
Research Article
A Processor-Sharing Scheduling Strategy for NFV Nodes

Giuseppe Faraci, Alfio Lombardo, and Giovanni Schembra

Dipartimento di Ingegneria Elettrica, Elettronica e Informatica (DIEEI), University of Catania, 95123 Catania, Italy

Correspondence should be addressed to Giovanni Schembra; schembra@dieei.unict.it

Received 2 November 2015; Accepted 12 January 2016

Academic Editor: Xavier Hesselbach

Copyright © 2016 Giuseppe Faraci et al.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The introduction of the two paradigms SDN and NFV to “softwarize” the current Internet is making management and resource
allocation two key challenges in the evolution towards the Future Internet. In this context, this paper proposes Network-Aware
Round Robin (NARR), a processor-sharing strategy, to reduce delays in traversing SDN/NFV nodes. The application of NARR
alleviates the job of the Orchestrator by automatically working at the intranode level, dynamically assigning the processor slices to
the virtual network functions (VNFs) according to the state of the queues associated with the output links of the network interface
cards (NICs). An extensive simulation set is presented to show the improvements achieved with respect to two more processor-
sharing strategies chosen as reference.

1. Introduction

In the last few years the diffusion of new complex and efficient
distributed services in the Internet is becoming increasingly
difficult because of the ossification of the Internet protocols,
the proprietary nature of existing hardware appliances, the
costs, and the lack of skilled professionals formaintaining and
upgrading them.

In order to alleviate these problems, two new network
paradigms, SoftwareDefinedNetworks (SDN) [1–5] andNet-
work Functions Virtualization (NFV) [6, 7], have been
recently proposed with the specific target of improving the
flexibility of network service provisioning and reducing the
time to market of new services.

SDN is an emerging architecture that aims at making the
network dynamic, manageable, and cost-effective, by decou-
pling the system that makes decisions about where traffic
is sent (the control plane) from the underlying system that
forwards traffic to the selected destination (the data plane). In
this way the network control becomes directly programmable
and the underlying infrastructure is abstracted for applica-
tions and network services.

NFV is a core structural change in the way telecommuni-
cation infrastructure is deployed. The NFV initiative started
in late 2012 by some of the biggest telecommunications ser-
vice providers, which formed an Industry Specification

Group (ISG) within the European Telecommunications Stan-
dards Institute (ETSI). The interest has grown, involving
today more than 28 network operators and over 150 technol-
ogy providers from across the telecommunications industry
[7]. The NFV paradigm leverages on virtualization technolo-
gies and commercial off-the-shelf programmable hardware,
such as general-purpose servers, storage, and switches, with
the final target of decoupling the software implementation of
network functions from the underlying hardware.

The coexistence and the interaction of both NFV and
SDN paradigms is giving to the network operators the pos-
sibility of achieving greater agility and acceleration in new
service deployments, with a consequent considerable reduc-
tion of both Capital Expenditure (CAPEX) and Operational
Expenditure (OPEX) [8].

One of the main challenging problems in deploying an
SDN/NFV network is an efficient design of resource alloca-
tion and management, functions that are in charge of the
network Orchestrator. Although this task is well covered in
data center and cloud scenarios [9, 10], it is currently a chal-
lenging problem in a geographic networkwhere transmission
delays cannot be neglected, and transmission capacities of
the interconnection links are not comparable with the case
of above scenarios. This is the reason why the problem of
orchestrating an SDN/NFV network is still open and attracts
a lot of research interest from both academia and industry.

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2016, Article ID 3583962, 10 pages
http://dx.doi.org/10.1155/2016/3583962

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194209565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Journal of Electrical and Computer Engineering

More specifically, the whole problem of orchestrating an
SDN/NFV network is very complex because it involves a
design work at both internode and intranode levels [11, 12].
At the internode level, and in all the cases where the time
between each execution is significantly greater than the time
to collect, compute, and disseminate results, the application
of a centralized approach is practicable [13, 14]. In these cases,
in fact, taking into consideration both traffic characterization
and required level of quality of service (QoS), the Orches-
trator is able to decide in a centralized manner how many
instances of the same function have to be run simultaneously,
the network nodes that have to execute them, and the routing
strategies that allow traffic flows to cross the nodes where the
requested network functions are running.

Instead, centralizing a strategy dealing with operations
that require dynamic reconfiguration of network resources
is actually unfeasible to be executed by the Orchestrator for
problems of resilience and scalability. Therefore, adaptive
management operations with short timescales require a dis-
tributed approach. The authors of [15] propose a framework
to support adaptive resource management operations, which
involve short timescale reconfiguration of network resources,
showing how requirements in terms of load-balancing and
energy management [16–18] can be satisfied. Another work
in the same direction is [19] that proposes a solution for the
consolidation of VMs on local computing resources, exclu-
sively based on local information. The work in [20] aims at
alleviating the inter-VM network latency defining a hyper-
visor scheduler algorithm that is able to take into consider-
ation the allocation of the resources within a consolidated
environment, scheduling VMs to reduce their waiting latency
in the run queue. Another approach is applied in [21], which
introduces a policy to manage the internal on/off switching
of virtual network functions (VNFs) in NFV-compliant
Customer Premises Equipment (CPE) devices.

The focus of this paper is on another fundamental prob-
lem that is inherent to resource allocation within an SDN/
NFV node, that is, the decision of the percentage of CPU
to be assigned to each VNF. If at a first glance this could
show a classical problem of processor sharing that has been
widely explored in the past literature [15, 22, 23], actually it
is much more complex because performance can be strongly
improved by leveraging on the correlation with the output
queues associated with the network interface cards (NICs).

With all this in mind, the main contribution of this paper
is the definition of a processor-sharing policy, in the following
referred to asNetwork-Aware Round Robin (NARR), which is
specific for SDN/NFVnodes. Starting from the consideration
that packets that have received the service of a network
function from a virtual machine (VM) running on a given
node are enqueued to wait for transmission through a given
NIC, the proposed strategy dynamically changes the slices
of the CPU assigned to each VNF according to the state of
the output NIC queues. More specifically, the NARR strategy
gives a larger CPU slice to serve packets that will leave the
node through the NIC that is currently less loaded, in such a
way as to minimize wastes of the NIC output link capacities,
also minimizing the overall delay experienced by packets
traversing nodes that implement NARR.

As a side contribution, the paper calculates an on-off
model for the traffic leaving the SDN/NFV node on each NIC
output link.Thismodel can be used as a building block for the
design and performance evaluation of an entire network.

The paper is structured as follows. Section 2 describes the
node architecture. Section 3 introduces the NARR strategy.
Section 4 presents a case study and shows some numerical
results. Finally, Section 5 draws some conclusions and dis-
cusses some future work.

2. System Description

The target of this section is the description of the system we
consider in the rest of the paper. It is an SDN/NFV node as
the one considered in [11, 12], where we will apply the NARR
strategy. Its architecture, shown in Figure 1(a), is compliant
with the ETSI Specifications [24]. It is composed of three dif-
ferent domains, namely, theCompute domain, theHypervisor
domain, and the Infrastructure Network domain. The Com-
pute domain provides the computational and storage hard-
ware resources that allow the node to host the VNFs. Thanks
to the computing and storage virtualization provided by the
Hypervisor domain, a VM can be created, migrated from
one node to another one, and halted, in order to optimize the
deployment according to specific performance parameters.
Communications among theVMs, and between theVMs and
the external environment, are provided by the Infrastructure
Network domain.

The SDN/NFVnode is remotely controlled by theOrches-
trator, whose architecture is shown in Figure 1(b). It is con-
stituted by three main blocks. The Orchestration Engine exe-
cutes all the algorithms and the strategies to manage and
orchestrate the whole network. After each decision, the
Orchestration Engine requests that the NFV Coordinator in-
stantiates, migrates, or halts VMs and consequently requests
that the SDN Controller modifies the flow tables of the SDN
switches in the network in such a way that traffic flows can
traverse VMs hosting the requested VNFs.

With this in mind, a functional architecture of the NFV
node is represented in Figure 2. Its main components are the
Processor, whichmanages the Compute domain and hosts the
Hypervisor domain, and the Network Card Interfaces (NICs)
with their queues, which constitute the “Network Hardware”
block in Figure 1.

Let𝑀 be the number of virtual network functions (VNFs)
that are running in the node, and let 𝐿 be the number of
output NICs. In order to simplify notation, in the following
we will assume that all the NICs have the same characteristics
in terms of buffer capacity and output rate. So, let 𝐾(NIC) be
the size of the queue associated with each NIC, that is, the
maximum number of packets that each queue can contain,
and let 𝜇(NIC) be the transmission rate of the output link asso-
ciated with each NIC, expressed in bit/s.

The Flow Distributor block has the task of routing each
entering flow towards the function required by the flow.
It is a software SDN switch that can be implemented, for
example, with OpenvSwitch [25]. It routes the flows to the
VMs running the requested VNFs according to the control
messages received by the SDN Controller residing in the

Journal of Electrical and Computer Engineering 3

Hypervisor
domain

Virtual
computing

Virtual
storage Virtual network

Computing
hardware

Storage
hardware Network hardware

NFV node

Virtualization layer

Infrastructure
Network
domain

Compute
domain

NIC NIC NIC

VNF VNF VNF· · ·

(a) NFV node

Orchestration
engine

NFV
coordinator

SDN controller

NFVI
nodes

(b) Orchestrator

Figure 1: Network function virtualization infrastructure.
Pr

oc
es

so
r

Fl
ow

 d
ist

rib
ut

or

Processor Arbiter

F1

FM

𝜇(F)
[1]

𝜇(F)
[M]

N1

NL

...
...

𝜇(N)

𝜇(N)

Figure 2: NFV node functional architecture.

Orchestrator. The most common protocol that can be used
for the communications between the SDNController and the
Orchestrator is OpenFlow [26].

Let 𝜇(𝑃) be the total processing rate of the processor,
expressed in packets/s.This rate is shared among all the active
functions according to a processor rate scheduling strategy.
Let 𝜇(𝐹) be the array whose generic element, 𝜇(𝐹)

[𝑚]
, with 𝑚 ∈

{1, . . . ,𝑀}, is the portion of the processor rate assigned to the
VM implementing the function 𝐹𝑚. Of course we have

𝑀

∑

𝑚=1

𝜇
(𝐹)

[𝑚]
= 𝜇
(𝑃)
. (1)

Once a packet has been served by the required function,
it is sent to one of the NICs to exit from the node. If the
NIC is transmitting another packet, the arriving packets are
enqueued in the NIC queue. We will indicate the queue asso-
ciated with the generic NIC 𝑙 as 𝑄(NIC)

𝑙
.

In order to implement the NARR strategy proposed in
this paper, we realize the block relative to each functionwith a
set of 𝐿 parallel queues, in the following referred to as inside-
function queues, as shown in Figure 3 for the generic function
𝐹𝑚. The generic 𝑙th inside-function queue of the function 𝐹𝑚,
indicated as𝑄𝑚,𝑙 in Figure 3, is used to enqueue packets that,
after receiving the service of the function 𝐹𝑚, will leave the
node through the NIC 𝑙. Let 𝐾(𝐹)Ins be the size of each inside-
function queue. Each inside-function queue of the generic
function 𝐹𝑚 receives a portion of the processor rate assigned
to that function. Let 𝜇(𝐹Ins)

[𝑚,𝑙]
be the portion of the processor rate

assigned to the queue 𝑄𝑚,𝑗 of the function 𝐹𝑚. Of course, we
have

𝐿

∑

𝑙=1

𝜇
(𝐹Ins)

[𝑚,𝑙]
= 𝜇
(𝐹)

[𝑚]
. (2)

4 Journal of Electrical and Computer Engineering

...

...

Qm,1

Qm,l

Qm,L

Fm

𝜇
(FInt)
[m,1]

𝜇
(FInt)

(FInt)

[m,l]

𝜇
[m,L]

Figure 3: Block diagram of the generic function 𝐹𝑚.

The portion of processor rate associated with each inside-
function queue is dynamically changed by the Processor Arbi-
ter according to the NARR strategy described in Section 3.

3. NARR Processor-Sharing Strategy

The NARR (Network-Aware Round Robin) processor-shar-
ing strategy observes the state of both the inside-function
queues and the NIC queues, with the goal of reducing as far
as possible the inactivity periods of the NIC output links. As
already introduced in the Introduction, its definition starts
from the fact that packets that have received the service
of a VNF are enqueued to wait for transmission through a
given NIC. So, in order to avoid output link capacity waste,
NARR dynamically changes the slices of the CPU assigned to
each VNF, and in particular to each inside-function queue,
according to the state of the output NIC queues, assigning
larger CPU slices to serve packets that will leave the node
through less-loaded NICs.

More specifically, the Processor Arbiter decides the pro-
cessor rate portions according to two different steps.

Step 1 (assignment of the processor rate portion to the aggre-
gation of queues whose output is a specific NIC). This step
meets the target of the proposed strategy that is to reduce,
as much as possible, underutilization of the NIC output links
and, as a consequence, delays in the relative queues. To this
purpose, let us consider a virtual queue that contains all the
packets that are stored in all the inside-function queues 𝑄𝑚,𝑙,
for each𝑚 ∈ [1,𝑀], that is, all the packets that will leave the
node through the NIC 𝑙. Let us indicate this virtual queue as
𝑄
(→NIC𝑙)
Aggr , and its service rate as 𝜇(→NIC𝑙)

Aggr . Of course, we have

𝜇
(→NIC𝑙)
Aggr =

𝑀

∑

𝑚=1

𝜇
(𝐹Ins)

[𝑚,𝑙]
. (3)

With this in mind, the idea is to give a higher processor
slice to the inside-function queues whose flows are directed
to the NICs that are emptying.

Taking into account the goal of privileging the flows that
will leave the node through underloaded NICs, the Processor
Arbiter calculates 𝜇(→NIC𝑙)

Aggr as follows:

𝜇
(→NIC𝑙)
Aggr =

𝑞ref − 𝑆
(NIC)
𝑙

∑
𝐿

𝑗=1 {𝑞ref − 𝑆
(NIC)
𝑗

}

𝜇
(𝑃)
, (4)

where 𝑆(NIC)
𝑙

represents the state of the queue associated with
the NIC 𝑙, while 𝑞ref is defined as follows:

𝑞ref = min{𝛼 ⋅max
𝑗
(𝑆
(NIC)
𝑗) , 𝐾

(NIC)
} . (5)

The term 𝑞ref is a reference target value calculated from
the state of the NIC queue that has the highest length,
amplified with a coefficient 𝛼, and truncated to themaximum
queue size 𝐾(NIC). It is determined in such a way that, if we
consider 𝛼 = 1, the NIC queue that has the highest length
does not receive packets from the inside-function queues
because the service rate of them is set to zero; the other queues
receive packets with a rate that is proportional to the distance
between their length and the length of the most overloaded
NIC queue.However, through an extensive set of simulations,
we deduced that setting 𝛼 = 1 causes bad performance
because there is always a group of inside-function queues
that are not served. Instead, all the 𝛼 values in the interval
]1, 2] give almost equivalent performance. For this reason,
in the numerical analysis presented in Section 4, we have set
𝛼 = 1.2.

Step 2 (assignment of the processor rate portion to each
inside-function queue). Let us consider the generic 𝑙th
inside-function queue of the function 𝐹𝑚, that is, the queue
𝑄𝑚,𝑙. Its service rate is calculated as being proportional to the
current state of this queue in comparison with the other 𝑙th
queues of the other functions. To this purpose, let us indicate
the state of the virtual queue𝑄(→NIC𝑙)

Aggr as 𝑆(→NIC𝑙)
Aggr . Of course,

it can be calculated as the sum of the states of all the inside-
function queues 𝑄𝑚,𝑙, for each𝑚 ∈ [1,𝑀]: that is,

𝑆
(→NIC𝑙)
Aggr =

𝑀

∑

𝑘=1

𝑆
(𝐹Ins)

𝑘,𝑙
. (6)

So, the service rate of the inside-function queue 𝑄𝑚,𝑙 is
determined as a fraction of the service rate assigned at the
first step to the virtual queue 𝑄(→NIC𝑙)

Aggr , 𝜇(→NIC𝑙)
Aggr , as follows:

𝜇
(𝐹Ins)

[𝑚,𝑙]
=

𝑆
(𝐹Ins)

𝑚,𝑙

𝑆
(→NIC𝑙)
Aggr

𝜇
(→NIC𝑙)
Aggr . (7)

Of course, if at any time an inside-function queue remains
empty, the processor rate portion assigned to it will be shared
among the other queues proportionally to the processor
portions previously assigned. Likewise, if at some instant an
empty queue receives a new packet, the previous processor
rate portion is reassigned to that queue.

Journal of Electrical and Computer Engineering 5

4. Case Study

In this sectionwe present a numerical analysis of the behavior
of an SDN/NFV node that applies the proposed NARR
processor-sharing strategy, with the target of evaluating the
achieved performance. To this purpose, we will consider
two other processor-sharing strategies as reference, in the
following referred to as round robin (RR) and queue-length
weighted round robin (QLWRR). In both the reference cases,
the node has the same 𝐿 NIC queues, but it has only 𝑀

processor queues, one for each function. Each of the 𝑀

queues has a size of 𝐾(𝐹) = 𝐿 ⋅ 𝐾
(𝐹)

Ins , where 𝐾
(𝐹)

Ins represents
the size of each internal function queue, already defined so
far for the proposed strategy.

TheRR strategy applies the classical round robin schedul-
ing policy to serve the 𝑀 function queues; that is, it serves
each function queue with a rate 𝜇(𝐹)RR = 𝜇

(𝑃)
/𝑀.

The QLWRR strategy, on the other hand, serves each
function queue with a rate that is proportional to the queue
length; that is,

𝜇
(𝐹𝑚)

QLWRR =
𝑆
(𝐹𝑚)

∑
𝑀

𝑘=1 𝑆
(𝐹𝑘)

𝜇
(𝑃)
, (8)

where 𝑆(𝐹𝑚) is the state of the queue associated with the func-
tion 𝐹𝑚.

4.1. Parameter Settings. In this numerical analysis, we con-
sider a node with 𝑀 = 4 VNFs, and 𝐿 = 3 output NICs.
We loaded the node with a balanced traffic constituted by
𝑁𝐹 = 12 flows, each characterized by a different 2-uple
{𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑁𝐹𝑉, 𝑜𝑢𝑡𝑝𝑢𝑡 𝑁𝐼𝐶}. Each flow has been gener-
ated with an on-off model characterized by exponentially
distributed on and off periods. When a flow is in off state,
no packets arrive to the node from it; instead, when it is in
on state, packets arrive with an average rate 𝜆ON. Each packet
is assumed with an exponential distributed size with a mean
of 1 kbyte. In all the simulations we have considered the same
on-off cycle duration, 𝛿 = 𝑇OFF + 𝑇ON = 5msec, while we
have varied the burstiness. Burstiness of on-off sources is
defined as

𝑏 =
𝜆ON
𝜆Mean

, (9)

where 𝜆Mean is the mean emission rate. Now, indicating the
probability of the ON state as 𝜋ON, and taking into account
that 𝜆Mean = 𝜆ON ⋅ 𝜋ON and 𝜋ON = 𝑇ON/(𝑇OFF + 𝑇ON), we
have

𝑏 =
𝑇OFF + 𝑇ON

𝑇ON
. (10)

In our analysis, the burstiness has been varied in the range
[2, 22]. Consequently, we have derived the mean durations of
the off and on periods, as follows:

𝑇ON =
𝛿

𝑏
,

𝑇OFF = 𝛿 − 𝑇ON.

(11)

Finally, in order to maintain the same mean packet rate
for different values of𝑇OFF and𝑇ON, we have assumed that 75
packets are transmitted, on average: that is, 𝜆ON = 75/𝑇ON.
The resulting mean emission rate is 𝜆Mean = 122.9Mbit/s.

As far as the NICs are concerned, we have considered an
output rate of 𝜇(NIC)

= 980Mbit/s, so having a utilization
coefficient on each NIC of 𝜌(NIC)

= 0.5, and a queue size
𝐾
(NIC)

= 3000 packets. Instead, regarding the processor, we
considered a size of each inside-function queue of 𝐾(𝐹)Ins =

3000 packets. Finally, we have analyzed two different proces-
sor cases. In the first case we considered a processor that is
able to process𝜇(𝑃) = 306 kpackets/s, while in the second case
we assumed a processor rate of 𝜇(𝑃) = 204 kpackets/s. There-
fore, defining the processor utilization coefficient as follows:

𝜌
(𝑃)

=
𝑁𝐹 ⋅ 𝜆Mean

𝜇(𝑃)
(12)

with𝑁𝐹 ⋅ 𝜆Mean being the total mean arrival rate to the node,
the two considered cases are characterized by a processor uti-
lization coefficient of 𝜌(𝑃)Low = 0.6 and 𝜌

(𝑃)

High = 0.9, respectively.

4.2. Numerical Results. In this section we present some
results achieved by discrete-event simulations. The simu-
lation tool used in the paper is publicly available in [27].
We first present a temporal analysis of the main variables
characterizing the SDN/NFV node, and then we show a
performance comparison ofNARRwith the two strategies RR
and QLWRR, taken as a reference.

For the temporal analysis we focus on a short time
interval of 720 𝜇sec, in order to be able to clearly highlight
the evolution of the considered processes. We have loaded
the node with an on-off traffic like the one described in
Section 4.1, with a burstiness 𝑏 = 7.

Figures 4, 5, and 6 show the time evolution of the length
of the queues associated with the NICs, the processor slice
assigned to each virtual queue loading each NIC, and the
length of the same virtual queues. We can subdivide the
considered time interval into three different periods.

In the first period, ranging from the instants 0.1063 and
0.1067, from Figure 4 we can notice that the NIC queue𝑄(NIC)

1

has a greater length than the queue 𝑄(NIC)
3 , while 𝑄(NIC)

2 is
empty. For this reason in this period, as shown in Figure 5,
the processor is shared between𝑄(→NIC1)

Aggr and𝑄(→NIC3)
Aggr , and

the slice assigned to serve 𝑄(→NIC3)
Aggr is higher, in such a way

that the two queue lengths 𝑄(NIC)
1 and 𝑄(NIC)

3 reach the same
value, situation that happens at the end of the first period,
around the instant 0.1067. During this period, the behavior
of both the virtual queues𝑄(→NIC1)

Aggr and𝑄(→NIC3)
Aggr in Figure 6

remains flat, showing the fact that the received processor rates
are able to balance the arrival rates.

At the beginning of the second period that ranges
between the instants 0.1067 and 0.10693, the processor rate
assigned to the virtual queue 𝑄(→NIC3)

Aggr has become not suffi-
cient to serve the amount of arriving traffic, and so the virtual
queue 𝑄(→NIC3)

Aggr increases its length, as shown in Figure 6.

6 Journal of Electrical and Computer Engineering
Q

ue
ue

 le
ng

th
 (p

ac
ke

ts)

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

0

10

20

30

40

50

60

70

S(NIC)
1

S(NIC)
2

S(NIC)
3

S(NIC)
3

Figure 4: Lenght evolution of the NIC queues.

Pr
oc

es
so

r r
at

e (
kp

ac
ke

ts/
s)

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

0

20

40

60

80

100

120

140

160

180

200

220

𝜇
(→NIC1)
Aggr

𝜇
(→NIC2)
Aggr

𝜇
(→NIC3)
Aggr

𝜇
(→NIC3)
Aggr

Figure 5: Packet rate assigned to the virtual queues.

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts)

0

50

100

150

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

S
(→NIC1)
Aggr

S
(→NIC2)
Aggr

S
(→NIC3)
Aggr

Figure 6: Lenght evolution of the virtual queues.

During this second period, the processor slices assigned to
the two queues𝑄(→NIC1)

Aggr and𝑄(→NIC3)
Aggr are adjusted in such a

way that 𝑄(NIC)
1 and 𝑄(NIC)

3 remain with comparable lengths.
The last period starts at the instant 0.10693, characterized

by the fact that the aggregated queue 𝑄(→NIC2)
Aggr leaves the

empty state, and therefore participates in the processor-shar-
ing process. Since the NIC queue 𝑄(NIC)

2 is low-loaded, as
shown in Figure 4, the largest slice is assigned to𝑄(→NIC2)

Aggr in
such a way that𝑄(NIC)

2 can reach the same length of the other
two NIC queues as soon as possible.

Now, in order to show how the second step of the pro-
posed strategy works, we present the behavior of the inside-
function queues whose output is sent to theNIC queue𝑄(NIC)

3

during the same short time interval considered so far. More
specifically, Figures 7 and 8 show the length of the considered
inside-function queues, and the processor slices assigned to
them, respectively. The behavior of the queue 𝑄2,3 is not
shown because it is empty in the considered period. Aswe can
observe from the above figures, we can subdivide the interval
into four periods:

(i) The first period, ranging in the interval [0.1063,
0.10657] is characterized by an empty state of the
queue 𝑄3,3. Thus, in this period, the processor slice
assigned to the aggregated queue 𝑄(→NIC3)

Aggr is shared
by 𝑄1,3 and 𝑄4,3, only.

(ii) During the second period, ranging in the interval
[0.10657, 0.1067], 𝑄1,3 is scarcely loaded (in particu-
lar it is empty in the second part of this period), and
so the processor slice assigned to 𝑄3,3 is increased.

(iii) In the third period, ranging between 0.1067 and
0.10693, all the queues increase and equally share the
processor.

(iv) Finally, in the last period, starting at the instant
0.10693, as already observed in Figure 5, the processor
slice assigned to the aggregated queue 𝑄(→NIC3)

Aggr is
suddenly decreased, and consequently the slices as-
signed to the queues𝑄1,3,𝑄3,3, and𝑄4,3 are decreased
as well.

The steady-state analysis is presented in Figures 9, 10,
and 11, which show the mean delay in the inside-function
queues, in the NIC queues, and the durations of the off-
and on-states on the output links. The values reported in
all the figures have been derived as the mean values of the
results of many simulation experiments, using Student’s 𝑡-
distribution and with a 95% confidence interval.The number
of experiments carried out to evaluate each numerical result
has been automatically decided by the simulation tool with
the requirement of achieving a confidence interval less than
0.001 of the estimated mean value. To this purpose, the
confidence interval is calculated at the end of each run,
and simulation is stopped only when the confidence interval
matches the maximum error requirement. The duration of
each run has been chosen in such a way that the sample
standard deviation is so low that less than 30 runs are enough
to match the requirement.

Journal of Electrical and Computer Engineering 7

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts)

0

5

10

15

20

25

30

35

40

45

50

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

(a) Queue𝑄1,3

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts)

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

0

5

10

15

20

25

30

35

40

45

50

(b) Queue𝑄3,3

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts)

0

5

10

15

20

25

30

35

40

45

50

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

(c) Queue𝑄4,3

Figure 7: Length evolution of the inside-function queues 𝑄𝑚,3, for each𝑚 ∈ [1,𝑀].

The figures compare the results achieved with the pro-
posed strategy with the ones obtained with the two strategies
RR and QLWRR. As said so far, results have been obtained
against the burstiness, and for two different values of the
utilization coefficient: that is, 𝜌(𝑃)Low = 0.6 and 𝜌

(𝑃)

High = 0.9.
As expected, the mean lengths of the processor queues

and the NIC queues increase with both the burstiness and the
utilization coefficient.

Instead, we can note that themean length of the processor
queues is not affected by the applied policy. In fact, packets
requiring the same function are enqueued in a unique queue
and served with a rate 𝜇(𝑃)/4, when RR or QLWRR strategies
are applied, while, when the NARR strategy is used, they are
split into 12 different queues and served with a rate 𝜇(𝑃)/12. If
in a classical queueing theory [28] the second case is worse
than the first one because of the presence of service rate
wastes during the more probable periods of empty queues,
this is not the case here because the processor capacity of an
empty queue is dynamically reassigned to the other queues.

The advantage of the NARR strategy is evident in Fig-
ure 10, where the mean delay in the NIC queues is repre-
sented. In fact, we can observe that, with only giving more
processor rate to the most loaded processor queues (with the
QLWRR strategy), performance improvements are negligible,
while applying the NARR strategy we are able to obtain a
delay reduction of about 12% in the case of amore performant
processor (𝜌(𝑃)Low = 0.6), reaching the 50% when the processor
works with a 𝜌(𝑃)High = 0.9. The performance gain achieved
with the NARR strategy increases with burstiness and the
processor load, conditions that are both likely. In fact, the first
condition is due to the high burstiness of the Internet traffic;
the second one is true as well because the processor should
be not overdimensioned for economic purposes; otherwise,
if overdimensioned, it can be controlled with a processor rate
management policy like the one presented in [29] in order to
save energy.

Finally, Figure 11 shows the mean durations of the on-
and off-periods on the node output links. Only one curve is

8 Journal of Electrical and Computer Engineering

Pr
oc

es
so

r r
at

e (
kp

ac
ke

ts/
s)

0

20

40

60

80

100

120

140

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

(a) Processor rate 𝜇(𝐹Int)
[1,3]

Pr
oc

es
so

r r
at

e (
kp

ac
ke

ts/
s)

0

20

40

60

80

100

120

140

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

(b) Processor rate 𝜇(𝐹Int)
[3,3]

Pr
oc

es
so

r r
at

e (
kp

ac
ke

ts/
s)

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

0

20

40

60

80

100

120

140

(c) Processor rate 𝜇(𝐹Int)
[4,3]

Figure 8: Processor rate assigned to the inside-function queues 𝑄𝑚,3, for each𝑚 ∈ [1,𝑀].

shown for each case because we have considered a utilization
coefficient 𝜌(NIC)

= 0.5 on each NIC queue, and therefore in
the considered case we have 𝑇ON = 𝑇OFF. As expected, the
mean on-off durations are higher when the processor rate is
higher (i.e., lower utilization coefficient). This is because, in
this case, the output processor rate is lower, and therefore
batches of packets in the NIC queues are served quickly.
These results can be used to model the output traffic of each
SDN/NFVnode as an Interrupted Poisson Process (IPP) [30].
This model can be iteratively used to represent the input
traffic of other nodes, with the final target of realizing the
model of a whole SDN/NFV network.

5. Conclusions and Future Work

This paper addresses the problem of intranode resource allo-
cation, by introducing NARR, a processor-sharing strategy

that leverages on the consideration that, in any SDN/NFV
node, packets that have received the service of a VNF
are enqueued to wait for transmission through one of the
output NICs. Therefore, the idea at the base of NARR is
to dynamically change the slices of the CPU assigned to
each VNF according to the state of the output NIC queues,
giving more CPU to serve packets that will leave the node
through the less-loaded NICs. In this way, wastes of the NIC
output link capacities are minimized, and consequently the
overall delay experienced by packets traversing the nodes that
implement NARR is reduced.

SDN/NFV nodes that implement NARR can coexist in
the same network with nodes that use other strategies, so
facilitating a gradual introduction in the Future Internet.

As a side contribution, the simulator tool, which is public
available on the web, gives the on-off model of the output
links associated with each NIC as one of the results. This
model can be used as a building block to realize a model for

Journal of Electrical and Computer Engineering 9
M

ea
n

de
lay

 in
 th

e p
ro

ce
ss

or
 q

ue
ue

s (
m

s)

NARR
QLWRR
RR

3 4 5 6 7 8 9 10 112
Burstiness

0

0.5

1

1.5

2

2.5

3

𝜌(P)High = 0.9

𝜌(P)Low = 0.6

Figure 9: Mean delay in the function internal queues.

NARR
QLWRR
RR

M
ea

n
de

lay
 in

 th
e N

IC
 q

ue
ue

s (
m

s)

3 4 5 6 7 8 9 10 112
Burstiness

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

𝜌(P)High = 0.9

𝜌(P)Low = 0.6

Figure 10: Mean delay in the NIC queues.

the design and performance evaluation of a whole SDN/NFV
network.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work has been partially supported by the INPUT (In-
Network Programmability for Next-Generation Personal

NARR
QLWRR
RR

0

20

40

60

80

100

120

140

160

180

Ti
m

e (
𝜇

s)

3 4 5 6 7 8 9 10 112
Burstiness

𝜌(P)High = 0.9

𝜌(P)Low = 0.6

Figure 11: Mean off- and on-states duration of the traffic on the out-
put links.

cloUd Service Support) project funded by the European
Commission under the Horizon 2020 Programme (Call
H2020-ICT-2014-1, Grant no. 644672).

References

[1] White paper on “Software-Defined Networking: The New
Norm for Networks”, https://www.opennetworking.org/.

[2] M. Yu, L. Jose, and R. Miao, “Software defined traffic measure-
ment with OpenSketch,” in Proceedings of the Symposium on
Network Systems Design and Implementation (NSDI ’13), vol. 13,
pp. 29–42, Lombard, Ill, USA, April 2013.

[3] H. Kim and N. Feamster, “Improving network management
with software defined networking,” IEEECommunicationsMag-
azine, vol. 51, no. 2, pp. 114–119, 2013.

[4] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability
of software-defined networking,” IEEE Communications Maga-
zine, vol. 51, no. 2, pp. 136–141, 2013.

[5] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,
and T. Turletti, “A survey of software-defined networking: past,
present, and future of programmable networks,” IEEE Commu-
nications Surveys and Tutorials, vol. 16, no. 3, pp. 1617–1634,
2014.

[6] White paper on “Network FunctionsVirtualisation”, http://por-
tal.etsi.org/NFV/NFV White Paper.pdf.

[7] Network Functions Virtualisation (NFV): Network Operator
Perspectives on Industry Progress, ETSI, October 2013, http://
portal.etsi.org/NFV/NFV White Paper2.pdf.

[8] A. Manzalini, R. Saracco, E. Zerbini et al., “Software-Defined
Networks for Future Networks and Services,” White Paper
based on the IEEE Workshop SDN4FNS, http://sites.ieee.org/
sdn4fns/whitepaper/.

[9] R. Z. Frantz, R. Corchuelo, and J. L. Arjona, “An efficient
orchestration engine for the cloud,” in Proceedings of the IEEE
3rd International Conference on Cloud Computing Technology

10 Journal of Electrical and Computer Engineering

and Science (CloudCom ’11), vol. 2, pp. 711–716, Athens, Greece,
December 2011.

[10] K. Bousselmi, Z. Brahmi, and M. M. Gammoudi, “Cloud ser-
vices orchestration: a comparative study of existing approaches,”
in Proceedings of the 28th IEEE International Conference on
Advanced Information Networking and Applications Workshops
(WAINA ’14), pp. 410–416, Victoria, Canada, May 2014.

[11] A. Lombardo, A. Manzalini, V. Riccobene, and G. Schembra,
“An analytical tool for performance evaluation of software
defined networking services,” in Proceedings of the IEEE Net-
work Operations and Management Symposium (NMOS ’14), pp.
1–7, Krakow, Poland, May 2014.

[12] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Ram-
etta, and V. Riccobene, “An open framework to enable NetFATE
(network functions at the edge),” in Proceedings of the IEEE
Workshop onManagement Issues in SDN, SDI andNFV (Mission
’15), pp. 1–6, London, UK, April 2015.

[13] A. Manzalini, R. Minerva, F. Callegati, W. Cerroni, and A.
Campi, “Clouds of virtual machines in edge networks,” IEEE
Communications Magazine, vol. 51, no. 7, pp. 63–70, 2013.

[14] H. Moens and F. De Turck, “VNF-P: a model for efficient place-
ment of virtualized network functions,” in Proceedings of the
10th International Conference on Network and Service Manage-
ment (CNSM ’14), pp. 418–423, Rio de Janeiro, Brazil, November
2014.

[15] K. Katsalis, G. S. Paschos, Y. Viniotis, and L. Tassiulas, “CPU
provisioning algorithms for service differentiation in cloud-
based environments,” IEEETransactions onNetwork and Service
Management, vol. 12, no. 1, pp. 61–74, 2015.

[16] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang,
“Towards decentralized and adaptive network resource man-
agement,” in Proceedings of the 7th International Conference on
Network and Service Management (CNSM ’11), pp. 1–6, Paris,
France, October 2011.

[17] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang,
“DACoRM: a coordinated, decentralized and adaptive network
resource management scheme,” in Proceedings of the IEEE
Network Operations and Management Symposium (NOMS ’12),
pp. 417–425, IEEE, Maui, Hawaii, USA, April 2012.

[18] M. Charalambides, D. Tuncer, L. Mamatas, and G. Pavlou,
“Energy-aware adaptive network resource management,” in
Proceedings of the IFIP/IEEE International Symposium on Inte-
grated Network Management (IM ’13), pp. 369–377, Ghent,
Belgium, May 2013.

[19] C.Mastroianni, M.Meo, and G. Papuzzo, “Probabilistic consol-
idation of virtual machines in self-organizing cloud data cen-
ters,” IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp.
215–228, 2013.

[20] B. Guan, J. Wu, Y. Wang, and S. U. Khan, “CIVSched: a com-
munication-aware inter-VM scheduling technique for de-
creased network latency between co-located VMs,” IEEE Trans-
actions on Cloud Computing, vol. 2, no. 3, pp. 320–332, 2014.

[21] G. Faraci and G. Schembra, “An analytical model to design and
manage a green SDN/NFV CPE node,” IEEE Transactions on
Network and Service Management, vol. 12, no. 3, pp. 435–450,
2015.

[22] L. Kleinrock, “Time-shared systems: a theoretical treatment,”
Journal of the ACM, vol. 14, no. 2, pp. 242–261, 1967.

[23] S. F. Yashkov and A. S. Yashkova, “Processor sharing: a survey
of the mathematical theory,” Automation and Remote Control,
vol. 68, no. 9, pp. 1662–1731, 2007.

[24] ETSI GS NFV—INF 001, v1.1.1, “Network Functions Virtualiza-
tion (NFV): Infrastructure Overview”, 2015, https://www.etsi
.org/deliver/etsi gs/NFV-INF/001 099/001/01.01.01 60/gs NFV-
INF001v010101p.pdf.

[25] T. N. Subedi, K. K. Nguyen, and M. Cheriet, “OpenFlow-based
in-network Layer-2 adaptive multipath aggregation in data
centers,” Computer Communications, vol. 61, pp. 58–69, 2015.

[26] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 69–74,
2008.

[27] NARR simulator, v.0.1, http://www.diit.unict.it/arti/Tools/NARR
Simulator v01.zip.

[28] L. Kleinrock, Queueing Systems. Volume 1: Theory, Wiley-Inter-
science, 1st edition, 1975.

[29] R. Bruschi, P. Lago, A. Lombardo, and G. Schembra, “Modeling
power management in networked devices,” Computer Commu-
nications, vol. 50, pp. 95–109, 2014.

[30] W. Fischer and K. S. Meier-Hellstern, “The Markov-Modulated
Poisson process (MMPP) cookbook,” Performance Evaluation,
vol. 18, no. 2, pp. 149–171, 1993.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

