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This paper proposes a three-echelon inventory model with permissible delay in payments under controllable lead time and
backorder consideration to find out the suitable inventory policy to enhance profit of the supply chain. In today’s highly competitive
market, the supply chain management has become a critical issue in both practice and academic and supply chain members have to
cooperate with each other to bring more benefits. In addition, the inventory policy is a key factor to influence the performance of
the supply chain. Therefore, in this paper, we develop a three-echelon inventory model with permissible delay in payments under
controllable lead time and backorder consideration. Furthermore, the purpose of this paper is to maximize the joint expect total
profit on inventorymodel and attempt to discuss the inventory policy under different conditions. Finally, with a numerical example
provided here to illustrate the solution procedure, we may discover that decision-makers can control lead time and payment time
to enhance the performance of the supply chain.

1. Introduction

Inventory policy and supply chain are closely linked to each
other; inventory policy can easily influence the performance
of supply chain [1]. Jammernegg and Reiner [2] pointed
out that the efficient inventory management can enhance
performance of supply chain. To enhance the performance of
the supply chain, firms play the different role in the supply
chain, and they should have a good partnership and share
the information with each other. Cachon and Fisher [3]
established a platform for firms in the supply chain; it could
share information, built the forecast model, and reduced the
risk from inventory model. Olson and Xie [4] proposed that
vendor and buyer should use the same inventory system
to cooperate with each other, and inappropriate inventory
policy might cause firms to bear great loss. With the above
discussion, the proper inventory policy is a critical part in
the supply chain. We would like to develop an integrated
inventory model to obtain the optimal solutions and attempt

to discuss the inventory policy, and next we have to review
some previous literatures to define the research gaps.

Stock is a major part in inventory policy. Excess stocks
cause higher cost, and shortage cannot satisfy customer
immediately. Frankel [5] believed that how to control stocks
was a vital practice in supply chain. Das Roy et al. [6]
extendedMaddah and Jaber’s [7] model to discuss an optimal
shipment strategy for defective items in shortage situation.
Sana [8] researched two-warehouse systems in EOQ model
with limited capacity of ownwarehouse. Due to the stochastic
demand, they regarded lost sale as penalty in shortage
conditions.Nasiri et al. [9] emphasized that firms should keep
safety stocks to satisfy customer under instable demands;
hence, how to keep adequate stocks is an extremely critical
issue in inventory policy. Shortage often causes a great sales
loss, normally; firms adopt backorder method to lower sales
loss; backorder means the buyer does not receive cargos in
time and allows cargos delivery late. Lo et al. [10] indicated
that backorder was an important factor in their inventory
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model; Pan et al. [11] added backorder into their inventory
model that considered lead time and safety factor. When
shortage occurs, in addition to using backorder method
to handle unsatisfied customers, firms can also offer few
discounts to save customers. Ouyang et al. [12] discussed the
impact of backorder discount in the inventory model under
backorder consideration. Pan and Hsiao [13] established
an integrated inventory model with controllable lead time
and backorder discount considerations.Therefore, backorder
consideration should be mentioned in inventory model.

In addition to backorder method, compressed lead time
can also alleviate shortage condition. Lead time includes
preparative time for send orders, set-up time of facilities,
productive time, transportation time, and so on. When the
firms face the uncertain demands, they usually compress the
lead time. Chandra and Grabis [14] indicated that short lead
time could enhance the service level and lower inventory level
effectively, but short lead time also caused highly order cost.
Theprevious researches have regarded lead time as a constant,
but more and more researches have regarded lead time as
a variable or controllable parameter in recent years; Ben-
Daya and Raouf [15] added lead time as a decision variable
in the inventory model. Xia and Huang [16] established an
inventorymodel with quantity discount and controllable lead
time when demand distribution was unknown. And Song et
al. [17] studied the effects of controllable lead time in the
inventorymodel; they indicated that shorter lead time cannot
only satisfy customer’s demand, but also lower inventory level
effectively. In 2008, Lo and Yang [18] proposed a notable idea.
They showed the relationship between lead time and delay
payment time, and their cost functions in the model would
be divided into two cases by different payment times. But they
considered lead time as a constant. If the lead time is regarded
as a variable, it is interesting to know whether we can find
out the better inventory policy by controlling lead time and
payment time.

Permissible delay in payments is a common commercial
strategy in real life; the purpose of this strategy is to enhance
elasticity of capital. In other words, firms can obtain addi-
tional interest income from unpaid payments, but equally
firms may pay the additional opportunity cost in some
conditions. Lo and Yang [18] indicated that firms should let
payment time be longer than lead time to obtain additional
interest income.Chen andKang [19] established an integrated
inventory model with permissible delay in payments. Zhu
et al. [20] considered permissible delay in payments in their
inventory model with limited storage capacity and shortage.
Huang et al. [21] proposed an inventory policy between buyer
and vendor and studied the relationship between permissible
delay in payments and order-processing time reduction.
Sana and Chaudhuri [22] proposed a deterministic EOQ
model with delays in payments and price-discount offers;
they considered various types of deterministic demands
for retailer to operate their model. They all have added
delay payment method in their inventory models. To fit the
real life, inventory model should take delay payment into
account.

There are many issues that can be discussed in inventory
model, and we reviewed the literatures about backorder,

controllable lead time, and permissible delay in payment.
Shortage is an extremely common condition in real life
and always accompanies sales loss. Hence, in the second
paragraph, we simply defined backorder. To lower the sales
loss, the backorder method is widely used in years. After
reviewingOuyang et al. [12] andPan andHsiao’s [13] research,
we would like to regard backorder as amajor condition in our
inventory model.

In the third paragraph, we knew that compressed lead
time was another method to alleviate shortage condition.
Recently researches have indicated that the controllable lead
time is a popular issue in inventory model. Lead time
consists of many components, and these components such
as productive process and transportation process can be
compressed by renewing facilities or using fast vehicles. Short
lead time can respond to demand quickly and enhance the
service level. With high service level, firms can gain more
revenue from their customers but compressing lead time will
cause additional cost to firms. With inspiration from Lo and
Yang’s [18] research, it is interesting to know whether we can
find out better inventory policy by controlling lead time and
payment time.

In the fourth paragraph, we discussed the permissible
delay in payment, a common commercial strategy in busi-
ness; the strategy aims to enhance the elasticity of capital.
Vendor always benefit from interest income by delaying
payment time, but buyerwould pay an additional opportunity
cost. Generally, supply chain can benefit from delay strategy;
hence, how tomaximize the total profit by adjusting payment
time is a potential issue to discuss.

To simulate supply chain completely, we would like to
discuss the above-mentioned ideas in three-echelon inven-
tory model. There are several researches that have studied
inventory problems in three-echelon models. Roy et al. [23]
built a three-echelon supply chain model involving newsboy
problem to deal with the inventory control problems. They
also claimed that uncertain demand may cause shortage
condition in their integrated inventory model. Sana [24]
investigated an EOQ/EPQ model in three-echelon supply
chain management; he focused on the volume flexibility and
replenishment lot size problem in a collaborating system. Pal
et al. [25] established a three-echelon inventory model; they
considered multi-items and multisuppliers to make model
more realistic. Sana et al. [26] proposed a three-echelon
supply chain model with multiple suppliers, manufacturers,
and retailers for multiple items. They aimed to compare
the expected profit between the collaborating system and
Stakelberg game structure. Three-echelon inventory model
has clearly shown how supply chain works in the above
researches.

With the above discussion, we would like to combine
the concepts of Pan and Hsiao [13] and Lo and Yang’s [18]
researches to develop a three-echelon integrated inventory
model with delay payment, controllable lead time, and
backorder consideration. In this paper, we can determine our
proposed inventory model’s optimal solutions and sensitivity
analysis of decision variable. Finally, with appropriate backo-
rder condition, we can attempt to determine better inventory
policy by controlling lead time and payment time.
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2. Notations and Assumptions

Tersine [27] believed that lead time was the time between the
placement of an order and delivery of cargos. And lead time
can be divided into preparative time for send orders, set-up
time of facilities, productive time of products, transportation
time, and so on. Lead time always includes transportation
and productive process, but supplier just supplies the raw
materials to the manufacturer. Hence we may suppose that
manufacturer’s lead time only includes transportation pro-
cess, and retailer’s lead time includes both. Lead time can
be reduced by paying additional cost, and this additional
cost was called “crashing cost” [12, 20, 21]. According to
Pan and Hsiao’s [13] research, retailer’s lead time consisted
of 𝑛 mutually independent components; every component
has a normal duration 𝑇𝑗 and a minimum duration 𝑡𝑗, 𝑗 =

1, 2, . . . , 𝑛, given 𝐶(𝐿) = 𝐶𝑗(𝐿𝑟𝑗−1 − 𝐿𝑟) + ∑
𝑗−1

𝑘=1
𝐶𝑗(𝑇𝑗 − 𝑡𝑗) for

𝐿𝑟 ∈ [𝐿𝑟𝑗, 𝐿𝑟𝑗−1] to compute the crashing cost. To establish the
inventory model, the following notations and assumptions
are used.

2.1. Notations

𝐿𝑟: the length of lead time of retailer, a decision
variable
𝑄𝑖: economic order quantity of the ith model, a
decision variable (𝑖 = 1, 2, 3, 4)
𝜋𝑥: backorder discount per unit during the short-age
period, a decision variable.
𝐷: average demand per year
𝑃: production rate of manufacturer
𝐷𝑟: demand rate of retailer
𝑋: manufacturer’s permissible delay period
𝑌: retailer’s permissible delay period
𝑘: the safety factor of the inventory
𝑞: the probability of shortage during an order period
𝛽: the proportion of permissible backorder during the
shortage period
𝛽0: the upper bound of the backorder ratio
𝜋0: marginal profit per unit
𝑥: the random demand during the lead time
𝜇: the average of the daily demand during the lead
time
𝜎: the standard deviation of the daily demand during
the lead time
𝐶𝑠: supplier’s purchasing cost per unit
𝐴 𝑠: supplier’s ordering cost per order
𝑊𝑠: supplier’s inspecting cost per unit
𝐶𝑟𝑠: supplier’s repair cost per unit
𝑍𝑠: the probability of imperfect products from sup-
plier

ℎ𝑠: supplier’s holding cost per unit per production run

𝐼𝑠𝑝: supplier’s capital opportunity cost per dollar per
year

𝐼𝑠𝑒: supplier’s interest earned per dollar per year

𝐶𝑚: manufacturer’s purchasing cost per unit

𝐴𝑚: manufacturer’s ordering cost per order

𝑊𝑚: manufacturer’s inspecting cost per unit

𝐶𝑟𝑚: manufacturer’s repair cost per unit

𝑍𝑚: the probability of imperfect products from man-
ufacturer

𝐹𝑚: manufacturer’s transportation cost per order

ℎ𝑚: manufacturer’s holding cost per unit per produc-
tion run

𝐿𝑚: the length of lead time of manufacturer

𝐼𝑚𝑝: manufacturer’s capital opportunity cost per dol-
lar per year

𝐼𝑚𝑒: manufacturer’s interest earned per dollar per year

𝑛𝑚: the number of shipments per production run
from manufacturer to retailer

𝐶𝑟: retailer’s purchasing cost per unit

𝑝: retailer’s selling price per unit

𝐴𝑟: retailer’s ordering cost per order

𝐹𝑟: retailer’s transportation cost per order

ℎ𝑟: retailer’s holding cost per unit per production run

𝐼𝑟𝑝: retailer’s capital opportunity cost per dollar per
year

𝐼𝑟𝑒: retailer’s interest earned per dollar per year

𝑛𝑟: the number of shipments per production run from
retailer to customer

𝐶𝑗: the crashing cost at the jth component in 𝐿𝑟( 𝑗 =
1, 2)

𝑇𝑗: the jth component in normal duration (𝑗 = 1, 2)

𝑡𝑗: the jth component inminimum duration (𝑗 = 1, 2)

0(𝑘): probability density function

𝜃(𝑘): probability distribution function

𝐶(𝐿): the total crashing cost per production run

TP𝑠: supplier’s total annual profit

TP𝑚: manufacturer’s total annual profit

TP𝑟: retailer’s total annual profit

JTP: the joint total annual profit

EJTP: the expected joint total annual profit.
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2.2. Assumptions

(1) This is a single supplier, a single manufacturer, and a
single retailer for a single product.

(2) Shortages are not allowed at supplier and manufac-
turer.

(3) Lead time of manufacturer includes transportation
process, and lead time of retailer includes transporta-
tion and productive process.

(4) The lead time of retailer consists of n mutually
independent components; the jth components have
a normal duration 𝑇𝑗 and a minimum duration 𝑡𝑗,
𝑗 = 1, 2, . . . , 𝑛.

(5) Let 𝐿𝑟𝑗 be the length of lead time with components
1, 2, . . . , 𝑗 crashed to their minimum values, and 𝐿𝑟𝑗
can be expressed as 𝐿𝑟𝑗 = ∑

𝑛
𝑘=1 𝑇𝑗 − ∑

𝑗

𝑘=1
(𝑇𝑗 − 𝑡𝑗),

for 𝑗 = 1, 2, . . . , 𝑛; hence, with a given lead time
𝐿𝑟 ∈ [𝐿𝑟𝑗, 𝐿𝑟𝑗−1], the crashing cost per production run
is given by 𝐶(𝐿) = 𝐶𝑗(𝐿𝑟𝑗−1 − 𝐿𝑟) + ∑

𝑗−1

𝑘=1
𝐶𝑗(𝑇𝑗 − 𝑡𝑗)

for 𝐿𝑟 ∈ [𝐿𝑟𝑗, 𝐿𝑟𝑗−1].
(6) The relationship between the supplier’s purchasing

cost 𝐶𝑠, manufacturer’s purchasing cost 𝐶𝑚, retailer’s
purchasing cost 𝐶𝑟, and retailer’s selling price 𝑝 is
𝑝 ≥ 𝐶𝑟 ≥ 𝐶𝑚 ≥ 𝐶𝑠.

(7) We regard imperfect production as basic condition in
our proposedmodel, and inspecting costs are equal to
𝑊𝑠𝐷 and𝑊𝑚𝐷 and repair costs are equal to 𝐶𝑟𝑠𝑍𝑠𝐷
and 𝐶𝑟𝑚𝑍𝑚𝐷 [18].

(8) The imperfect products will completely and immedi-
ately fix [18].

(9) The supplier offers the manufacturer a permissible
delay period𝑋. During this permissible delay period,
the manufacturer sells the goods and uses the sale
revenue to earn interest at a rate of 𝐼𝑚𝑒. At the
end of this time period, the manufacturer pays the
purchasing cost to the supplier and the rest of the
goods in the warehouse bring a capital opportunity
cost at a rate of 𝐼𝑚𝑝.

(10) The time horizon is infinite.
(11) Lead time is deterministic and lead time demand 𝑥

has finite mean 𝑢𝐿 and variance 𝜎2𝐿 = 𝜎
2
𝐿 [13].

(12) The reorder point = 𝑢𝐿+𝑘𝜎𝐿, where 𝑘 is a safety point
[13].

(13) Inventory is continuously reviewed and replenish-
ments are made whenever the inventory level falls to
the reorder point 𝑟.

3. Building Model

In this section, we discuss and develop the supplier’s model,
manufacture’s model, and retailer’s model in following sec-
tion and combine the above models to an integrated inven-
tory model. To build the proposed model, we extended Lo
and Yang’s [18] research to compute relevant opportunity

cost and interest income and referred to Pan and Hsiao’s
[13] research to compute relevant shortage and crashing cost.
As for the holding cost, it could be computed by using
integration in Appendix A’s Figures 1, 2, and 3 [28].

3.1. The Supplier’s Total Annual Profit. In each production
run, the supplier’s costs include ordering cost, inspecting
cost, repair cost, holding cost, and opportunity cost. And
the supplier’s revenues include sales revenue and interest
income. With permissible delay in payments, we knew that,
if payment time was longer than lead time, then it would
bring additional interest income to the manufacturer; in
addition, the supplier must pay equally opportunity cost.
If payment time was shorter than lead time, then it would
bring additional opportunity cost and fewer interest income
tomanufacturer; also, the supplier could earn interest income
and pay fewer opportunity cost. Owing to the fact that the
supplier’s profit function has that two following cases, based
on length of lead time 𝐿𝑚 and payment time 𝑋, the different
parts between two possible cases are as follows.

Case 1. If 𝐿𝑚 < 𝑋, then

(i) transfer opportunity cost = 𝐶𝑠𝐼𝑠𝑝(𝑄𝑖𝑋 − 𝑄𝑖/2).

Case 2. If 𝐿𝑚 ≥ 𝑋, then

(i) transfer opportunity cost = 𝐶𝑠𝐼𝑠𝑝(𝑄𝑖𝑋)
2
/2𝑄𝑖;

(ii) transfer interest income = 𝐶𝑚𝐼𝑠𝑒(𝑄𝑖 − 𝑄𝑖𝑋)
2
/2𝑄𝑖.

Thus, TP𝑠1 and TP𝑠2 are given by

TP𝑠1 = sales revenue − ordering cost − inspecting cost

− repair cost − holding cost − opportunity cost

= 𝐷 (𝐶𝑚 − 𝐶𝑠) −
𝐴 𝑠𝐷

𝑄𝑖

−𝑊𝑠𝐷 − 𝐶𝑟𝑠𝑍𝑠𝐷

− 𝐷ℎ𝑠 [(
1

2

− 𝑍
2
𝑠)

𝑄𝑖

𝑃

] − 𝐶𝑠𝐼𝑠𝑝 (𝑄𝑖𝑋 −

𝑄𝑖

2

) ,

TP𝑠2 = sales revenue − ordering cost

− inspecting cost − repair cost − holding cost

− opportunity cost + interest income

= 𝐷 (𝐶𝑚 − 𝐶𝑠) −
𝐴 𝑠𝐷

𝑄𝑖

−𝑊𝑠𝐷 − 𝐶𝑟𝑠𝑍𝑠𝐷

− 𝐷ℎ𝑠 [(
1

2

− 𝑍
2
𝑠)

𝑄𝑖

𝑃

] −

𝐶𝑠𝐼𝑠𝑝(𝑄𝑖𝑋)
2

2𝑄𝑖

+

𝐶𝑚𝐼𝑠𝑒(𝑄𝑖 − 𝑄𝑖𝑋)
2

2𝑄𝑖

.

(1)

3.2. The Manufacturer’s Total Annual Profit. In each pro-
duction run, the manufacturer’s costs include ordering cost,
inspecting cost, repair cost, holding cost, transportation
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Figure 1: Supplier and manufacture’s inventory level.
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cost, and opportunity cost. And the manufacturer’s revenues
include sales revenue and interest income. We have already
known the relationship between length of lead time and
payment time from Section 3.1. Owing to the fact that the
manufacturer’s profit function has the two following cases,
based on length of lead time 𝐿𝑚 and payment time 𝑋, the
different parts between two possible cases are as follows.

Case 1. If 𝐿𝑚 < 𝑋, then

(i) interest income = 𝐶𝑟𝐼𝑚𝑒(𝑄𝑖𝑋 − 𝑄𝑖/2);
(ii) transfer opportunity cost = 𝐶𝑚𝐼𝑚𝑝(𝑄𝑖𝑌 − 𝑄𝑖/2).

Case 2. If 𝐿𝑚 ≥ 𝑋, then

(i) transfer opportunity cost = 𝐶𝑚𝐼𝑚𝑝(𝑄𝑖𝑌)
2
/2𝑄𝑖.

(ii) opportunity cost = 𝐶𝑚𝐼𝑚𝑝(𝑄𝑖 − 𝑄𝑖𝑋)
2
/2𝑄𝑖.

(iii) transfer interest income = 𝐶𝑟𝐼𝑚𝑒(𝑄𝑖 − 𝑄𝑖𝑌)
2
/2𝑄𝑖.

(iv) interest income = 𝐶𝑟𝐼𝑚𝑒(𝑄𝑖𝑋)
2
/2𝑄𝑖.

Thus, TP𝑚1 and TP𝑚2 are given by

TP𝑚1 = sales revenue − ordering cost − inspecting cost

− repair cost − transportation cost − holding cost

− opportunity cost + interest income

= 𝐷 (𝐶𝑟 − 𝐶𝑚) −
𝐴𝑚𝐷

𝑄𝑖

−𝑊𝑚𝐷 − 𝐶𝑟𝑚𝑍𝑚

−

𝐹𝑚𝐷

𝑄𝑖

− 𝐷ℎ𝑚 ((
𝑄𝑖

2𝐷𝑟

) −

𝑍
2
𝑚𝑄𝑖

𝐷𝑟

−

𝐿𝑚𝑛𝑚

2

)

+ 𝐶𝑟𝐼𝑚𝑒 (𝑄𝑖𝑋 −

𝑄𝑖

2

) − 𝐶𝑚𝐼𝑚𝑝 (𝑄𝑖𝑌 −
𝑄𝑖

2

) ,

TP𝑚2 = sales revenue − ordering cost − inspecting cost

− repair cost − transportation cost − holding cost

− total opportunity cost + total interest income

= 𝐷 (𝐶𝑟 − 𝐶𝑚) −
𝐴𝑚𝐷

𝑄𝑖

−𝑊𝑚𝐷 − 𝐶𝑟𝑚𝑍𝑚𝐷

−

𝐹𝑚𝐷

𝑄𝑖

− 𝐷ℎ𝑚 ((
𝑄𝑖

2𝐷𝑟

) −

𝑍
2
𝑚𝑄𝑖

𝐷𝑟

−

𝐿𝑚𝑛𝑚

2

)

−

𝐶𝑚𝐼𝑚𝑝(𝑄𝑖 − 𝑄𝑖𝑋)
2

2𝑄𝑖

−

𝐶𝑚𝐼𝑚𝑝(𝑄𝑖𝑌)
2

2𝑄𝑖

+

𝐶𝑟𝐼𝑚𝑒(𝑄𝑖𝑋)
2

2𝑄𝑖

+

𝐶𝑟𝐼𝑚𝑒(𝑄𝑖 − 𝑄𝑖𝑌)
2

2𝑄𝑖

.

(2)

3.3. The Retailer’s Total Annual Profit. In each production
run, the retailer’s costs include ordering cost, shortage
cost, holding cost, transportation cost, crashing cost, and
opportunity cost. And the retailer’s revenues include sales
revenue and interest income. We have already known the
relationship between length of lead time and payment time
from Section 3.1. Owing to the fact that the retailer’s profit
function has the two following cases, based on length of lead
time 𝐿𝑟 and payment time 𝑌, the different parts between two
possible cases are as follows.
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Case 1. If 𝐿𝑟 < 𝑌, then

(i) interest income = 𝑝𝐼𝑟𝑒(𝑄𝑖𝑌 − 𝑄𝑖/2).

Case 2. If 𝐿𝑟 ≥ 𝑌, then

(i) opportunity cost = 𝐶𝑟𝐼𝑟𝑝(𝑄𝑖 − 𝑄𝑖𝑌)
2
/2𝑄𝑖;

(ii) interest income = 𝑝𝐼𝑟𝑒(𝑄𝑖𝑌)
2
/2𝑄𝑖.

Thus, TP𝑟1 and TP𝑟2 are given by

TP𝑟1 = sales revenue − ordering cost − transportation cost

− holding cost − shortage cost

− crashing cost + interest income

= 𝐷 (𝑝 − 𝐶𝑟) −
𝐴𝑟𝐷

𝑄𝑖

−

𝐹𝑟𝐷

𝑄𝑖

−

1

2

𝐷ℎ𝑟𝐿𝑟 (
1

𝑛𝑟

−

(𝜎√𝐿𝑟𝜑 (𝑘) 𝑛𝑟𝑞)

𝑄𝑖

)

−

𝐷

𝑄𝑖

(

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥)𝜎

√𝐿𝑟𝜑 (𝑘)

−

𝐷

𝑄𝑖

[

[

𝐶𝑖 (𝐿𝑟𝑖−1 − 𝐿𝑟) +

𝑖−1

∑

𝑗=1

𝐶𝑗 (𝑇𝑗 − 𝑡𝑗)
]

]

−

𝐷

𝑄𝑖

[

[

𝐶𝑖 (𝐿𝑟𝑖−1 − 𝐿𝑟) +

𝑖−1

∑

𝑗=1

𝐶𝑗 (𝑇𝑗 − 𝑡𝑗)
]

]

+ 𝑝𝐼𝑟𝑒 (𝑄𝑖𝑌 −
𝑄𝑖

2

) ,

TP𝑟2 = sales revenue − ordering cost − transportation cost

− holding cost − shortage cost − crashing cost

+ interest income − opportunity cost

= 𝐷 (𝑝 − 𝐶𝑟) −
𝐴𝑟𝐷

𝑄𝑖

−

𝐹𝑟𝐷

𝑄𝑖

−

1

2

𝐷ℎ𝑟𝐿𝑟 (
1

𝑛𝑟

−

(𝜎√𝐿𝑟𝜑 (𝑘) 𝑛𝑟𝑞)

𝑄𝑖

)

−

𝐷

𝑄𝑖

(

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥)𝜎

√𝐿𝑟𝜑 (𝑘)

−

𝐷

𝑄𝑖

[

[

𝐶𝑖 (𝐿𝑟𝑖−1 − 𝐿𝑟) +

𝑖−1

∑

𝑗=1

𝐶𝑗 (𝑇𝑗 − 𝑡𝑗)
]

]

−

𝐶𝑟𝐼𝑟𝑝(𝑄𝑖 − 𝑄𝑖𝑌)
2

2𝑄𝑖

+

𝑝𝐼𝑟𝑒(𝑄𝑖𝑌)
2

2𝑄𝑖

.

(3)

3.4. The Expected Joint Total Annual Profit. Hence, the
expected joint total annual profit function, EJTP(𝑄𝑖, 𝐿𝑟, 𝜋𝑥),
can be expressed as

EJTP (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

=

{
{

{
{

{

EJTP1 (𝑄1, 𝐿𝑟, 𝜋𝑥) = TP𝑠1 + TP𝑚1 + TP𝑟1 if 𝐿𝑚 < 𝑋, 𝐿𝑟 < 𝑌
EJTP2 (𝑄2, 𝐿𝑟, 𝜋𝑥) = TP𝑠1 + TP𝑚1 + TP𝑟2 if 𝐿𝑚 < 𝑋, 𝐿𝑟 ≥ 𝑌
EJTP3 (𝑄3, 𝐿𝑟, 𝜋𝑥) = TP𝑠2 + TP𝑚2 + TP𝑟1 if 𝐿𝑚 ≥ 𝑋, 𝐿𝑟 < 𝑌
EJTP4 (𝑄4, 𝐿𝑟, 𝜋𝑥) = TP𝑠2 + TP𝑚2 + TP𝑟2 if 𝐿𝑚 ≥ 𝑋, 𝐿𝑟 ≥ 𝑌,

(4)

where

EJTP1 (𝑄1, 𝐿𝑟, 𝜋𝑥)

= 𝐷 (𝑝 − 𝐶𝑠 −𝑊𝑠 − 𝐶𝑟𝑠𝑍𝑠 −𝑊𝑚 − 𝐶𝑟𝑚𝑍𝑚)

−

1

2

𝐷ℎ𝑟𝐿𝑟 (
1

𝑛𝑟

−

(𝜎√𝐿𝑟𝜑 (𝑘) 𝑛𝑟𝑞)

𝑄1

)

−

𝐷

𝑄1

{𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

×𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) }

− 𝐷ℎ𝑠 [(
1

2

− 𝑍
2
𝑠)

𝑄1

𝑃

]

− 𝐷ℎ𝑚 ((
𝑄1

2𝐷𝑟

) −

𝑍
2
𝑚𝑄1

𝐷𝑟

−

𝐿𝑚𝑛𝑚

2

)

+ (𝑄1𝑋 −

𝑄1

2

) (𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑠𝐼𝑠𝑝)

+ (𝑄1𝑌 −
𝑄1

2

) (𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝) ,

EJTP2 (𝑄2, 𝐿𝑟, 𝜋𝑥)

= 𝐷 (𝑝 − 𝐶𝑠 −𝑊𝑠 − 𝐶𝑟𝑠𝑍𝑠 −𝑊𝑚 − 𝐶𝑟𝑚𝑍𝑚)

−

1

2

𝐷ℎ𝑟𝐿𝑟 (
1

𝑛𝑟

−

(𝜎√𝐿𝑟𝜑 (𝑘) 𝑛𝑟𝑞)

𝑄2

)

−

𝐷

𝑄2

{𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) }

− 𝐷ℎ𝑠 [(
1

2

− 𝑍
2
𝑠)

𝑄2

𝑃

]

− 𝐷ℎ𝑚 ((
𝑄2

2𝐷𝑟

) −

𝑍
2
𝑚𝑄2

𝐷𝑟

−

𝐿𝑚𝑛𝑚

2

)
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+ (𝑄2𝑋 −

𝑄2

2

) (𝐶𝑚𝐼𝑚𝑒 − 𝐶𝑠𝐼𝑠𝑝)

+

(𝑄2𝑌)
2

2𝑄2

(𝐶𝑟𝐼𝑚𝑒 + 𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑟𝐼𝑟𝑝) ,

EJTP3 (𝑄3, 𝐿𝑟, 𝜋𝑥)

= 𝐷 (𝑝 − 𝐶𝑠 −𝑊𝑠 − 𝐶𝑟𝑠𝑍𝑠 −𝑊𝑚 − 𝐶𝑟𝑚𝑍𝑚)

−

1

2

𝐷ℎ𝑟𝐿𝑟 (
1

𝑛𝑟

−

(𝜎√𝐿𝑟𝜑 (𝑘) 𝑛𝑟𝑞)

𝑄3

)

−

𝐷

𝑄3

{𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) }

− 𝐷ℎ𝑠 [(
1

2

− 𝑍
2
𝑠)

𝑄3

𝑃

]

− 𝐷ℎ𝑚 ((
𝑄3

2𝐷𝑟

) −

𝑍
2
𝑚𝑄3

𝐷𝑟

−

𝐿𝑚𝑛𝑚

2

)

+

(𝑄3𝑋)
2

2𝑄3

(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑠𝐼𝑠𝑝)

+

(𝑄3 − 𝑄3𝑋)
2

2𝑄3

(𝐶𝑚𝐼𝑠𝑒 − 𝐶𝑚𝐼𝑚𝑝)

+ (𝑄3𝑌 −
𝑄3

2

) (𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝) ,

EJTP4 (𝑄4, 𝐿𝑟, 𝜋𝑥)

= 𝐷 (𝑝 − 𝐶𝑠 −𝑊𝑠 − 𝐶𝑟𝑠𝑍𝑠 −𝑊𝑚 − 𝐶𝑟𝑚𝑍𝑚)

−

1

2

𝐷ℎ𝑟𝐿𝑟 (
1

𝑛𝑟

−

(𝜎√𝐿𝑟𝜑 (𝑘) 𝑛𝑟𝑞)

𝑄4

)

−

𝐷

𝑄4

{𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) }

− 𝐷ℎ𝑠 [(
1

2

− 𝑍
2
𝑠)

𝑄4

𝑃

]

− 𝐷ℎ𝑚 ((
𝑄4

2𝐷𝑟

) −

𝑍
2
𝑚𝑄4

𝐷𝑟

−

𝐿𝑚𝑛𝑚

2

)

+

(𝑄4𝑋)
2

2𝑄4

(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑟𝐼𝑠𝑝)

+

(𝑄4 − 𝑄4𝑋)
2

2𝑄4

(𝐶𝑚𝐼𝑠𝑒 − 𝐶𝑚𝐼𝑚𝑝)

+

(𝑄4𝑌)
2

2𝑄4

(𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝)

+

(𝑄4 − 𝑄4𝑌)
2

2𝑄4

(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑟𝐼𝑟𝑝) .

(5)

4. Solution Procedure

4.1. Determination of the Optimal Backorder Discount 𝜋𝑥 for
Any Given 𝐿𝑟 and 𝑄𝑖. We would like to find the minimum
value of the joint expected total profit EJTP(𝑄𝑖, 𝐿𝑟, 𝜋𝑥).
For any given 𝑄𝑖 and 𝐿𝑟, to take first and second partial
derivation of EJTP(𝑄𝑖, 𝐿𝑟, 𝜋𝑥), with respect to 𝜋𝑥, we have

𝜕EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
𝜕𝜋𝑥

=

𝐷𝜎√𝐿𝑟𝜑 (𝑘) (𝛽0 − 2𝛽0𝜋𝑥/𝜋0)

𝑄𝑖

, (6)

𝜕
2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

𝜕𝜋𝑥
2

=

− (2𝛽0𝐷𝜎√𝐿𝑟𝜑 (𝑘))

𝑄𝑖𝜋0

< 0. (7)

Because (7) < 0, therefore, for fixed 𝑄𝑖 and 𝐿𝑟,
EJTP(𝑄𝑖, 𝐿𝑟, 𝜋𝑥) is a concave function in 𝜋𝑥. So as there exists
a unique value of𝜋𝑥whichmaximize EJTP(𝑄𝑖, 𝐿𝑟, 𝜋𝑥),𝜋𝑥 can
be obtained by solving the equation 𝜕EJTP(𝑄𝑖, 𝐿𝑟, 𝜋𝑥)/𝜕𝜋𝑥 =
0 in (6) and is given by

𝜋𝑥 =
𝛽0𝜋0 − 𝑄𝑖𝜋0/𝐷𝜎√𝐿𝑟𝜑 (𝑘)

2𝛽0

. (8)

4.2. Determination of the Optimal Order Quantity 𝑄𝑖 for Any
Given 𝐿𝑟 and 𝜋𝑥. For any given 𝐿𝑟 and 𝜋𝑥, to take first and
second partial derivation of EJTP(𝑄𝑖, 𝐿𝑟, 𝜋𝑥), with respect to
𝑄𝑖, we have

𝜕EJTP1 (𝑄1, 𝐿𝑟, 𝜋𝑥)
𝜕𝑄1

= (𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑠𝐼𝑠𝑝) (𝑋 −

1

2

)

+ (𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝) (𝑌 −
1

2

)

− 𝐷ℎ𝑚 (
1

2𝐷𝑟

−

𝑍
2
𝑚

𝐷𝑟

) +

𝐷ℎ𝑠 (𝑍
2
𝑠 − 1/2)

𝑃

+ 𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋𝑥
2
+ 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) ) × (𝑄
2
1)
−1

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

2𝑄
2
1

,
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𝜕EJTP2 (𝑄2, 𝐿𝑟, 𝜋𝑥)
𝜕𝑄2

= (𝐶𝑚𝐼𝑚𝑒 − 𝐶𝑠𝐼𝑠𝑝) (𝑋 −

1

2

)

+

1

2

𝑌
2
(𝐶𝑟𝐼𝑚𝑒 + 𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑟𝐼𝑟𝑝)

− 𝐷ℎ𝑚 (
1

2𝐷𝑟

−

𝑍
2
𝑚

𝐷𝑟

) +

𝐷ℎ𝑠 (𝑍
2
𝑠 − 1/2)

𝑃

+ 𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) ) × (𝑄
2
2)
−1

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

2𝑄
2
2

,

𝜕EJTP3 (𝑄3, 𝐿𝑟, 𝜋𝑥)
𝜕𝑄3

=

1

2

𝑋
2
(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑠𝐼𝑠𝑝)

+ (𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝) (𝑌 −
1

2

)

− 𝐷ℎ𝑚 (
1

2𝐷𝑟

−

𝑍
2
𝑚

𝐷𝑟

) +

𝐷ℎ𝑠 (𝑍
2
𝑠 − 1/2)

𝑃

+ 𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) ) × (𝑄
2
3)
−1

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

2𝑄
2
3

+

(𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑄3 − 𝑄3𝑋)
2

2𝑄
2
3

+

(𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑋 − 1) (𝑄3 − 𝑄3𝑋)
2

𝑄3

,

𝜕EJTP4 (𝑄4, 𝐿𝑟, 𝜋𝑥)
𝜕𝑄4

=

1

2

𝑋
2
(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑟𝐼𝑠𝑝)

+

1

2

𝑌
2
(𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝)

− 𝐷ℎ𝑚 (
1

2𝐷𝑟

−

𝑍
2
𝑚

𝐷𝑟

) +

𝐷ℎ𝑠 (𝑍
2
𝑠 − 1/2)

𝑃

+ 𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) ) × (𝑄
2
4)
−1

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

2𝑄
2
4

+

(𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑋 − 1) (𝑄4 − 𝑄4𝑋)
2

𝑄4

−

(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑟𝐼𝑟𝑝) (𝑌 − 1) (𝑄4 − 𝑄4𝑌)
2

𝑄4

+

(𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑄4 − 𝑄4𝑋)
2

2𝑄
2
4

−

(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑟𝐼𝑟𝑝) (𝑄4 − 𝑄4𝑌)
2

2𝑄
2
4

,

(9)
𝜕
2EJTP1 (𝑄1, 𝐿𝑟, 𝜋𝑥)

𝜕𝑄
2
1

= −2𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) ) × (𝑄
3
1)
−1

−

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

𝑄
3
1

< 0,

𝜕
2EJTP2 (𝑄2, 𝐿𝑟, 𝜋𝑥)

𝜕𝑄
2
2

= −2𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) ) × (𝑄
3
2)
−1

−

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

𝑄
3
2

< 0,
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𝜕
2EJTP3 (𝑄3, 𝐿𝑟, 𝜋𝑥)

𝜕𝑄
2
3

= −2𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) ) × (𝑄
3
3)
−1

−

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

𝑄
3
3

−

(𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑋 − 1)
2

𝑄3

−

(𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑄3 − 𝑄3𝑋)
2

𝑄
3
3

−

2 (𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑋 − 1) (𝑄3 − 𝑄3𝑋)

𝑄
2
3

< 0,

𝜕
2EJTP4 (𝑄4, 𝐿𝑟, 𝜋𝑥)

𝜕𝑄
2
4

= −2𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) ) × (𝑄
3
4)
−1

−

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

𝑄
3
4

−

(𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑋 − 1)
2

𝑄4

−

(𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑄4 − 𝑄4𝑋)
2

𝑄
3
4

−

2 (𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑋 − 1) (𝑄4 − 𝑄4𝑋)

𝑄
2
4

+

(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑟𝐼𝑟𝑝) (𝑌 − 1)
2

𝑄4

+

(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑟𝐼𝑟𝑝) (𝑄4 − 𝑄4𝑌)
2

𝑄
3
4

+

2 (𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑟𝐼𝑟𝑝) (𝑌 − 1) (𝑄4 − 𝑄4𝑌)

𝑄
2
4

< 0.

(10)

Because (10) < 0, therefore, for fixed 𝜋𝑥 and 𝐿𝑟,
EJTP(𝑄𝑖, 𝐿𝑟, 𝜋𝑥) is a concave function in𝑄𝑖. So as there exists
a unique value of𝑄𝑖 whichmaximize EJTP(𝑄𝑖, 𝐿𝑟, 𝜋𝑥),𝑄𝑖 can

be obtained by solving the equation 𝜕EJTP𝑖(𝑄𝑖, 𝐿𝑟, 𝜋𝑥)/𝜕𝑄𝑖 =
0 in (9) and are given by

𝑄1 = ((𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) )

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

2

)

× ( − (𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑠𝐼𝑠𝑝) (𝑋 −

1

2

)

− (𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝) (𝑌 −
1

2

)

+ 𝐷ℎ𝑚 (
1

2𝐷𝑟

−

𝑍
2
𝑚

𝐷𝑟

)

−

𝐷ℎ𝑠 (𝑍𝑠
2
− 1/2)

𝑃

)

−1

)

1/2

,

𝑄2 = ((𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

×𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) )

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

2

)

× ( − (𝐶𝑚𝐼𝑚𝑒 − 𝐶𝑠𝐼𝑠𝑝) (𝑋 −

1

2

)

−

1

2

𝑌
2
(𝐶𝑟𝐼𝑚𝑒 + 𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑟𝐼𝑟𝑝)

+ 𝐷ℎ𝑚 (
1

2𝐷𝑟

−

𝑍
2
𝑚

𝐷𝑟

)

−

𝐷ℎ𝑠 (𝑍
2
𝑠 − 1/2)

𝑃

)

−1

)

1/2

,

𝑄3 = ((𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]
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×𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) )

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

2

)

× ( −

𝑋
2
(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑠𝐼𝑠𝑝)

2

− (𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝) (𝑌 −
1

2

)

+ 𝐷ℎ𝑚 (
1

2𝐷𝑟

−

𝑍
2
𝑚

𝐷𝑟

)

−

𝐷ℎ𝑠 (𝑍
2
𝑠 − 1/2)

𝑃

+

(𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑋
2
− 2𝑋 + 1)

2

)

−1

)

1/2

,

𝑄4 = ((𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

×𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) )

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

2

)

× (−

𝑋
2
(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑠𝐼𝑠𝑝)

2

−

𝑌
2
(𝑝𝐼𝑟𝑒 − 𝐶𝑚𝐼𝑚𝑝)

2

+ 𝐷ℎ𝑚 (
1

2𝐷𝑟

−

𝑍
2
𝑚

𝐷𝑟

)

−

𝐷ℎ𝑠 (𝑍
2
𝑠 − 1/2)

𝑃

+

(𝐶𝑚𝐼𝑚𝑝 − 𝐶𝑚𝐼𝑠𝑒) (𝑋
2
− 2𝑋 + 1)

2

−

(𝐶𝑟𝐼𝑚𝑒 − 𝐶𝑟𝐼𝑟𝑝) (𝑌
2
− 2𝑌 + 1)

2

)

−1

)

1/2

.

(11)

Algorithm. Summarizing the above arguments, we estab-
lish the following algorithm to obtain optimal values of
EJTP𝑖𝑗(𝑄𝑖, 𝐿𝑟𝑗, 𝜋𝑥).

Step 1. Arrange the value of 𝐶𝑗 such that 𝐶0 ≤ 𝐶1 ≤ 𝐶2.

Step 2. Determine 𝜋𝑋 by solving (6) = 0.

Step 3. With the different duration, substitute 𝐿𝑟𝑗 and𝜋𝑋 into
(11) to find 𝑄1.

Step 4. Substitute 𝑄1 into (5) to find EJTP1.

Step 5. For 𝑗 = 0, 1, 2, repeat Steps 1 to 4 and compute
EJTP1𝑗(𝑄1, 𝐿𝑟𝑗, 𝜋𝑥).

Step 6. For 𝑖 = 1, 2, 3, 4 and 𝑗 = 0, 1, 2, repeat Steps 1 to 5 and
obtain EJTP𝑖𝑗(𝑄𝑖, 𝐿𝑟𝑗, 𝜋𝑥).

Step 7. Observe EJTP𝑖𝑗(𝑄𝑖, 𝐿𝑟𝑗, 𝜋𝑥) by varying𝑋 and 𝑌.

Step 8. Determine optimal EJTP𝑖𝑗(𝑄𝑖, 𝐿𝑟𝑗, 𝜋𝑥).

5. Numerical Example

To illustrate the preceding model, we consider an inventory
system with the following data and lead time data in Table 1:
𝐷 (average demand per year) = 1000 unit/year, 𝑃 (production
rate of manufacturer) = 10, 𝐷𝑟 (demand rate of retailer) = 8,
𝑞 (probability of shortage) = 0.3, 𝜋0 (marginal profit per unit)
= $6 per unit, 𝜎 (standard deviation) = 7 unit, 𝐶𝑠 (supplier’s
purchasing cost per unit) = $10 per unit, 𝐴 𝑠 (supplier’s
ordering cost per order) = $100 per order, 𝑊𝑠 (supplier’s
inspecting cost per unit) = $0.6 per unit,𝐶𝑟𝑠 (supplier’s repair
cost per unit) = $0.2 per unit, ℎ𝑠 (supplier’s holding cost per
unit per production run) = $2 per unit, 𝐼𝑠𝑝 (supplier’s capital
opportunity cost per dollar per year) = $0.04 per year, 𝐼𝑠𝑒
(supplier’s interest earned per dollar per year) = $0.03 per
year, 𝑍𝑠 (probability of imperfect items from supplier) = 0.1,
𝐶𝑚 (manufacturer’s purchasing cost per unit) = $25 per unit,
𝐴𝑚 (manufacturer’s ordering cost per order) = $120 per order,
𝑊𝑚 (manufacturer’s inspecting cost per unit) = $0.6 per unit,
𝐶𝑟𝑚 (manufacturer’s repair cost per unit) = $0.25 per unit,𝑍𝑚
(probability of imperfect items from manufacturer) = 0.1, 𝐹𝑚
(manufacturer’s transportation cost per unit ) = $40 per order,
ℎ𝑚 (manufacturer’s holding cost per unit per production run)
= $2.5 per unit, 𝐿𝑚 (lead time of manufacturer) = 7 days,
𝐼𝑚𝑝 (manufacturer’s capital opportunity cost per dollar per
year) = $0.04 per year, 𝐼𝑚𝑒 (manufacturer’s interest earned
per dollar per year) = $0.03 per year, 𝐶𝑟 (retailer’s purchasing
cost per unit) = $30 per unit, 𝑝 (retailer’s selling price
per unit) = $50 per unit, 𝐴𝑟 (retailer’s ordering cost per
order) = $150 per order, 𝐹𝑟 (retailer’s transportation cost
per unit) = $50 per order, ℎ𝑟 (retailer’s holding cost per
unit per production run) = $3 per unit, 𝐼𝑟𝑝 (retailer’s capital
opportunity cost per dollar per year) = $0.04 per year, and
𝐼𝑟𝑒 (retailer’s interest earned per dollar per year) = $0.03 per
year.

5.1. The Sensitivity Analysis of Decision Variable. First, we
need to know how 𝐿𝑟 and 𝜋𝑥 influence the EJTP𝑖(𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
and individual profit, and, according to function (4), we
developed four different models, and we could reach the
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Table 1: Lead time data of numerical example.

Lead time
component, 𝑗

Normal
duration, 𝑇𝑗

(days)

Minimum
duration, 𝑡𝑗 (days)

Crashing cost,
𝐶𝑗 ($/day)

1 20 14 1.2
2 16 10 5

optimal EJTP𝑖(𝑄𝑖, 𝐿𝑟, 𝜋𝑥) by applying the algorithm; in addi-
tion, we take the EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥) as an example here; the
results are shown in Table 2.

The results are shown in Table 2; we could observe
how lead time of retailer 𝐿𝑟 and backorder discount 𝜋𝑥
influenced the EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥) and individual profit. The
total profit of EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥) decreased with longer lead
time of retailer 𝐿𝑟, and the profit of retailer increased with
longer lead time 𝐿𝑟. We might indicate that performance of
EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥) could be enhanced by compressing the lead
time but it also caused lower profit for the retailer. The profit
of EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥) and retailer could reach the optimal
results when 𝜋𝑥 = 3; it is suggested that backorder discount
should be offered appropriately to the buyer. Owing to the
fact that the expected joint total annual profit was greater
than individual’s profit (supplier + manufacturer + retailer)
and shorter lead time wasmore benefit for EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥).
It seems that compressing the lead time was an available
policy in our proposed inventory models. And we continue
discussing themore detailed inventory policy in the following
sections.

5.2.The Permissible Delay Period𝑋 and EJTP. Let us observe
the value of profit with 𝛽0 = 0.8 by varying the per-
missible delay period 𝑋, and, with applying the proposed
procedure, the solution results are contained in Figure 4 (see
Appendix B).

To compare which condition is more beneficial to our
proposed inventory model, we have more detailed results in
Table 3.

According to Section 3.1, we knew that, if payment
time was longer than lead time, then it would bring
additional interest income to the buyer. On the other
hand, if payment time was shorter than lead time, it
would cause buyer to bear additional opportunity cost.
From the above discussion, we had four possible cases in
EJTP𝑖(𝑄𝑖, 𝐿𝑟, 𝜋𝑥), for 𝑖 = 1, 2, 3, 4, and considered the
different duration of 𝐿𝑟𝑗, for 𝑗 = 0, 1, 2. Hence, we had
twelve possible values of profit. According to the data from
Table 3, we could indicate that the optimal profit occurred
in EJTP4(𝑄4, 𝐿𝑟, 𝜋𝑥) with normal duration condition, and
the worst profit occurred in EJTP3 with normal duration
condition.

TheHessianmatrix H at the optimal solution𝑄∗4 = 92.06,
𝐿
∗
𝑟 = 36, and 𝜋

∗
𝑥 = 2.96489 is [ −3.34166 −3.83811 −0.01862−3.83811 −4.90745 0.0138882

−0.01862 0.0138882 −28.4806
]

which is negative definite because all the eigenvalues are
negative. Hence, the required optimal solution is𝑄∗4 = 92.06,
𝐿
∗
𝑟 = 36, and𝜋

∗
𝑥 = 2.96489 and EJTP

∗
4 (𝑄4, 𝐿𝑟, 𝜋𝑥) = 20678.1.

5.3.The Permissible Delay Period𝑌 and EJTP. In this section,
we observe the value of profit by varying the permissible delay
period 𝑌. The detailed results have been shown in Table 4.

This time, we varied the permissible delay period
𝑌. We noticed that the optimal profit still occurred in
EJTP4(𝑄4, 𝐿𝑟, 𝜋𝑥) with normal duration condition. But the
worst profit was different from previous result; it occurred in
EJTP4(𝑄4, 𝐿𝑟, 𝜋𝑥) with minimum duration condition.

TheHessianmatrix H at the optimal solution𝑄∗4 = 87.55,
𝐿
∗
𝑟 = 36, and 𝜋

∗
𝑥 = 2.96661 is [ −3.88515 −4.24373 −0.01142−4.24373 −5.16025 0.0138882

−0.01142 0.0138882 −29.9477
]

which is negative definite because all the eigenvalues are
negative. Hence, the required optimal solution is𝑄∗4 = 87.55,
𝐿
∗
𝑟 = 36, and𝜋

∗
𝑥 = 2.96661 and EJTP

∗
4 (𝑄4, 𝐿𝑟, 𝜋𝑥) = 20313.7.

No matter which payment time we varied, the optimal
profit still occurred in the same condition. Hence, through
controllable lead time and payment time, we could find the
optimal policy in our proposed integrated inventory model.

6. Conclusions and Future Works

In this paper, we discussed the issue of a three-echelon
inventory model with permissible delay in payments under
controllable lead time and backorder consideration to find
out the suitable inventory policy to enhance profit of the sup-
ply chain. Owing to information revolution, the community
can get anything they want easily. It causes that any goods in
the market always have a stable price due to the inspection
by community. Hence, the enterprises are hardly raising the
price on their product. If they want to enhance the profit, to
control the relevant cost and reduce it efficiently is a good
approach to enhance profit for them.

In the manufacture part, the firms could delay the
payment time to obtain additional interest income, and the
proper payment time could be a great benefit for the firms. In
the customer part, length of lead time usually influenced the
price of products. Fast lead time could respond to customer’s
demand quickly, and firms could request customers for high
price. Inevitably, firms must pay the additional cost for
reducing lead time. In the stock part, firms usually adopted
backorder approach to minimize sales loss and offered some
proper discount to save customers.

From the above discussion, we proposed our inventory
model and analyzed its profits, in a three-echelon inventory
model case. First, we observed that integrated profit is
greater than individual’s profit. Also we concluded that the
compressed lead time and appropriate backorder discount are
most benefit factors for entire supply chain in Section 5.1. Sec-
ond, we fixed the backorder ratio and observed the optimal
profit by varying payment time in Sections 5.2 and 5.3. With
the different duration and four cases in EJTP𝑖(𝑄𝑖, 𝐿𝑟, 𝜋𝑥), we
had twelve possible values of profit, and the optimal profit
occurred in EJTP4(𝑄4, 𝐿𝑟, 𝜋𝑥) with normal duration. Finally,
we discover that the profit of supply chain will be different by
compressing lead time and varying payment time.

In the supply chain, with the real data as input parameters,
our proposed model can help decision-makers enhance the
performance of the supply chain by controlling lead time and
payment time. As far as the authors’ knowledge goes, no such
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Table 2: The profit of EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥) and individual.

𝐷 𝐿 𝑟 𝑄1 EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥) 𝐷 𝜋𝑥 𝑄1 EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥)
∗1K 15 55.4568 ∗16366.8507 1K 1 75.5802 14194.8814
1K 20 60.0695 16068.2148 1K 2 75.4669 14278.6926
1K 25 64.8780 15662.1435 1K 3 75.4287 ∗14306.6807
1K 30 69.7979 15139.5899 1K 4 75.4666 14278.6926
1K 35 74.7770 14507.1236 1K 5 75.5802 14194.8814
𝐷 𝐿 𝑟 𝑄1 Supplier 𝐷 𝜋𝑥 𝑄1 Supplier
1K 15∼35 10.0861 3446.6683 1K 1∼5 10.0861 3446.6683
𝐷 𝐿 𝑟 𝑄1 Manufacturer 𝐷 𝜋𝑥 𝑄1 Manufacturer
1K 15∼35 6.3162 −13561.9435 1K 1∼5 6.3162 −13561.9435
𝐷 𝐿 𝑟 𝑄1 Retailer 𝐷 𝜋𝑥 𝑄1 Retailer
1K 15 15.0492 16870.0034 1K 1 104.3418 20571.7856
1K 20 48.3484 19208.4841 1K 2 104.2893 20572.1597
1K 25 68.7905 19972.7063 1K 3 104.2134 ∗20572.2606
1K 30 85.9062 20359.0393 1K 4 104.1140 20572.0941
1K 35 101.2845 ∗20550.3897 1K 5 103.9911 20571.6672
∗Optimal solution of EJTP1.
∗1K = 1000.

Table 3: The value of profit in different conditions by varying𝑋.

𝛽0 = 0.8 𝐿 𝑟0 𝐿𝑟1 𝐿𝑟2

𝑄1 75.43∼85.19 69.34∼78.18 64.2∼72.26
𝑋 8∼107 8∼107 8∼107
EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥) 14306.68∼15847.64 14837.16∼16500.41 14666.7∼16527.05
𝑄2 104.71∼124.4 83.92∼94.93 71.26∼78.76
𝑋 8∼107 8∼107 8∼107
EJTP2(𝑄2, 𝐿𝑟, 𝜋𝑥) 18067.25∼19600.13 17393.2∼18804.44 16317.84∼17750.81
𝑄3 76.1∼74.8 69.88∼68.7 63.62∼64.69
𝑋 7∼0 7∼0 7∼0
EJTP3(𝑄3, 𝐿𝑟, 𝜋𝑥) 14144.93∼14200.08 14691.76∼14711.56 14512.15∼14553.64
𝑄4 87.56∼92.06 75.83∼78.7 69.91∼72.07
𝑋 7∼0 7∼0 7∼0
EJTP4(𝑄4, 𝐿𝑟, 𝜋𝑥)

∗20313.71∼20678.1 18369.36∼18776.31 16028.2∼16488.16
∗Optimal solution of EJTP𝑖𝑗.

Table 4: The value of profit in different conditions by varying 𝑌.

𝛽0 = 0.8 𝐿 𝑟0 𝐿𝑟1 𝐿𝑟2

𝑄1 75.43∼85.19 69.34∼78.18 64.21∼72.26
𝑌 37∼136 31∼130 25∼124
EJTP1(𝑄1, 𝐿𝑟, 𝜋𝑥) 14306.68∼15847.64 14837.2∼16500.4 14666.7∼16527.05
𝑄2 72.43∼104.71 67.02∼83.92 62.45∼71.26
𝑌 36∼0 30∼0 24∼0
EJTP2(𝑄2, 𝐿𝑟, 𝜋𝑥) 13749.61∼18067.25 14326.88∼17393.2 14198.61∼16317.84
𝑄3 76.1 ∼86.16 69.87∼78.94 64.69∼72.95
𝑌 37∼136 30∼129 24∼123
EJTP3(𝑄3, 𝐿𝑟, 𝜋𝑥) 14144.93∼15664.35 14691.76∼16336.02 14553.64∼16399.41
𝑄4 59.79∼87.55 59.89∼75.83 60.69∼69.91
𝑌 36∼0 30∼0 24∼0
EJTP4(𝑄4, 𝐿𝑟, 𝜋𝑥)

∗16859.1∼20313.7 15392.02∼18369.36 13701.0∼16028.2
∗Optimal solution of EJTP𝑖𝑗.
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Figure 4: The value of profit by change 𝑋 in EJTP𝑖, for 𝑖 = 1, 2, 3, 4.

type of three-echelon inventory model involving controllable
lead time has yet been discussed in relevant literatures.These
are the new major contributions of the present paper.

Finally, it is our hope that this work will encourage future
work in this area and related areas. And we will improve
our further research in more real-world complexities, such as
the concept of present value, multiple vendor and buyer, and
apply the fuzzy approach into the proposed models, and we
will cooperate real case to get the actual data that can illustrate
real numerical examples to our future research.

Appendices

A. Inventory Level

See Figures 1, 2, and 3.

B. Profit Variation

See Figure 4.

C. Proof

The following test can be applied at a nondegenerate critical
point 𝑥. If the Hessian is positive definite at 𝑥, then 𝑓

attains a local minimum at 𝑥. If the Hessian is negative
definite at 𝑥, then 𝑓 attains a local maximum at 𝑥. If the

Hessian has both positive and negative eigenvalues, then 𝑥

is a saddle point for 𝑓 (this is true even if 𝑥 is degenerate).
Otherwise the test is inconclusive. If all the principal minor
of H(|H11|, |H22| and |H33|) > 0, the Hessian matrix H is
positive definite at (𝑄𝑖, 𝐿𝑟, 𝜋𝑥); it also means there will be
a local minimum at (𝑄𝑖, 𝐿𝑟, 𝜋𝑥); if all the principal minor
of H(|H11|, |H22| and |H33|) < 0, the Hessian matrix H is
negative definite at (𝑄𝑖, 𝐿𝑟, 𝜋𝑥); it also means there will be a
local maximum at (𝑄𝑖, 𝐿𝑟, 𝜋𝑥).

The Hessian matrix H of EJTP𝑖(𝑄𝑖, 𝐿𝑟, 𝜋𝑥) can be shown
as

H

=

[

[

[

[

[

[

[

[

𝜕2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
𝜕𝑄2
𝑖

𝜕2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
𝜕𝑄𝜕𝐿𝑟

𝜕2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
𝜕𝑄𝜕𝜋𝑥

𝜕2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
𝜕𝐿𝑟𝜕𝑄

𝜕2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
𝜕𝐿𝑟
2

𝜕2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
𝜕𝜋𝑥𝜕𝐿𝑟

𝜕2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
𝜕𝜋𝑥𝜕𝑄

𝜕2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
𝜕𝐿𝑟𝜕𝜋𝑥

𝜕2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)
𝜕𝜋2𝑥

]

]

]

]

]

]

]

]

,

(C.1)

where

𝜕
2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

𝜕𝑄
2
𝑖

= (−2𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟
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+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) )) × (𝑄
3
𝑖 )
−1

−

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

𝑄
3
𝑖

,

𝜕
2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

𝜕𝐿𝑟
2

=

𝐷𝜎𝜑 (𝑘) [(𝛽0/𝜋0) 𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

4𝑄𝐿
3/2
𝑟

−

3𝐷ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

8𝑄√𝐿𝑟

,

𝜕
2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

𝜕𝜋
2
𝑥

=

− (2𝛽0𝐷𝜎√𝐿𝑟𝜑 (𝑘))

𝑄𝑖𝜋0

,

𝜕
2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

𝜕𝑄𝜕𝐿𝑟

=

𝜕
2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

𝜕𝐿𝑟𝜕𝑄

=

𝐷𝜎𝜑 (𝑘) [(𝛽0/𝜋0) 𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

2𝑄
2
√𝐿𝑟

−

3𝐷√𝐿𝑟ℎ𝑟
𝑛𝑟𝑞𝜎𝜑 (𝑘)

4𝑄
2

,

𝜕
2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

𝜕𝑄𝜕𝜋𝑥

=

𝜕
2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

𝜕𝜋𝑥𝜕𝑄

=

− (𝐷√𝐿𝑟𝜎𝜑 (𝑘) (𝛽0 − 2𝛽0𝜋𝑥/𝜋0))

𝑄
2

,

𝜕
2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

𝜕𝐿𝑟𝜕𝜋𝑥

=

𝜕
2EJTP𝑖 (𝑄𝑖, 𝐿𝑟, 𝜋𝑥)

𝜕𝜋𝑥𝜕𝐿𝑟

=

𝐷𝜎𝜑 (𝑘) (𝛽0 − 2𝛽0𝜋𝑥/𝜋0)

2𝑄√𝐿𝑟

.

(C.2)

Next, we can evaluate the principal minor of H at point
(𝑄𝑖, 𝐿𝑟, 𝜋𝑥); the first principal minor of H is

󵄨
󵄨
󵄨
󵄨
H11

󵄨
󵄨
󵄨
󵄨

= ( − 2𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) )) × (𝑄
3
𝑖 )
−1

−

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

𝑄
3
𝑖

< 0.

(C.3)

The second principal minor of H is

󵄨
󵄨
󵄨
󵄨
H22

󵄨
󵄨
󵄨
󵄨

= [

𝐷𝜎𝜑 (𝑘) ((𝛽0/𝜋0) 𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥)

4𝑄𝑖𝐿
3/2
𝑟

−

3𝐷ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

8𝑄𝑖√𝐿𝑟

]

× −[(2𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) )) × (𝑄
3
𝑖 )
−1

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

𝑄
3
𝑖

]

− [

𝐷𝜎𝜑 (𝑘) ((𝛽0/𝜋0) 𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥)

2𝑄
2
𝑖√𝐿𝑟

−

3𝐷√𝐿𝑟ℎ𝑟
𝑛𝑟𝑞𝜎𝜑 (𝑘)

4𝑄
2
𝑖

]

2

< 0.

(C.4)

And the third principal minor of H is

󵄨
󵄨
󵄨
󵄨
H33

󵄨
󵄨
󵄨
󵄨

=

1

Q4
{ −

1

4

1

𝐿𝑟

Q2𝐷2𝜎2𝜑 (𝑘)2(𝛽0 −
2𝛽0𝜋𝑥

𝜋0

)

2

× (2𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) ) × (𝑄
3
𝑖 )
−1

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

𝑄
3
𝑖

)

− 𝑄
2
𝐷
2
𝜎
2
𝜑 (𝑘)
2
(𝛽0 −

2𝛽0𝜋𝑥

𝜋0

)

2

× (

𝐷[(𝛽0/𝜋0) 𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥] 𝜎√𝐿𝑟𝜑 (𝑘)

2𝑄
2
𝑖√𝐿𝑟

+

3𝐷√𝐿𝑟ℎ𝑟
𝑛𝑟𝑞𝜎𝜑 (𝑘)

4𝑄
2
𝑖

)
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− 𝐿𝑟𝐷
2
𝜎
2
𝜑 (𝑘)
2
(𝛽0 −

2𝛽0𝜋𝑥

𝜋0

)

2

× (

𝐷[(𝛽0/𝜋0) 𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥] 𝜎√𝐿𝑟𝜑 (𝑘)

4𝑄𝑖𝐿
3/2
𝑟

+

3𝐷ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

8𝑄𝑖√𝐿𝑟

)

−

1

𝜋0

𝑄
3
2𝛽0𝐷𝜎√𝐿𝑟𝜑 (𝑘)

× [ (2𝐷(𝐴 𝑠 + 𝐴𝑚 + 𝐹𝑚 + 𝐴𝑟 + 𝐹𝑟

+ [

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥]

× 𝜎√𝐿𝑟𝜑 (𝑘) + 𝐶 (𝐿) ) × (𝑄
3
𝑖 )
−1

+

𝐷𝐿
3/2
𝑟 ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

𝑄
3
𝑖

)

× (

𝐷[(𝛽0/𝜋0) 𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥] 𝜎√𝐿𝑟𝜑 (𝑘)

4𝑄𝑖𝐿
3/2
𝑟

+

3𝐷ℎ𝑟𝑛𝑟𝑞𝜎𝜑 (𝑘)

8𝑄𝑖√𝐿𝑟

)

+ (

𝐷[(𝛽0/𝜋0) 𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥] 𝜎√𝐿𝑟𝜑 (𝑘)

2𝑄𝑖
2
√𝐿𝑟

+

3𝐷√𝐿𝑟ℎ𝑟
𝑛𝑟𝑞𝜎𝜑 (𝑘)

4𝑄
2
𝑖

)]} ,

(C.5)

where

𝛽0

𝜋0

𝜋
2
𝑥 + 𝜋0 − 𝛽0𝜋𝑥 = 𝜋0 (4 − 𝛽0) . (C.6)

With 0 < 𝛽0 < 1, we have (C.6) > 0 and, substituting it
into (C.5), we can obtain |H33| < 0. Therefore, from (C.3) to
(C.5), it follows that the Hessian matrix H is negative definite
at (𝑄𝑖, 𝐿𝑟, 𝜋𝑥).
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