sin2 𝜑

𝐿
1

𝑤)𝜑
𝐿
2

]
]

]

,
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𝐻(𝑡, 𝜑
𝐿
(𝑡) , 𝑥𝐻 (𝑡)) =

[
[
[
[
[

[

0

0

(�̇� − 𝑝)

(𝑌
23
V + 𝑌
24
𝑤)

]
]
]
]
]

]

,

�̂� (𝑡) = [𝜃1𝑐 𝜃
0𝑇]
𝑇

,

𝑓
2
(𝜑
𝐿
(𝑡) , 𝑥𝐻 (𝑡)) = [

(𝑌
31
𝜙 + 𝑌
32
𝑝 + 𝑌
33
V + 𝑌
34
𝑤)

(𝑌
42
𝑝 + 𝑌
43
V + 𝑌
44
𝑤)

] ,

𝐺
2
= [

𝑌
𝜃
1𝑐

𝑌
𝜃
0𝑇

𝑍
𝜃
1𝑐

𝑍
𝜃
0𝑇

] .

(21)

It is assumed that the lateral motion is primarily controlled
by lateral cyclic commands (𝜃

1𝑐
) and the tail rotor collective

𝜃
0𝑇
.

3. Stability Analysis

The goal is to analyse the stability of the combined system
to ensure that it is possible to stabilise the helicopter with
underslung load system modelled by (11a), (11b), (20a), and
(20b), in a real environment with uncertainties. In this paper,
for the stability analysis the Lyapunov second method is
applied for the helicopter with an underslung external load
system. The analysis for the longitudinal motion is discussed
first. The system equations can be considered to have two
main parts, that is, known and unknown (or partly known).
The known terms formed the nominal part of the system
model.The unknown or partly known part can be considered
as the uncertainty to the system. The whole system is then
modelled by a nominal part with the addition of uncertainty.
In fact, the known elements in the subsystem (11a) are
characterised by the prescribed triple (𝑓

1
, 𝐺
1
, 𝑝) and it is

desired that the nominal part of the system is stable.
The basic notations and concepts required for the analysis

are described first. The state space is denoted by𝑋 fl R𝑛 and
the control space by𝑢 fl R𝑚, where 1 ≤ 𝑚 ≤ 𝑛.TheEuclidean
inner product (on 𝑋 or 𝑢 as appropriate) and induced norm
are denoted by ⟨⋅, ⋅⟩ and ‖ ⋅ ‖, respectively. Let 𝐶(R𝑝;R𝑞) and
𝐶
1
(R𝑝;R𝑞) denote the space of all continuous functions and

the space of continuous functions with continuous first-order
partial derivatives, respectively, and let 𝐶∞(R𝑝;R𝑞) denote
the space of functions whose partial derivatives of any order
exist and are continuous, mapping R𝑝 → R𝑞. For a real-
valued continuous scalar function 𝑥 → V(𝑥), defined on
R𝑛, ∇ : Ṽ → ∇Ṽ ∈ R𝑛 denotes the gradient map. The Lie
derivative of V along a vector field 𝑓 : R𝑛 → R𝑛 is denoted by
𝐿
𝑓
Ṽ : R𝑛 → R which is defined by

(𝐿
𝑓
Ṽ) (𝑥) = ⟨∇Ṽ (𝑥) , 𝑓 (𝑥)⟩ . (22)

The Lie bracket of vector fields 𝑓, 𝑔 ∈ 𝐶
∞
(R𝑛,R𝑛) is the

vector field [𝑓, 𝑔] ∈ 𝐶
∞
(R𝑛,R𝑛) defined by [𝑓, 𝑔] = (𝐷𝑔)𝑓 −

(𝐷𝑓)𝑔, where (𝐷𝑓)denotes the Jacobianmatrix of𝑓 and (𝐷𝑔)
denotes the Jacobian matrix of 𝑔.

In this paper, nonlinear systemswith the following format
are considered:

�̇� (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝐺 (𝑥 (𝑡)) �̃� (𝑡) , (23)

where 𝑥(𝑡) ∈ R𝑛, �̃� ∈ R𝑚. In general mathematical models
of dynamical systems are usually imprecise due to modelling
errors and exogenous disturbances [12]. Equation (23) can be
considered as the nominal part of the system model and the
uncertainty can be modelled as an additive perturbation to
the nominal systemmodel; more specifically, the structure of
the system has the form

�̇� (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝐺 (𝑥 (𝑡)) �̃� (𝑡) + 𝜗 (𝑥 (𝑡) , 𝑢 (𝑡)) , (24)

where 𝜗(𝑥(𝑡), 𝑢(𝑡))models the uncertainty in the system.
System (24) is globally asymptotically stable to the zero

state if the system exhibits the following properties.

(i) Existence and Continuation of Solutions. For each 𝑥 ∈ R𝑛,
there exists a local solution𝑥 : [0, 𝑡

1
) → R𝑛 (i.e., an absolutely

continuous function satisfying (24) almost everywhere (a.e.)
and 𝑥(0) = 𝑥

0) and every such solution can be extended into
a solution on [0,∞).

(ii) Boundedness of Solutions. For each ℏ > 0, there exists
𝑟(ℏ) > 0 such that 𝑥(𝑡) ∈ 𝑟(ℏ)𝐵

𝑛
, for all 𝑡 ≥ 0 on every

solution 𝑥 : [0,∞) → R𝑛 with 𝑥
0
∈ ℏ𝐵
𝑛
, where 𝐵

𝑛
denote

the open unit ball centred at the origin in R𝑛.

(iii) Stability of the State Origin. For each 𝛿 > 0, there exists
𝑑(𝛿) > 0 such that 𝑥(𝑡) ∈ 𝛿𝐵

𝑛
for all 𝑡 ≥ 0 on every solution

𝑥 : [0,∞) → R𝑛 with 𝑥
0
∈ 𝑑(𝛿)𝐵

𝑛
.

(iv) Global Attractivity of the State Origin. For each ℏ > 0 and
𝜀 > 0, there exists 𝑇(ℏ, 𝜀) ≥ 0 such that 𝑥(𝑡) ∈ 𝐵

𝑛
for all

𝑡 ≥ 𝑇(ℏ, 𝜀) on every solution 𝑥 : [0,∞) → R𝑛 with 𝑥
0
∈ ℏ𝐵
𝑛
.
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Consider a nonlinear system described by the ordinary
differential equation as follows:

�̇� (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝑥 (𝑡
0
) = 𝑥
0
,

(25)

where 𝑓 : R × 𝑋 → 𝑋 and 𝑓(𝑡, 0) = 0 for all 𝑡.
To analyse the stability of (25), Lyapunov’s second stability
analysis method is applicable. The Lyapunov approach is to
show that a candidate “Lyapunov function” is nonincreasing
along all solution to (25) by means that do not require
explicit knowledge of solutions to (25). From this, appropriate
conclusion can be drawn regarding stability concepts relating
to solutions of the differential equation (25). An essential
part of Lyapunov’s method is the determination of the time
derivative of the candidate “Lyapunov function” along all
solution of the dynamical system.

Consider a Lyapunov candidate (𝑡, 𝑥) → Ṽ(𝑡, 𝑥) : R×𝑋 →

R which satisfies the condition Ṽ ∈ 𝐶
1
(R × 𝑋), in which case

its time derivative along solutions to (25) is given by

V̇ (𝑡, 𝑥 (𝑡)) =
𝜕Ṽ (𝑡, 𝑥 (𝑡))

𝜕𝑡
+ ⟨∇Ṽ (𝑡, 𝑥 (𝑡)) , 𝑓 (𝑡, 𝑥 (𝑡))⟩ (26)

for almost all 𝑡 ∈ R.
Let 𝑊(𝑥(𝑡)) denote a positive definite function. If

Ṽ(𝑡, 𝑥(𝑡)) satisfies

(i) Ṽ(𝑡, 0) = 0 for all 𝑡 ≥ 0,

(ii) 𝑊(𝑥(𝑡)) ≤ Ṽ(𝑡, 𝑥(𝑡)) for all 𝑥(𝑡) ∈ Φ, {0} ⊂ Φ ⊂ 𝑋 and
all 𝑡 ≥ 0,

(iii) V̇(𝑡, 𝑥(𝑡)) < 0 in Φ,

then Ṽ(𝑡, 𝑥(𝑡)) is said to be a Lyapunov function in Φ. If
̇̃V(𝑡, 𝑥(𝑡)) in Φ, then Ṽ(𝑡, 𝑥(𝑡)) is said to be a weak Lyapunov
function.

A set Ε is said to be an invariant set with respect to the
dynamical system �̇� = 𝑓(𝑥) if

𝑥 (0) ∈ Ε → 𝑥 (𝑡) ∈ Ε ∀𝑡 ∈ R
+
. (27)

In other words Ε is the set of points such that if a solution of
�̇� = 𝑓(𝑥) belongs to Ε at some instant initialized points at
𝑡 = 0, then it belongs to Ε for all future time.

Now, a setΕ ⊂ 𝑥 is said to be a local invariantmanifold for
(25) if, for any 𝑥0 ∈ Ε, 𝑥(𝑡) with 𝑥(0) = 𝑥

0 is in Ε for |𝑡| < 𝑇

where 𝑇 > 0. If 𝑇 = ∞, then Ε is said to be an invariant
manifold.

Now considering the longitudinal motion (Figure 1) for
the helicopter with an underslung external load system,
choose a Lyapunov function candidate for the first subsystem
V
1
as

V
1
(𝜃
𝐿
) =

1

2
[𝜍
1
𝜃
2

𝐿
1

+ 𝜍
2
𝜃
2

𝐿
2

+ (𝜍
3
𝜃 − 𝜍
4
𝑞)
2
+ 𝜍
5
𝑞
2
] , (28)

where 𝜍
𝑖
(𝑖 = 1, 2, 3, 4, 5) are design parameters to be

determined. Then

V̇
1
(𝜃
𝐿
) = ⟨∇V

1
(𝜃
𝐿
) , 𝑓
1
(𝜃
𝐿
) + 𝐺
1
(𝜃
𝐿 (𝑡))

⋅ [𝑝 (𝑥
𝐻 (𝑡)) + 𝑞 (𝜃

𝐿 (𝑡) , 𝑥𝐻 (𝑡))]

+ 𝐻(𝑡, 𝜃
𝐿
, 𝑥
𝐻 (𝑡))⟩ = (𝐿

𝑓
1

V
1
) (𝜃
𝐿
)

+ ⟨∇V
1
(𝜃
𝐿
) , 𝐺
1
(𝜃
𝐿 (𝑡))

⋅ [𝑝 (𝑥
𝐻 (𝑡)) + 𝑞 (𝜃

𝐿 (𝑡) , 𝑥𝐻 (𝑡))]

+ 𝐻(𝑡, 𝜃
𝐿
, 𝑥
𝐻 (𝑡))⟩ .

(29)

From (28), ∇V
1
(𝜃
𝐿
) can be obtained as

∇V
1
(𝜃
𝐿
)

= [𝜍1𝜃𝐿
1

𝜍
2
𝜃
𝐿
2

𝜍
3
(𝜍
3
𝜃 − 𝜍
4
𝑞) −𝜍

4
(𝜍
3
𝜃 − 𝜍
4
𝑞) + 𝜍

5
𝑞]
𝑇

.

(30)

Substituting ∇V
1
(𝜃
𝐿
) and 𝑓

1
(𝜃
𝐿
) into the derivative of

(𝐿
𝑓
1

V
1
)(𝜃
𝐿
), we have

(𝐿
𝑓
1

V
1
) (𝜃
𝐿
) = 𝜍
1
𝜃
𝐿
1

𝜃
𝐿
2

− 𝑘
𝜃
𝜍
2
𝜃
2

𝐿
2

− 𝜍
2

𝑔

𝑙
𝑥

sin 𝜃
𝐿
1

𝜃
𝐿
2

+
𝑘
𝐷
𝑙
𝑥

𝑀
𝐿

𝜍
2
[sign (�̇�

𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

]

⋅ 𝜃
3

𝐿
2

+ 𝜍
3
[𝜍
3
𝜃 − 𝜍
4
𝑞] 𝑞 + (−𝜍

3
𝜍
4
𝜃 + (𝜍

2

4
+ 𝜍
5
) 𝑞)

⋅ [𝑋
21
𝜃 + 𝑋

22
𝑞] .

(31)

Checking the term of − sin (𝜃
𝐿
1

)𝜃
𝐿
2

, it can be seen that
− sin (𝜃

𝐿
1

)𝜃
𝐿
2

≤ −(2/𝜋)𝜃
𝐿
1

𝜃
𝐿
2

when 𝜃
𝐿
1

and 𝜃
𝐿
2

are both
positive or negative. The situation of 𝜃

𝐿
1

and 𝜃
𝐿
2

having
different signs will help with the system stability. Then,

(𝐿
𝑓
1

V
1
) (𝜃
𝐿
) ≤ 𝜍
1
𝜃
𝐿
1

𝜃
𝐿
2

− 𝑘
𝜃
𝜍
2
𝜃
2

𝐿
2

− 𝜍
2

𝑔

𝑙
𝑥

2

𝜋
𝜃
𝐿
1

𝜃
𝐿
2

+
𝑘
𝐷
𝑙
𝑥

𝑀
𝐿

⋅ 𝜍
2
[sign (�̇�

𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

] 𝜃
3

𝐿
2

+ 𝜍
3
[𝜍
3
𝜃 − 𝜍
4
𝑞] 𝑞 + (−𝜍

3
𝜍
4
𝜃 + (𝜍

2

4
+ 𝜍
5
) 𝑞)

⋅ [𝑋
21
𝜃 + 𝑋

22
𝑞] .

(32)

If the design parameter 𝜍
1
is chosen as 𝜍

1
= (2𝑔/𝑙

𝑥
𝜋)𝜍
2
,

(𝐿
𝑓
1

V
1
)(𝜃
𝐿
) satisfies the following:

(𝐿
𝑓
1

V
1
) (𝜃
𝐿
) ≤ −𝑘

𝜃
𝜍
2
𝜃
2

𝐿
2

+
𝑘
𝐷
𝑙
𝑥

𝑀
𝐿

⋅ 𝜍
2
[sign (�̇�

𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

] 𝜃
3

𝐿
2

+ 𝜍
3
[𝜍
3
𝜃 − 𝜍
4
𝑞] 𝑞 + (−𝜍

3
𝜍
4
𝜃 + (𝜍

2

4
+ 𝜍
5
) 𝑞)

⋅ [𝑋
21
𝜃 + 𝑋

22
𝑞] .

(33)
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Further analysis on (33) will start from examining the first
two terms. Rewrite these two terms. So

− 𝑘
𝜃
𝜍
2
𝜃
2

𝐿
2

+
𝑘
𝐷
𝑙
𝑥

𝑀
𝐿

𝜍
2
[sign (�̇�

𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
)

⋅ sin3 𝜃
𝐿
1

] 𝜃
3

𝐿
2

= −𝑘
𝜃
𝜍
2
𝜃
2

𝐿
2

+
𝑘
𝐷
𝑙
𝑥

𝑀
𝐿

𝜍
2
𝜃
𝐿
2

[sign (�̇�
𝐿
)

⋅ cos3 𝜃
𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

] 𝜃
2

𝐿
2

≤ −𝑘
𝜃
𝜍
2
𝜃
2

𝐿
2

+
𝑘
𝐷
𝑙
𝑥

𝑀
𝐿

𝜍
2


max (𝜃

𝐿
2

) (sign (�̇�
𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

)

𝜃
2

𝐿
2

= −𝜍
2
𝜃
2

𝐿
2

{𝑘
𝜃

−
𝑘
𝐷
𝑙
𝑥

𝑀
𝐿


max (𝜃

𝐿
2

)

⋅ (sign (�̇�
𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

)

} .

(34)

If the hinge friction is big enough to satisfy the following:

𝑘
𝜃
>

𝑘
𝐷
𝑙
𝑥

𝑀
𝐿


max (𝜃

𝐿
2

)

⋅ (sign (�̇�
𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

)

,

(35)

then

𝜆
𝐿
= {𝑘
𝜃
−
𝑘
𝐷
𝑙
𝑥

𝑀
𝐿


max (𝜃

𝐿
2

)

⋅ (sign (�̇�
𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

)

} ≥ 0,

− 𝑘
𝜃
𝜍
2
𝜃
2

𝐿
2

+
𝑘
𝐷
𝑙
𝑥

𝑀
𝐿

𝜍
2
[sign (�̇�

𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
)

⋅ sin3 𝜃
𝐿
1

] 𝜃
3

𝐿
2

≤ −𝜍
2
𝜃
2

𝐿
2

𝜆
𝐿
.

(36)

Now, the following analysis has been conducted for (33) and
the load movement for the longitudinal motion is described
by

�̇�
𝐿
= �̇�
0
− 𝑙
𝑥
𝜃
𝐿
2

cos 𝜃
𝐿
1

�̇�
𝐿
= �̇�
0
− 𝑙
𝑥
𝜃
𝐿
2

sin 𝜃
𝐿
1

.

(37)

Around the hover condition𝑋
0
= 0 and 𝑍

0
= 0, the signs for

�̇�
𝐿
and �̇�

𝐿
are opposite to the one of 𝜃

𝐿
2

provided that 𝜃
𝐿
1

is
positive.

Considering the term (sign (�̇�
𝐿
) cos3 𝜃

𝐿
1

+

sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

)𝜃
3

𝐿
2

for all possible combinations of
the signs of 𝜃

𝐿
2

and 𝜃
𝐿
1

, the analysis follows below:

(i) If 𝜃
𝐿
1

> 0 and 𝜃
𝐿
2

> 0, then sign (�̇�
𝐿
) = −1,

sign (�̇�
𝐿
) = −1, cos3 𝜃

𝐿
1

> 0, and sin3 𝜃
𝐿
1

> 0. There-
fore, (sign (�̇�

𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

)𝜃
3

𝐿
2

< 0.

(ii) If 𝜃
𝐿
1

< 0 and 𝜃
𝐿
2

> 0, then sign (�̇�
𝐿
) = −1,

sign (�̇�
𝐿
) = +1, cos3 𝜃

𝐿
1

> 0, and sin3𝜃
𝐿
1

< 0. So
(sign (�̇�

𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

)𝜃
3

𝐿
2

< 0.

(iii) If 𝜃
𝐿
1

> 0 and 𝜃
𝐿
2

< 0, then sign (�̇�
𝐿
) = +1

and sign (�̇�
𝐿
) = +1, cos3 𝜃

𝐿
1

> 0, and sin3 𝜃
𝐿
1

>

0. So the following is true: (sign (�̇�
𝐿
) cos3 𝜃

𝐿
1

+

sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

)𝜃
3

𝐿
2

< 0.

(iv) If 𝜃
𝐿
1

< 0 and 𝜃
𝐿
2

< 0, then sign (�̇�
𝐿
) = +1 and

sign (�̇�
𝐿
) = −1, cos3 𝜃

𝐿
1

> 0, and sin3 𝜃
𝐿
1

< 0. So
(sign (�̇�

𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

)𝜃
3

𝐿
2

< 0.

Therefore

− 𝑘
𝜃
𝜍
2
𝜃
2

𝐿
2

+
𝑘
𝐷
𝑙
𝑥

𝑀
𝐿

⋅ 𝜍
2
[sign (�̇�

𝐿
) cos3 𝜃

𝐿
1

+ sign (�̇�
𝐿
) sin3 𝜃

𝐿
1

] 𝜃
3

𝐿
2

≤ −𝑘
𝜃
𝜍
2
𝜃
2

𝐿
2

.

(38)

Now examining the rest of the terms of (𝐿
𝑓
1

V
1
)(𝜃
𝐿
), then

𝜍
3
[𝜍
3
𝜃 − 𝜍
4
𝑞] 𝑞

+ (−𝜍
3
𝜍
4
𝜃 + (𝜍

2

4
+ 𝜍
5
) 𝑞) [𝑋

21
𝜃 + 𝑋

22
𝑞] = 𝜍

2

3
𝜃𝑞

− 𝜍
3
𝜍
4
𝑞
2
− 𝜍
3
𝜍
4
𝑋
21
𝜃
2
− 𝜍
3
𝜍
4
𝑋
22
𝜃𝑞

+ (𝜍
2

4
+ 𝜍
5
)𝑋
21
𝜃𝑞 + (𝜍

2

4
+ 𝜍
5
)𝑋
22
𝑞
2

= − [𝜍
3
𝜍
4
− (𝜍
2

4
+ 𝜍
5
)𝑋
21
] 𝑞
2
− 𝜍
3
𝜍
4
𝑋
21
𝜃
2

+ [𝜍
2

3
− 𝜍
3
𝜍
4
𝑋
22
+ (𝜍
2

4
+ 𝜍
5
)𝑋
21
] 𝜃𝑞.

(39)

For the system, 𝜃 and 𝜃
𝐿
1

always have different signs, 𝜃 and 𝑞

always have different signs, and 𝑞 and 𝜃
𝐿
1

have the same signs.
So

[𝜍
2

3
− 𝜍
3
𝜍
4
𝑋
22
+ (𝜍
2

4
+ 𝜍
5
)𝑋
21
] 𝜃𝑞 ≤ 0

if [𝜍
2

3
− 𝜍
3
𝜍
4
𝑋
22
+ (𝜍
2

4
+ 𝜍
5
)𝑋
21
] ≥ 0.

(40)

Therefore

𝜍
3
[𝜍
3
𝜃 − 𝜍
4
𝑞] 𝑞

+ (−𝜍
3
𝜍
4
𝜃 + (𝜍

2

4
+ 𝜍
5
) 𝑞) [𝑋

21
𝜃 + 𝑋

22
𝑞]

≤ − [𝜍
3
𝜍
4
− (𝜍
2

4
+ 𝜍
5
)𝑋
21
] 𝑞
2
− 𝜍
3
𝜍
4
𝑋
21
𝜃
2
.

(41)

Choose the design parameters to satisfy

[𝜍
3
𝜍
4
− (𝜍
2

4
+ 𝜍
5
)𝑋
21
] > 0. (42)

If𝑋
21

> 0, then

− [𝜍
3
𝜍
4
− (𝜍
2

4
+ 𝜍
5
)𝑋
21
] 𝑞
2
− 𝜍
3
𝜍
4
𝑋
21
𝜃
2
< 0. (43)
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If𝑋
21

< 0, then

− [𝜍
3
𝜍
4
− (𝜍
2

4
+ 𝜍
5
)𝑋
21
] 𝑞
2
− 𝜍
3
𝜍
4
𝑋
21
𝜃
2
< 0 (44)

in the region of−[𝜍
3
𝜍
4
−(𝜍
2

4
+𝜍
5
)𝑋
21
]𝑞
2
< 𝜍
3
𝜍
4
𝑋
21
𝜃
2. Since 𝜃 is

caused by the loadmotion here the value of 𝜃 should bemuch
smaller than 𝑞. The inequality (44) is easy to be satisfied.

In summary of the above analysis and by defining

Ψ
1
(𝜃
𝐿
) = 𝑘
𝜃
𝜍
2
𝜃
2

𝐿
2

+ [𝜍
3
𝜍
4
− (𝜍
2

4
+ 𝜍
5
)𝑋
21
] 𝑞
2

+ 𝜍
3
𝜍
4
𝑋
21
𝜃
2
,

Ψ
2
(𝜃
𝐿
) = [𝜍

3
𝜍
4
− (𝜍
2

4
+ 𝜍
5
)𝑋
21
] 𝑞
2
+ 𝜍
3
𝜍
4
𝑋
21
𝜃
2
,

(45)

the following lemma can be derived.

Lemma 1. Defining a Lyapunov function (28) and choosing
the design parameters to satisfy 𝜍

1
= (2𝑔/𝑙

𝑥
𝜋)𝜍
2
, [𝜍
3
𝜍
4
− (𝜍
2

4
+

𝜍
5
)𝑋
21
] > 0, and [𝜍2

3
−𝜍
3
𝜍
4
𝑋
22
+(𝜍
2

4
+𝜍
5
)𝑋
21
] ≥ 0, then within

the region specified by −[𝜍
3
𝜍
4
− (𝜍
2

4
+ 𝜍
5
)𝑋
21
]𝑞
2
< 𝜍
3
𝜍
4
𝑋
21
𝜃
2

(i) V
1
(0) = 0 and V

1
(𝜃
𝐿
) > 0, ∀𝜃

𝐿
̸= 0,

(ii) V
1
(𝜃
𝐿
) → ∞ as ‖𝜃

𝐿
‖ → ∞,

(iii) (𝐿
𝑓
1

V
1
)(𝜃
𝐿
) ≤ −Ψ

1
(𝜃
𝐿
), ∀𝜃
𝐿
, around the hover condi-

tion or (𝐿
𝑓
1

V
1
)(𝜃
𝐿
) ≤ −Ψ

2
(𝜃
𝐿
), ∀𝜃
𝐿
, if (35) holds.

Both functions Ψ
1
and Ψ

2
are nonnegative.

Recall the control term 𝑝(𝑥
𝐻
(𝑡)) in the first subsystem

of (11a) and (11b); it can be seen that [(𝐷𝑝)(𝑥
𝐻
)]
−1 exists

for all 𝑥
𝐻
(𝑡). The unknown vector fields, 𝑞(𝜃

𝐿
(𝑡), 𝑥
𝐻
) and

𝐻(𝑡, 𝜃
𝐿
(𝑡), 𝑥
𝐻
), model the uncertainties imposed onto the

system. Since 𝑞(𝜃
𝐿
(𝑡), 𝑥
𝐻
) is directly mapped into the “con-

trol” space of 𝑥
𝐻
(𝑡) it can be considered as a matched

uncertainty.𝐻(𝑡, 𝜃
𝐿
(𝑡), 𝑥
𝐻
) is unknown and it does belong to

the control space of 𝑥
𝐻
(𝑡); so it represents the mismatched

uncertainty in the system [12].
Generally, the range of the (longitudinal) load suspension

angle is within −𝜋/2 < 𝜃
𝐿
< 𝜋/2. The helicopter velocities

and load suspension angle havemaximumoperational values;
therefore the uncertainties in the system are bounded. With
the Lyapunov function defined in (28),

(𝐿
𝑔
1

V
1
) (𝜃
𝐿
) = ⟨∇V

1
(𝜃
𝐿
) , 𝑔
1
⟩ =

𝑘
𝐷

𝑀
𝐿
𝑙
𝑥

𝜍
2
𝜃
𝐿
2

. (46)

In 𝐺
1
(𝜃
𝐿
) the columns 𝑔

1
and 𝑔

2
are the same; therefore

(𝐿
𝑔
2

V
1
) (𝜃
𝐿
) =

𝑘
𝐷

𝑀
𝐿
𝑙
𝑥

𝜍
2
𝜃
𝐿
2

. (47)

By considering the maximum values of cos (⋅) and sin (⋅)
functions, the bounding values relating to the uncertainty
𝑞(𝜃
𝐿
(𝑡), 𝑥
𝐻
) can be estimated as follows:


𝑞 (𝜃
𝐿
, 𝑥
𝐻
)

≤



1

𝑙
𝑥

(�̇� + �̇�)

+
1

𝑀
𝐿

(−𝑘
𝐷
(2 +

𝜅

𝑙
𝑥

) (𝑢 + 𝑤) +
𝑘
𝜃

𝑙
𝑥

)𝜃
𝐿
2



≤



𝑘
𝜃

𝑙
𝑥

𝜃
𝐿
2


+



𝑘
𝐷

𝑀
𝐿

(2 +
𝜅

𝑙
𝑥

) (𝑢 + 𝑤)


+



1

𝑙
𝑥

(�̇� + �̇�)



≤
𝑘
𝜃

𝑙
𝑥


𝜃
𝐿
2


+

𝑘
𝐷

𝑀
𝐿

(2 +
𝜅

𝑙
𝑥

)
𝑝 (𝑥
𝐻
)
 + 𝛼
2 (𝑡)

≤ 𝜇
1


(𝐿
𝑔
2

V
1
) (𝜃
𝐿
)

+ 𝛼
1

𝑝 (𝑥
𝐻
)
 + 𝛼
2 (𝑡) ,

(48)

where 𝜇
1

= 𝑀
𝐿
𝑘
𝜃
/𝑘
𝐷
, 𝛼
1

= (𝑘
𝐷
/𝑀
𝐿
)(2 + 𝜅/𝑙

𝑥
) (𝜅 =

max [𝜅1 𝜅
2]), and 𝛼

2
(𝑡) is defined by 𝛼

2
(𝑡) = max |(1/𝑙

𝑥
)(�̇� +

�̇�)| > 0.
For the mismatched uncertainty 𝐻(𝑡, 𝜃

𝐿
(𝑡), 𝑥
𝐻
) the fol-

lowing analysis is conducted to obtain its bounding function.
The mismatched uncertainty can be rewritten as

𝐻(𝑡, 𝜃
𝐿 (𝑡) , 𝑥𝐻) =

[
[
[
[
[

[

0

0

(𝑎
11
𝑢 + 𝑎
12
𝑤)

(𝑋
23
𝑢 + 𝑋

24
𝑤)

]
]
]
]
]

]

=

[
[
[
[
[

[

0 0

0 0

𝑎
11

𝑎
12

𝑋
23

𝑋
24

]
]
]
]
]

]

[
𝑢

𝑤
] .

(49)

Let 𝐴 = [
𝑎
11
𝑎
12

𝑋
23
𝑋
24
]; then


𝐻 (𝑡, 𝜃

𝐿
, 𝑥
𝐻
)

≤

𝐴


𝑥𝐻 (𝑡)
 . (50)

Define a positive function as

𝜃 (𝜃
𝐿
) = √(𝜃2

𝐿
1

+ 𝜃2
𝐿
2

+ 𝜃2 + 𝑞
2
+ 𝜀), (51)

where 𝜀 is a very small positive constant. Choosing
𝛽
1

= (𝑀
𝐿
𝑙
𝑥
/𝑘
𝐷
𝜍
2
)‖𝐴‖ then the mismatched uncertainty

𝐻(𝑡, 𝜃
𝐿
(𝑡), 𝑥
𝐻
) is bounded by the following inequality:


𝐻 (𝑡, 𝜃

𝐿
, 𝑥
𝐻
)


≤ 𝜃
−1

(𝜃
𝐿
) 𝛽
1

2

∑

𝑖=1

(

(𝐿
𝑔
𝑖

V
1
) (𝜃
𝐿
)

)
𝑝𝑖 (𝑥𝐻)

 ,

(52)

where 𝑔
𝑖
denotes the 𝑖th column of the matrix function

𝐺
1
(𝜃
𝐿
) and 𝑝

𝑖
is the 𝑖th component of 𝑝(𝑥

𝐻
), respectively. As

𝛽
1
has a design parameter 𝜍

2
involved it is easy to have 𝛽

1
to

lead (52) to be true. For the matched uncertainty, we have


𝑞 (𝜃
𝐿
, 𝑥
𝐻
)

≤

𝑘
𝜃

𝑙
𝑥


𝜃
𝐿
2


+ 𝛼
1

𝑝 (𝑥
𝐻
)
 + 𝛼
2 (𝑡) . (53)
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Following the above analysis, the following lemma can be
derived.

Lemma 2. The uncertainties (52) and (53) are bounded and
satisfy, if 𝛼

1
, 𝛽
1
≥ 0, and 𝛼

1
+ 𝛽
1
< 1, for 𝛼

1
= (𝑘
𝐷
/𝑀
𝐿
)(2 +

𝜅/𝑙
𝑥
) and 𝛽

1
= (𝑀
𝐿
𝑙
𝑥
/𝑘
𝐷
𝜍
2
)‖𝐴‖.

4. Numerical Results

Using a simulation software the linearized model for a UH-
60 helicopter is obtained with the following state and input
matrices:

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−0.0000 0.0003 −0.0000 −0.0000 0.0000 −0.0000 1.0000 −0.0023 0.0503

−0.0003 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.9989 0.0463

−0.0001 0.0000 −0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0464 1.0002

−1.9386 −28.593 −0.0030 −0.0195 −0.0126 0.0168 −1.2000 5.7076 0.2683

32.8694 −0.3640 0.0027 0.0126 −0.0311 −0.0013 −4.1348 −2.2350 0.3713

0.3138 −1.4034 0.0004 0.0150 0.0034 −0.3340 0.2866 0.6307 2.3410

−0.9144 −0.4783 0.0017 0.0226 −0.0246 0.0007 −6.5893 −2.1301 −0.0598

0.0631 −0.6744 0.0008 0.0029 0.0046 0.0025 0.2059 −1.4255 −0.1636

−0.7549 −0.0119 −0.0002 0.0009 0.0028 0.0006 −0.0749 −0.1032 −0.2214

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝐵 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−0.0000 0.0000 −0.0000 0.0000

0.0000 0.0000 −0.0000 −0.0000

−0.0000 0.0000 −0.0000 −0.0000

−2.2190 0.5734 0.3170 −0.0019

3.5381 −0.0453 −0.0963 0.2007

−1.5629 0.0237 −6.0740 −0.1014

1.9943 −0.0714 −0.0541 0.0731

0.0446 −0.1097 0.0553 −0.0281

−0.8197 −0.0082 0.1573 −0.0635

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(54)

The desired condition 𝛼
1
+ 𝛽
1
< 1 can be verified by consid-

ering a typical case that the UH-60 helicopter carries a load
weight 1000 lb by a 15 ft slung length, and let 𝑘

𝐷
= 75 lb/ft.

For the UH-60 helicopter model, with reference to the
general mathematical model presented in Section 2, we have
𝑋
𝜃
1𝑠

= 0.5734, 𝑋
𝜃
0

= 0.3170, 𝑍
𝜃
1𝑠

= 0.0237, 𝑍
𝜃
0

= −6.0740,
𝑀
𝜃
1𝑠

= −0.1097, and 𝑀
𝜃
0

= 0.0553. So the following
parameters can be calculated to have the values 𝑎

11
= −0.2

and 𝑎
12

= −0.02. For 𝑋
𝑢
= −0.0195, 𝑍

𝑢
= 0.0150, 𝑀

𝑢
=

0.0029, 𝑀
𝑞
= −1.4255, (𝑋

𝑞
− 𝑤
𝑒
) = 5.7076, and (𝑍

𝑞
+ 𝑢
𝑒
) =

0.6307, we have 𝑋
23

= 0.06. And also, for 𝑋
𝑤

= 0.0168,
𝑍
𝑤

= −0.3340, and 𝑀
𝑤

= 0.0025, we have 𝑋
24

= 0.01.
Based on all the above parameters, 𝜎max(𝐴) = 0.0041. In
this case, let 𝜅 = 0.01, 𝛼

1
= (𝑘
𝐷
/𝑀
𝐿
)(2 + 𝜅/𝑙

𝑥
) ≈ 0.15,

and 𝛽
1
= (𝑀

𝐿
𝑙
𝑥
/𝑘
𝐷
)𝜎max(𝐴) = 0.82. Therefore, 𝛼

1
+ 𝛽
1
=

0.15 + 0.82 = 0.97 which satisfies 𝛼
1
+ 𝛽
1

< 1. Another
example considers that the UH-60 helicopter carries a load
weight 500 lb by a 15 ft slung length and let 𝑘

𝐷
= 50 lb/ft; then

𝛼
1
= 0.2 and 𝛽

1
= 0.62; therefore (𝛼

1
+ 𝛽
1
) = 0.82. Therefore,

this assumption 𝛼
1
+ 𝛽
1

< 1 is realistic for the system
discussed in here. The numerical values vary with respect
to the slung load configuration. It may represent the system

dynamic variations. To investigate the stability characteristics
of dynamic variations two series of simulation studies were
carried out.

Firstly, the slung length was kept constant at 15 ft and
the load varied between the limits 500–2000 lb with 𝑘

𝐷
=

75 lb/ft, producing the system poles listed in Table 1. The
corresponding root loci are sketched in Figures 3 and 4.
Figure 4 clearly shows that the positions of the system poles
crossed the imaginary axis as the load weight increased.

Secondly, load weight was kept constant and the slung
length varied between the limit of 10–20 ft. Table 2 sum-
marises the results of variation of the system poles and the
corresponding root loci are illustrated in Figures 5 and 6.

The pole locus indicates that the system poles have the
variation trends of moving further towards right direction on
the 𝑠-plane with increase of load weight and slung lengths.
From the simulation results it is clearly shown that the
system becomes less stable when the load and/or the slung
length increases. The simulation results are compared with
the stability analysis presented above.

Now, consider the case of fixed slung length of 15 ft with
different load weights. In the cases of a UH-60 helicopter that
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Table 1: System poles locations for a fixed slung length (𝑙 = 15ft) but with different load weights.

Helicopter 500 lb 1000 lb 1500 lb 2000 lb
−1.0919 −1.1159 −0.7848 −0.6221 −0.9369
−6.3938 −6.4301 −9.2203 −7.9848 −7.5613
−0.0032 −0.0048 −0.0034 −0.0052 −0.0052
−0.0977 −0.0818 −0.0888 −0.0972 −0.0694
−0.3045 −0.3036 −0.3394 −0.3318 −0.3333
−0.3159 ± 0.4363𝑖 −0.3199 ± 0.4628𝑖 −0.2295 ± 0.5050𝑖 −0.2366 ± 0.5974𝑖 −0.1834 ± 0.4968𝑖
−0.0489 ± 0.3898𝑖 −0.0211 ± 0.3868𝑖 0.0074 ± 0.3445𝑖 0.0119 ± 0.4406𝑖 0.0264 ± 0.3199𝑖
— −0.0316 ± 1.5043𝑖 −0.1020 ± 1.7380𝑖 −0.0368 ± 1.8753𝑖 −0.1160 ± 2.0003𝑖
— −0.0736 ± 1.5019𝑖 −0.7662 ± 1.1680𝑖 −0.7349 ± 1.9064𝑖 −1.2367 ± 0.8995𝑖

Table 2: System poles for a fixed load (1000 lb) but with different slung lengths.

Helicopter 10 ft 15 ft 20 ft
−1.0919 −1.0560 −0.7848 −0.8687
−6.3938 −9.9252 −9.2203 −8.5565
−0.0032 −0.0061 −0.0034 −0.0114
−0.0977 −0.2012 −0.0888 −0.0953
−0.3045 −0.2606 −0.3394 −0.3479
−0.3159 ± 0.4363𝑖 −0.1809 ± 0.6219𝑖 −0.2295 ± 0.5050𝑖 −0.1636 ± 0.6092𝑖
−0.0489 ± 0.3898𝑖 0.0643 ± 0.4577𝑖 0.0074 ± 0.3445𝑖 0.0799 ± 0.4594𝑖
— −0.1055 ± 1.9883𝑖 −0.1020 ± 1.7380𝑖 −0.1247 ± 1.4470𝑖
— −0.8847 ± 1.2464𝑖 −0.7662 ± 1.1680𝑖 −0.6352 ± 1.0384𝑖
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Figure 3: System root-locus diagram showing pole locus for
constant slung length (15 ft) as load weight is increased.
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Figure 4: Enlarged view of Figure 3 showing poles locus near to
Re(poles) = 0 axis.
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Figure 5: System root-locus showing pole locus for constant load
weight (1000 lb) as slung length is increased.
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Figure 6: Enlarged view of Figure 5 showing poles locus near to
Re(poles) = 0 axis.
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carries a loadweight 500 lb and 1000 lb, then𝛼
1
= 0.3 and 0.41

with 𝛽
1
= 0.41 and 0.82, respectively; therefore 𝛼

1
+ 𝛽
1
< 1;

thus the system is stable. But when the load weight is 1500 lb
and 2000 lb, then 𝛼

1
= 0.1 and 0.075 and also 𝛽

1
= 1.23 and

1.64, respectively; therefore 𝛼
1
+ 𝛽
1
> 1; thus the system is

unstable. For the case of the constant load weight (1000 lb) as
slung length is increased, then for a 10 ft and 15 ft slung length
𝛼
1
= 0.15 and 𝛽

1
= 0.55 and 0.82, respectively; therefore

𝛼
1
+ 𝛽
1
< 1; thus the system is stable. But when the slung

length increased to 20 ft then 𝛼
1

= 0.15 and 𝛽
1

= 1.09;
therefore (𝛼

1
+ 𝛽
1
) = 1.24; that is, 𝛼

1
+ 𝛽
1
> 1; thus the

system is unstable. However, the system can be marginally
stable; if the UH-60 helicopter carries a load weight 725 lb by
a 20 ft slung length, then 𝛼

1
= 0.2 and 𝛽

1
= 0.8; therefore

(𝛼
1
+ 𝛽
1
) = 1. For this set of analysis 𝑘

𝐷
is assumed to

be 𝑘
𝐷

= 75 lb/ft. However, 𝑘
𝐷
can vary depending on the

weather condition and an example of 𝑘
𝐷
= 50 lb/ft is shown

above for illustrative purpose. This analysis suggests that the
maximum value of 20 ft slung length may be used for slung
load operation. However, the load weight limit can vary with
respect to the capacity of the load carrying hooks, helicopter
weight, environmental conditions, and so forth.

The examples presented here show that the simulation
results are correlated with the stability analysis. Thus, desired
condition for the stability is met and it can locate the load at
the specified position or its neighbourhood.

5. Conclusions

In this paper stability analysis of a helicopter with an under-
slung load system is investigated.The investigation identified
the conditions for the stabilisation of the system and the
positioning of the underslung load at hover condition. Sta-
bility analysis and numerical results proved that the desired
condition for the stability is met; then it is possible to locate
the load at the specified position or its neighbourhood. An
illustration example is also given in the paper. The method
results in a guaranteed load positioning accuracy which
depends on the design parameters and the method can be
applicable to any individual helicopter with external load
system.

Nomenclature

𝐿,𝑀,𝑁: Overall helicopter rolling, pitching, and
yawing moments

𝑝, 𝑞, 𝑟: Helicopter roll, pitch, and yaw rates about
body reference axes

𝑋,𝑌, 𝑍: Overall helicopter force components
𝜙, 𝜃, 𝜓: Roll, pitch, and yaw angles
𝑢, V, 𝑤: Helicopter velocity components at centre

of gravity
𝜃
0
: Main rotor collective

𝜃
1𝑠
: Longitudinal cyclic commands

𝜃
1𝑐
: Lateral cyclic commands

𝜃
0𝑇
: Tail rotor collective

𝑋
0
, 𝑌
0
, 𝑍
0
: Location of the suspension point with
respect to earth referenced 𝑥, 𝑦, and 𝑧

directions

�̇�
0
, �̇�
0
, �̇�
0
: The helicopter velocity in the 𝑥, 𝑦, and 𝑧

directions
�̈�
0
, �̈�
0
, �̈�
0
: The helicopter acceleration in the 𝑥, 𝑦, and
𝑧 directions

𝜃
𝐿
: Load suspension angle in the𝑋-𝑍 plane

with respect to 𝑍-axis
𝜙
𝐿
: Load suspension angle in the 𝑌-𝑍 plane

with respect to 𝑍-axis
𝑀
𝐿
: Mass of the suspended load

𝑔: Acceleration due to gravity
𝑙: Slung length
𝑘
𝐷
: Aerodynamic drag force constant

(𝑘
𝐷
= (1/2)𝜌𝑆𝐶

𝐷
)

𝜌: Air density
𝑆: The load area presented to the airflow
𝐶
𝐷
: Drag coefficient for the load.
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