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Ensemble pruning is a technique to increase ensemble accuracy and reduce its size by choosing a subset of ensemble members
to form a subensemble for prediction. Many ensemble pruning algorithms via directed hill climbing searching policy have been
recently proposed. The key to the success of these algorithms is to construct an effective measure to supervise the search process. In
this paper, we study the importance of individual classifiers with respect to an ensemble using margin theory proposed by Schapire
et al. and obtain that ensemble pruning via directed hill climbing strategy should focus more on examples with small absolute
margins as well as classifiers that correctly classify more examples. Based on this principle, we propose a novel measure called the
margin-based measure to explicitly evaluate the importance of individual classifiers. Our experiments show that using the proposed
measure to prune an ensemble leads to significantly better accuracy results compared to other state-of-the-art measures.

1. Introduction

Ensemble of multiple learning machines has been a very
popular research topic during the last decade in machine
learning and data mining. The basic idea is to construct
multiple classifiers from the original data and then aggregate
their predictions when classifying examples with unknown
classes. Theoretic and empirical results show that an ensemble
is potential to increase the classification accuracy beyond the
level reached by an individual classifier alone [1]. Dietterich
stated “A necessary and sufficient condition for an ensemble
of classifiers to be more accurate than any of its individual
members is if the classifiers are accurate and diverse” [2].

Many approaches have been proposed to create ensemble
members with both high accuracy and high diversity, which
can be mainly grouped into three categories: (1) by manipu-
lating data set [3, 4], (2) by manipulating features [5-8], and
(3) by manipulating algorithms [9]. Bagging [3] and boosting
[4], the most widely used and successful ensemble learning
methods, fall into the first category, where bagging learns
individual classifiers on data sets obtained by randomly sam-
pling from the original training sets and, through randomly
disturbing, the learned classifiers obtain a high accuracy and

sufficient diversity. Unlike bagging, boosting is an iterative
learning process. For each iteration, boosting adjusts the
distribution of training set such that classifiers focus more on
examples that are hardly correctly classified. The approaches
by manipulating features try to build the individual classifiers
on diverse feature spaces obtained by selecting subset or
by generating new ones from the original features. For
example, random forests [5, 6] learn each tree on a feature
subset obtained by randomly sampling from original features
and COPEN [8] learns the base classifiers on new feature
spaces mapped from original feature space using pairwise
constraints projection. The individual classifiers can also be
built by manipulating algorithms. Through adjusting model
structure or parameter setting, classifiers with diversity are
learned, such that the negative correlation method explicitly
constrains the parameters of individual neural networks to be
different by a regularization term [9].

Ensemble methods have been successfully applied to
many fields such as remote sensing [10], time series prediction
[11], and imbalanced learning problem [12]. However, an
obvious problem existing in ensemble learning methods is
that they tend to train a very large number of classifiers which
need large storage resources to store them and computational



resources to calculate outputs of individual learners. Besides,
it is not always true that the larger the ensemble, the better
its performance. In fact, Zhou et al. [13] proved that the
generalization performance of a subset of an ensemble may
be even better than the ensemble consisting of all the given
individual learners. These reasons motivate the appearance of
ensemble pruning, also called ensemble selection or ensem-
ble thinning, selecting a subset of ensemble members to form
subensembles that are subject to less resource consumption
and response time with accuracy that is similar to or better
than the original ensemble [14-22].

Given an ensemble with M members, searching for
the best subset of ensemble members by enumerating all
subensemble candidates is computational infeasible because
of exponential size of the search space 2™ — 1, which is NP-
complete problem [23]. Several efficient methods that are
based on a directed hill climbing search in the space of subsets
report good predictive performance results [15, 16, 18, 24-27].
These methods start with an empty (or full) initial ensemble
and search the space of different ensembles by iteratively
expanding (or contracting) the initial ensemble by a single
model. The search is guided by an evaluation measure that is
based on either the predictive performance or the diversity
of the alternative subsets. The evaluation measure is the
main component of a directed hill climbing algorithm and
it differentiates the methods that fall into this category.

In this paper, we apply the concepts of example margins
proposed by Schapire et al. [28] to analyse the importance
of individual classifiers with respect to an ensemble and
conclude that ensemble pruning via directed hill climbing
strategy should focus more on examples with small absolute
margins as well as classifiers that correctly classify more
examples. Based on the gained insight, a criterion called
margin-based measure is proposed to supervise the search
process of ensemble pruning via directed hill climbing strat-
egy. Our experiments show that using the proposed measure
to prune an ensemble leads to significantly better accuracy
results compared to other state-of-the-art measures.

The paper is structured as follows. Section 2 briefly
describes ensemble pruning via directed hill climbing search.
Section 3 proposes a measure for evaluating the importance
of individual classifiers. Section 4 reports the experimental
settings and results, and we conclude this paper in Section 5.

2. Related Work

Directed hill climbing ensemble pruning (DHCEP) attempts
to find the globally best subset of classifiers by taking local
greedy decisions for changing the current subset [17, 28, 29].
An example of the search space for an ensemble of four
models is presented in Figure 1.

The direction of search and the measure used for evaluat-
ing the search are two important parameters that differentiate
one DHCEP method from the other. The following sections
discuss the different options for instantiating these parame-
ters and the particular choices of existing methods.

2.1. Direction of Search. Based on the direction of search we
have two main categories of DHCEP methods: (a) forward
selection and (b) backward elimination (see Figure 1).
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FIGURE 1: The search space of DHCEP methods for an ensemble of
4 models.

In forward selection algorithm, ensemble pruning starts
with the current classifier subset S which is initialized to the
empty set. Then the algorithm continues by iteratively adding
to S the classifier h € H \ S that optimizes an evaluation
function. This function evaluates the addition of classifier i in
the current subset S based on the pruning set (labeled data).
In the past, this approach has been used in [14, 25, 26] and in
reduce-error pruning methods [30, 31].

In backward elimination, the current classifier subset S
is initialized to the complete ensemble H and the algorithm
continues by iteratively removing from S the classifier 1 €
S that optimizes the evaluation function. This function
evaluates the removal of classifier & from the current subset
S based on the pruning set. In the past, this approach has
been used in the AID thinning and concurrency thinning
algorithms [15].

In both cases, the traversal requires the evaluation of
M(M + 1)/2 subsets, leading to a time complexity of
O(Mzg(M, N)), where the term g(M, N) concerns the com-
plexity of the evaluation function, which is linear with respect
to N (the size of pruning set) and ranges from constant to
quadratic with respect to M (the size of H), as we will see in
the following sections.

2.2. Evaluation Measure. Evaluation measures are the main
component that differentiates DHCEP methods, which can
be grouped into two major categories: those are based on
performance and those are based on diversity.

The goal of performance-based measures is to find the
model that maximizes the performance of the ensemble
produced by adding (or removing) a model to (or from) the
current ensemble. Their calculation depends on the method
used for ensemble combination, which usually is voting.
Accuracy was used as an evaluation measure by Margineantu
and Dietterich [30] and by Fan et al. [25], while Caruana
et al. [26] experimented with several measures, including
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accuracy, root mean squared error, mean cross-entropy, lift,
precision/recall break-even point, precision/recall F-score,
average precision, and ROC area. Another measure is benefit,
which is based on a cost model and has been used in Fan
et al. [25]. The calculation of performance-based metrics
requires the decision of the ensemble on all examples of
the pruning set. Therefore, the complexity of these measures
is O(|SIN). However, this complexity can be optimized to
O(N), if the predictions of the current ensemble are updated
incrementally each time a classifier is added to (or removed
from) it.

Ensemble diversity, that is, the difference among the indi-
vidual learners, is a fundamental issue in ensemble methods.
Intuitively, it is easy to understand that, in order to gain
from a combination, individual learners must be different,
and otherwise there would be no performance improvement
if identical individual learners were combined.

Let h be a classifier and let S be subensemble; Partalas et
al. [16, 18, 29] identify that the prediction of 4 and S on an
instance x; can be categorized into four cases: (1) e,: h(x;) =
Yi NS() =y (2) e h(x) # yi AS(X) =y (3) ey
h(x;) = y; AS(x;) # y;, and (4) eqh(x) # y AS(X) # ;.
They concluded that considering the four cases is crucial to
design ensemble diversity measure. Many diverse measures
are designed by considering some or all the four cases, for
example, complementariness [14] and concurrency [15]. The
complementariness of & with respect to S and a pruning set
D, is calculated as

pr
COM (h,8,D,) = Y I(x €ey), o)

X; €Dy,

where I (true) = 1, I (false) = 0. The complementariness is
exactly the number of examples that are correctly classified by
h and incorrectly classified by S. The concurrency is defined
as

CON (h,s, D, )

= Z {21 (X,- € etf) +1(x; € ey) =21 (Xi € eff)}

X; €Dy,

2)

which is similar to the complementariness, with the differ-
ence that it considers two more cases and weights them.

Unlike complementariness and concurrency, Partalas
et al. [18] introduce a new metric called uncertainty weighted
accuracy (UWA) considering all four cases given above. UWA
is defined as

UWA (h,8,D,,) = Y {NTiI(x; €e;)

X, €Dy,
+NFI (x; € e,) - NEI (x; € ;) (3)

- NTII (Xl- € eff)} N

where NT; is the proportion of classifiers in the current
ensemble S which correctly predict x; and NF; = 1 — NT;
is the proportion of classifiers that incorrectly predict x;.
In addition to considering all four cases, UWA takes into
account the strength of the decision of the current ensemble.

In this paper, we designed a new measure by considering
the margin of examples for ensemble pruning via directed hill
climbing. More details are discussed in next section.

3. Importance Assessment for
Individual Classifiers

As one of the best oft-the-shelf algorithms, AdaBoost demon-
strates a high generalization performance. To theoretically
analyse this phenomenon, a concept called margin of exam-
ples was proposed by Schapire et al. [28]. Let D = {(x;, ¥;) |

i =1,2,..., N} be the training set, where each example x; is
associated with a label y; € {-1, +1}. Suppose that H = {h; |
i=1,2,..., M}isan ensemble with M classifiers and suppose

that each member h € H maps each example x; € D to a label

y; namely, h : x; — y € {-1,1}. Then the margin of x; is
defined as
. Yi 2?21 wjhj (x;)
margin (x;) = ———— (4)
Xjm W

where w; is the weight of the classifier h;. Without loss of
generality, normalizing w;, j = 1,2,..., M, such that } w; =
1, then (4) can be written as

M
margin (x;) = inw]-hj (x;). (5)
=1

From (5), the margin is a value in [-1, 1], x; is on the border
if marin(x;) = 0, the absolute value of the margin is the
confidence of ensemble prediction on x;, and margin(x;) > 0
(or margin(x;) < 0) indicates that the ensemble correctly (or
incorrectly) classifies x;. Based on this concept, they proved
that, forany 0 > 0 and § > 0, the generalization error is upper
bound by

Pr [margin (x) < 6]

) L(lannd+lnl>l/2 (©)
VN 62 o ’

where d is the complex of the base classifier and N is the
size of the training set. To further explain the correctness of
the margin theory, Gao and Zhou [32] proposed kth margin
theory. Specifically, for any 6 > 0, with probability at least
1 — & over the random choice of training set with size N > 5,
the generalization error is upper bound by

- 7 34/3
2 + inf <{Pr [margin (x) < 0] + L\/_M
N 6€0.1] 3N
™)
+ \/%f’r [margin (x) < 0]} ,
where
8 2d
y:EIann(Zd)+lnF. (8)
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FIGURE 2: Rules obtained from the margin theory for evaluating the
importance of individual classifiers on examples.

From (6) and (7), when other variables are fixed, the larger
the margin over the training examples, the better the gen-
eralization performance, and thus, individual classifiers that
correctly classify examples are more important than incorrect
ones since the former is helpful to increase the margin of the
examples. In addition, we argue that it is more important to
increase the margin of examples at the boundary (margin
equal to zero), since adding into (or removing from) the
ensemble H a classifier would lead to ensembles correctly
classifying the examples. Therefore, the proposed measure for
ensemble pruning should focus more on correct classifiers
and the examples lying near the boundary. Therefore, the
importance of individual classifiers can be ordered as shown
in Figure 2. Based on the order of importance of individual
classifiers, the margin-based measure is proposed in Sec-
tion 4.

4. Margin-Based Measure

In this section, we propose a heuristic measure for evaluating
the importance of individual classifiers based on the gained
insight obtained in Section 3: ensemble pruning via directed
hill climbing strategy should focus more on examples with
small absolute margins as well as classifiers that correctly
classify more examples. Several methods use a different
approach to calculate diversity during the search.

4.1. Measure for Two-Class Problem. For simplicity of pre-
sentation, this section focuses on forward ensemble pruning:
given an ensemble subset S which is initialized to be empty,
we iteratively add into S the classifier » € H \ S. Here,
the symbols are similar to the ones in Section 3. Assuming
that ensembles use simple majority voting to obtain the
predictions, then the margin of an example x; of the ensemble
Sis
N
margin (x;) = y,-z

t=1

N
1 Vi Yooy by (x;)
() = Vi iz e (X3)

, O
§ )

where |S] is the size of the ensemble S. From (9), 1/[S] is the
weight of each classifier h;, i = 1,2,...,1S|, and y,-hj(x,-)/ISI
is the margin contribution of h; on the example x;. Then the
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proposed measure, margin-based measure (MM), of classifier
h with respect to ensemble S and the pruning set D,, is
defined as
1
MM (h,8,D),) = — > MM(BS,x), (0

' pr| X €Dy,

where MM(h, S, x;) is the margin-based measure of h with
respect to the subensemble S and current example x;, defined
as

_ k() /18I
MM (h, S, x;) = (Jmargin (x;)| + 1/

_ yih(x;) ,
(|}’i leszl1 h; (Xi)' + 1)

where the constant parameter 1/[S| is to avoid the denom-
inator equal to zero. Since |y; » h;(x;)| > 0, then -1 <
MM(h, S,x;) < 1 and therefore -1 < MM(h, S, Dpr) < 1
From (9) and (10), y;h(x;)/|S| is exact the margin contribution
of h on the example x; and 1/|margin(x;)| is the weight of .
The rationale of the proposed measure is as follows:

(11)

(i) If individual classifier h correctly classifies the exam-
ple x;, h increases the margin of x;, and the corre-
sponding increase value is

|S| IS]

and thus h favor S correctly classifying x;, namely,
MM(h,S,x;) = 0 (refer to (10)). If h incorrectly
classifies x;, the prediction of / reduces the margin of
x; and the reduction is exact

N N

and thus h is harmful to S correctly classifying x;,
namely, MM(h, S, x;) < 0 (refer to (10)).

(ii) From the discussion of Section 3, |[margin(x;)| reflects
the confidence that S correctly (or incorrectly) clas-
sifies the example x;. If |margin(x;)| is very small
(equal to 0, e.g.), namely, S correctly (or incorrectly)
classifying x; with a low confidence, adding into S
the classifier & may change the prediction of S on
the example and therefore h’s weight 1/|margin(x;)| is
large. On the other hand, if [margin(x;)| is very large
(equal to 1, e.g.), namely, S correctly (or incorrectly)
classifying x; with a high confidence, adding into S
the classifier i cannot change the prediction of S on
the example and therefore h’s weight 1/|margin(x;)| is
small.

The time complexity of calculating (10) or (16) is O(|S|N),
which can be O(N) by incrementally updating margins of
examples each time a classifier is added to/removed from it,
where N is the number of pruning sets. Therefore, the time
complexity of ensemble pruning via directed hill climbing
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strategy based on the proposed measure is not more than
O(MN), where M is the size of the original ensemble learned
from training sets.

In this way, the proposed measure focuses more on
correct classifiers and the examples lying near the boundaries,
which coincides with the conclusions in Section 3.

4.2. Measure for Multiclass Problem. For multiclass classifi-
cation problem, (11) should be extended so that the proposed
measure defined by (10) can deal with the problem.

Let each member h of S map an example x; to a label y;
namely, h: x; — y € [1,L], and let

1380 = [, ]

V= {V(Xl),
(14)

el,...,N},

where

v is the number of votes on the jthlabel of example

x; of an ensemble combined by majority voting;

(") is the number of majority votes on the example

Xl,

(

v X‘C) is the second largest votes on the example x;;

(x;)

Vhix) is the number of votes on label h(x;).

From [28], for multiclass, the margin of an example is defined
as the difference between the number of correct votes and the
maximum number of votes received by any incorrect label;
namely,

margin (x;) = [I(S ;)= )’1)( X Vg:i))
18|

(15)
—1(S(x) # 3;) (v =)
Combining (11) and (15) results in
I(x;€e,)-1(x€e
M(h,S,xi)z ( : ;t) ( )( ft)
yx' - vs’é’c +1
(16)

I(x; cep)-I(xcey)

v v(y’f") +1

where e, (or eg) is the set of examples that are correctly
(or incorrectly) classified by current classifier & and correctly
classified by the ensemble; similarly e, (or eg) is the set of
examples that are correctly (or incorrectly) classified by 4 and
incorrectly classified by S. Formally,

e = {xx € Dy AR (%) = 3, AS(x) # 3,

>

xx; € Dy AB(x) = y; AS(x) =y

17)

(x
(x
(x
(x

xX; € D, A h

b
J
) # v AS(x ,},
)¢yz/\S(X)¢yz}

=1
{ X;X; € Dy Ah(x
{

eff =

TaBLE L: Characteristics of the 18 data sets used in experiments.

ID Data set #Insts #Cls #Attrs
ID1 Anneal 898 6 38
ID 2 Audiology 205 7 25
ID3 Autos 205 7 25
ID 4 Balance-scale 625 3 4
ID5 Car 1728 6 4
ID6 Ecoli 336 8 7
ID7 Flags 194 8 30
ID 8 Glass 214 7 9
ID9 Horse-colic 368 2 23
ID 10 Hypothyroid 3772 4 29
ID 11 Irish 500 3 6
ID12 kr-vs-kp 3196 2 37
ID 13 Labor 57 2 16
ID 14 Page-blocks 5473 5 10
ID 15 Segment 2310 7 19
ID 16 Sick 3772 2 30
ID17 Sonar 208 2 60
ID 18 Wine 178 3 13

In this way, MM(h, S, x;) and thus MM(h, S, Dpr) (the pro-
posed measure) focus more on correct classifiers and the
examples lying near the boundaries, which coincide with the
conclusions in Section 3.

4.3. Discussion. Unlike other measures where each classi-
fier is independently evaluated, the proposed margin-based
measure uses a more global evaluation. Indeed, this criterion
involves instance margin values that result from a majority
voting of the whole ensemble. Thus, the proposed measure is
not only based on individual properties of ensemble members
(e.g., accuracy of individual learners). It also takes into
account some form of complementarity of classifiers.

From (11), our margin-based measure considers both
the correctness of predictions of current classifier and the
confidence of prediction of ensemble. Therefore, this measure
deliberately favors classifiers with a better performance in
classifying low margin samples. Thus, it is a boosting-like
strategy which aims to increase the performance on low
margin instances. So our strategy of selection will lead to a
subset of classifiers with a potentially improved capability to
classify complex data in general and border data in particular.
Consequently, it will induce a selection of a subset of learners
that are designed to efficiently handle minor classes.

From (16), our measure considers the diversity of between
ensemble members. Therefore, the measure considers not
only the correctness of classifiers, but also the diversity of
ensemble members. Therefore, using the proposed measure
to prune an ensemble leads to significantly better accuracy
results.

5. Experiments

This section first introduces the experiment setting and
the characteristics of the data sets used in this paper and
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FIGURE 3: Comparative results for six data sets in the first case.

then reports the comparison of measures for guild ensemble
pruning.

5.1. Data Sets and Experimental Setup. We randomly selected
18 data sets from the UCI repository [33]. Each data set was
randomly divided into three subsets of equal sizes: one of
the subsets as the training set, one as the testing set, and the
other as the pruning set. Therefore, we conducted six trials

for each data set. We repeated the experiments 50 times and
thus conducted a total of 300 trials on each data set. The
details of these data sets are summarized in Table 1, where
#insts, #Attrs, and #Cls are the size, attribute number, and
class number of the corresponding data sets, respectively.
We evaluated the performance of the proposed
measure margin-based measure (MM) using forward
ensemble selection, where complementariness (COM) [14],
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FIGURE 5: Comparative results for two data sets in the third case.

concurrency (CON) [15], and uncertainty weighted accuracy
(UWA) [18] were used as the compared measures. In each
trial, a bagging [3] with 200 base classifiers was trained, where
the base classifier was J48, which is a Java implementation
of C4.5 [34] from Weka [35]. For simplicity, we denote
MM, COM, CON, and UMA as the corresponding pruning
algorithms supervised by these measures, respectively.

5.2. Accuracy Performance versus the Size of Subensemble.
The goal of this experiment was to evaluate the performance
of MM by comparing it with UWA, CON, and COM. The
experimental results of the 18 tested data sets can be classified
into three cases: (1) MM outperforms UWA, CON, and
COM; (2) MM performs comparable to one or more of them
and outperforms others; and (3) MM is outperformed by one
or more of them. The first case contains 13 data sets, the
second case contains two data sets, and the last case contains
three. Figures 3, 4, and 5 show the representative results from
the three cases.

Figure 3 reports the accuracy curves of the four compared
measure for six representative data sets that fall into the
first case. Results in the figure are reported as average

accuracy curves with regard to the number of classifiers,
where the horizontal axis is the size of subensembles growing
gradually from 5 to 200 with step 1 and the vertical axis
is the average accuracy over 300 trials. For the purpose
of clarity, the standard deviations are not shown in the
figure. The accuracy curves for data sets “audiology,” “autos,”
“car,” “glass,” “segment,” and “wine” are reported in Figures
3(a), 3(b), 3(c), 3(d), 3(e), and 3(f), respectively. Figure 3(a)
shows that, with the increase of the number of aggregated
classifiers, the accuracy curves of subensembles selected by
MM, UWA, CON, and COM increase rapidly, reach the
maximum accuracy in the intermediate steps of aggregation
which are higher than the accuracy of the whole original
ensemble, and then drop until the accuracy is the same as
the whole ensemble. The remaining five data sets, “autos,”
“car,” “glass,” “segment,” and “wine” (shown in Figures 3(b),
3(c), 3(d), 3(e), and 3(f), resp.) have similar accuracy curves
to “audiology.”

» <«

» «

5.3. Summary of Experimental Results. Table 2 summarizes
the accuracy of the 300 trials for each data set, where the value
in each parentheses is the rank of compared method and the
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TABLE 2: The mean accuracy and ranking of MM, UWA, CON, COM, and bagging. Here, the forward selection is used to pruning ensemble.

Data set MM UWA CON COM Bagging
ID1 98.43 (1.0) 98.32 (2.0) 98.21 (3.0) 98.06 (4.0) 97.34 (5.0)
ID2 77.17 (1.0) 75.99 (4.0) 77.02 (2.0) 76.74 (3.0) 73.94 (5.0)
ID3 71.32 (1.0) 69.59 (4.0) 70.28 (2.0) 70.00 (3.0) 65.93 (5.0)
ID 4 84.69 (1.0) 83.92 (4.0) 84.51 (3.0) 84.54 (2.0) 83.32 (5.0)
ID5 89.79 (1.0) 89.03 (4.0) 89.49 (3.0) 89.62 (2.0) 88.26 (5.0)
ID6 83.53 (1.0) 83.16 (4.0) 83.35 (3.0) 83.49 (2.0) 82.33 (5.0)
ID7 59.69 (2.5) 58.95 (5.0) 60.03 (1.0) 59.69 (2.5) 59.29 (4.0)
ID8 71.43 (1.0) 70.46 (4.0) 7117 (2.0) 70.76 (3.0) 68.67 (5.0)
ID9 84.89 (2.0) 85.13 (1.0) 84.40 (3.0) 83.99 (5.0) 84.26 (4.0)
ID 10 99.45 (1.0) 99.43 (2.5) 99.43 (2.5) 99.42 (4.0) 99.29 (5.0)
ID11 98.60 (1.5) 98.60 (1.5) 98.58 (3.0) 98.48 (5.0) 98.55 (4.0)
ID 12 99.14 (1.0) 99.11 (2.0) 99.05 (3.0) 98.92 (4.0) 98.61 (5.0)
ID13 82.46 (2.0) 81.19 (4.0) 81.63 (3.0) 83.81(1.0) 80.84 (5.0)
ID 14 97.19 (1.0) 97.17 (2.0) 97.15 (3.0) 97.11 (4.0) 96.98 (5.0)
ID 15 96.07 (1.0) 95.91 (4.0) 95.93 (3.0) 96.04 (2.0) 95.38 (5.0)
ID 16 98.43 (1.0) 98.40 (2.0) 98.38 (3.0) 98.37 (4.0) 98.20 (5.0)
ID17 76.02 (3.0) 75.79 (4.0) 76.09 (2.0) 76.45 (1.0) 74.39 (5.0)
ID 18 93.96 (1.0) 93.54 (3.0) 92.83 (4.0) 93.66 (2.0) 90.91 (5.0)
Average rank 1.33 3.17 2.75 2.92 4.83

last row is the average rank. The rank of algorithm is defined
as follows: on one data set, the best performing algorithm gets
the rank of 1.0, the second best one gets the rank of 2.0, and
so on. In the case of ties, average ranks are assigned [36, 37].
The experimental results in Section 5.2 empirically show
that MM, UWA, CON, and COM generally reach maximum
accuracy when the size of the subensembles is between 20 and
40 (using forward selection for ensemble pruning). Therefore,
the subensembles formed by MM with 30 original ensemble
members are compared with subensembles formed by UWA,
CON, and COM with the same size.

As shown in Table 2, MM outperforms bagging on all the
18 data sets, which indicates that MM efficiently performs
ensemble pruning by achieving better predictive accuracies
with small subensembles. Table 2 also shows that MM ranks
first on 14 out of the 18 data sets and its average rank is 1.33,
followed by CON with an average rank of 2.75, COM with an
average rank of 2.91, UWA (3.17), and bagging (4.83).

As aforementioned, the backward elimination is another
directed hill climbing strategy for ensemble pruning. From
experimental results, we observe that performance based on
backward elimination strategy is similar to that based on
forward selection strategy, and therefore we only present the
mean accuracy and ranks of MM, UWA, CON, COM with
30 base classifiers, and bagging (the original ensemble). The
corresponding results are illustrated in Table 3. From the
table, MM ranks first on 12 data sets and its average rank is
1.42, followed by CON with an average rank of 2.69, COM
(2.83), UWA (3.22), and bagging (4.78).

Table 4 shows a summary of the comparisons among the
methods, where the pruning methods with “-F” use forward
selection to pruning ensemble and similarly, the pruning
methods with “-B” use backward elimination to pruning
ensemble. The size of each subensemble selected by these

ensemble pruning methods is 30. The entry g, ; displays the
number of times when the method of the column (j) has a
better result than the method of the row (i). The number in
the parentheses shows how many of these differences have
been statistically significant using pairwise ¢-tests at the 95%
significance level. For example, MM-F has been better than
CON-F with pruned trees in 16 of the 18 comparisons and
worse in 2. The numbers in the parentheses show that, in 14
cases, the difference in favor of MM-F has been statistically
significant; hence, the value in row 3, column 1 of the table is
16 (14).

Table 5 shows the ranking of the comparing methods
according to the significant difference between their perfor-
mances using pairwise t-tests at the 95% significance level.
Here, we use all pairwise comparisons as summarized in
Table 4. For example, the sum of the numbers in the brackets
in the column corresponding to MM-F in Table 4 is 94. The
sum of the numbers in the brackets in the row corresponding
to MM-F is 10. These are used in Table 5 to calculate the
nondominance ranking of MM-F (84).

Tables 4 and 5 demonstrate the significant advantage of
MM compared with the best benchmark classifier ensemble
methods: CON, COM, and bagging. Besides, compared with
ensemble pruning methods using backward elimination, the
ones with forward selection show better performance.

6. Conclusion

In this paper, we analysed the importance of individual
classifiers with respect to the whole ensembles using margin
theory and obtained that ensemble pruning via directed hill
climbing strategy should focus more on correct classifiers
and the examples lying near the boundary. Based on the
derived general principles, we proposed criterion called the
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TABLE 3: The mean accuracy and ranking of MM, UWA, CON, COM, and bagging. Here, the backward elimination is used to pruning

ensemble.
Data set MM UWA CON COM Bagging
ID1 98.36 (1.0) 98.27 (2.0) 98.22 (3.0) 98.02 (4.0) 97.34 (5.0)
ID2 76.88 (2.0) 75.77 (4.0) 77.01 (1.0) 76.35 (3.0) 73.94 (5.0)
ID3 71.44 (1.0) 69.63 (4.0) 70.39 (2.0) 69.89 (3.0) 65.93 (5.0)
ID 4 84.67 (2.0) 83.93 (4.0) 84.43 (3.0) 84.68 (1.0) 83.32 (5.0)
ID5 89.89 (1.0) 88.96 (4.0) 89.52 (3.0) 89.60 (2.0) 88.26 (5.0)
ID6 83.53 (2.0) 83.06 (4.0) 83.35 (3.0) 83.58 (1.0) 82.33 (5.0)
ID7 60.08 (1.0) 58.82 (5.0) 60.07 (2.0) 59.83 (3.0) 59.29 (4.0)
ID8 71.36 (1.0) 70.26 (4.0) 71.14 (2.0) 70.67 (3.0) 68.67 (5.0)
ID9 85.03 (2.0) 85.18 (1.0) 84.38 (5.0) 84.05 (4.0) 84.26 (3.0)
ID 10 99.44 (1.0) 99.42 (3.0) 99.42 (3.0) 99.42 (3.0) 99.29 (5.0)
ID11 98.60 (1.5) 98.60 (1.5) 98.59 (3.0) 98.45 (5.0) 98.55 (4.0)
ID 12 99.12 (1.0) 99.10 (2.0) 99.06 (3.0) 98.94 (4.0) 98.61 (5.0)
ID13 81.96 (2.0) 80.96 (4.0) 81.42 (3.0) 83.42 (1.0) 80.84 (5.0)
ID 14 9719 (1.0) 9717 (2.0) 97.15 (3.0) 9711 (4.0) 96.98 (5.0)
ID 15 96.05 (1.0) 95.90 (4.0) 95.93 (3.0) 96.04 (2.0) 95.38 (5.0)
ID 16 98.40 (1.0) 98.39 (2.5) 98.39 (2.5) 98.36 (4.0) 98.20 (5.0)
ID 17 76.12 (3.0) 75.72 (4.0) 76.25 (2.0) 76.65 (1.0) 74.39 (5.0)
ID 18 93.84 (1.0) 93.44 (3.0) 92.89 (4.0) 93.75 (2.0) 90.91 (5.0)
Average rank 1.42 3.22 2.69 2.83 4.78
TABLE 4: Summary of results.

MM-F UWA-F CON-F COM-F MM-B UWA-B CON-B COM-B Bagging
MM-F — 1(1) 2(0) 2(1) 7(4) 2(2) 2(0) 4(2) 0(0)
UWA-F 16 (14) — 10 (6) 11(8) 17 (13) 4(1) 10 (7) 11(7) 1(0)
CON-F 16 (12) 8 (6) — 7 (4) 17 (11) 7 (5) 11 (0) 7 (6) 0(0)
COM-F 16 (11) 7 (6) 11 (6) — 16 (10) 7 (5) 11(7) 9(0) 2(0)
MM-B 11 (4) 1(0) 1(0) 2(1) — 1(1) 2(0) 4(2) 0(0)
UWA-B 16 (14) 14 (6) 11(8) 11(9) 16 (15) — 11(8) 11(8) 1(0)
CON-B 16 (12) 8(5) 7(0) 7(4) 16 (10) 7 (4) — 7 (4) 0(0)
COM-B 14 (11) 7 (6) 11(7) 9(1) 14 (11) 7 (6) 11(9) — 2(0)
Bagging 18 (16) 17 (15) 18 (14) 16 (15) 18 (15) 17 (15) 18 (14) 16 (15) —

TaBLE 5: Rank of the methods using the significant differences from
all pairwise comparisons.

Dominance rank

Method . Wins Losses
(wins-losses)

MM-F 84 94 10
MM-B 81 89 8
CON-B 6 45 39
COM-F -2 43 45
CON-F -3 41 44
COM-B -7 44 51
UWA-F -11 45 56
UWA-B -29 39 68
Bagging -119 0 119

margin-based measure to explicitly evaluate the importance
of individual classifiers. Experimental comparisons on 18 UCI

data sets showed that the proposed measure outperforms
other state-of-the-art measures and the original ensemble.

The proposed metric in this paper can apply not only to
ensemble pruning based on directed hill climbing search but
also to other ensemble pruning methods. Therefore, more
experiments will be conducted to evaluate the performance
of the proposed measure.
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