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This paper proposes a new algorithm based on sparse signal recovery for estimating the direction of arrival (DOA) of multiple
sources. The problem model we build is about the sample covariance matrix fitting by unknown source powers. We enhance
the sparsity by the double-threshold sigmoid penalty function which can approximate the 𝑙

0
norm accurately. Our method can

distinguish closely spaced sources and does not need the knowledge of the number of the sources. In addition, our method can also
perform well in low SNR. Besides, our method can handle more sources accurately than other methods. Simulations are done to
certify the great performance of the proposed method.

1. Introduction

The estimation of the direction of arrival (DOA) of multiple
sources plays a key role in many applications including
radar, sonar, and wireless communication. So far, amounts
of superresolution algorithms for DOA estimation have
been developed. The nonparametric methods include Capon
method [1] and subspace-based methods. The traditional
subspace-based algorithms, likeMUSICwhich firstly exploits
the orthogonality between the signal space and the noise sub-
space [2] and ESPRIT which utilizes the rotational invariance
of the signal subspace [3], can achieve excellent performance
in high SNR, specially, when the snapshots are long. The
maximum likelihood (ML) methods including the determin-
istic maximum likelihood (DML) and stochastic maximum
likelihood (SML) possess good statistical properties [4–7] but
require a large number of samples. All the above methods
need the knowledge of the number of sources.

Sparse representation of signals and compressed sensing
have become a hot topic in many fields [8, 9], and the DOA
estimation methods based on sparse reconstruction have
already been paid more attention by researchers. The well-
known 𝑙

1
-SVD is a pretty good algorithm [10]; it combines

the sparse signal recovery method based on 𝑙
1
norm with

the singular value decomposition (SVD). The 𝑙
1
-SVD algo-

rithm can handle closely spaced correlated sources when

the number of sources is known, while its performance is
degraded without knowing the number of sources. In [11],
the joint 𝑙

0
approximation DOA (JLZA-DOA) algorithm is

proposed.This algorithm processes with a mixed 𝑙
2,0

approx-
imation approach; it can acquire high resolution without the
knowledge of the number of sources and with only a few
snapshots. However, the JLZA-DOA algorithm may fail to
make a good estimation in low SNR.

The algorithms we mentioned in previous paragraph are
all based on themultiple measurement vectors (MMV) prob-
lem [12]. Recently, the coprime array technique is proposed
[13, 14]. This technique can enhance the degrees of freedom
(DOFs) of array. With vectorizing the sample covariance
matrix, it deals with the sparse covariance fitting problem
eventually when signals are sparsely represented. That is
to say, the MMV problem is transformed into the single
measurement vector (SMV) problem. In the SMV case, DOA
estimation can be implemented using many techniques, such
as the orthogonal matching pursuit (OMP) and the improved
smoothed 𝑙

0
approximation algorithm (ISL0) [15, 16]. The

OMP algorithm enjoys a short computational time. However,
it needs to know the sparsity in advance; that is, it requires
the knowledge of the number of sources. The ISL0 performs
better thanOMP, but it costs longer computational time. And
its performance is degraded in low SNR.
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Figure 1: Coprime array configuration.

In this paper, we adopt the coprime array technique
and propose a new Newton-like algorithm based on double-
threshold sigmoid penalty for handling the sparse covariance
fitting problem.Weknow that the direct 𝑙

0
normoptimization

problem is NP-hard. Many algorithms approximate the 𝑙
0

norm by 𝑙
1
norm, but the estimation errors increase when

the magnitudes of the nonzero elements to be estimated are
greater than one. In addition, the 𝑙

1
norm method is not

robust to noise and takes lots of iteration to converge. Instead
of replacing the 𝑙

0
norm with 𝑙

1
norm, we utilize the double-

threshold sigmoid penalty function to approach the 𝑙
0
norm

[17]. And by adjusting the upper threshold at each step on the
iteration, our algorithm can preserve most of the advantages
of 𝑙
0
norm; this contributes to improving the estimation

performance. Besides it also can accelerate the speed of
convergence by adjusting the upper threshold. Numerical
simulations demonstrate that our proposed method can
achieve high resolutionwithout the knowledge of the number
of sources and perform well in low SNR.

Throughout the paper, the lower-case and upper-case
bold letters are used to denote the vectors and matrices,
respectively. (⋅)𝑇, (⋅)𝐻, (⋅)∗, and (⋅)−1 present transpose, conju-
gate transpose, complex conjugate, and inverse, respectively.
⊗ denotes the Kronecker product, and 𝐸[⋅] is the statistical
expectation operator.

2. Problem Model

Consider a coprime array with compressed interelement
spacing, as illustrated in Figure 1.The two subarrays consist of
𝑀 and𝑁 sensors, respectively, where𝑁 = 𝑀+1. 𝑑 is usually
set to 𝜆/2, where 𝜆 denotes thewavelength. Consequently, the
array sensors are positioned at

P = {𝑛𝑑 | 0 ≤ 𝑛 ≤ 𝑁 − 1} ∪ {𝑁𝑚𝑑 | 0 ≤ 𝑚 ≤𝑀 − 1} ; (1)

the two subarrays share the first sensor at zeroth position;
denote p = [𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑀+𝑁−1
]
𝑇 as the positions of the array

sensors, where 𝑝
𝑖
∈ P, ∀𝑖.

Supposing that 𝐾 uncorrelated narrow-band signals
impinge on the array from angles Θ = [𝜃

1
, 𝜃
2
, . . . , 𝜃

𝐾
], the

𝑡th observation can be represented as

y (𝑡) = As (𝑡) + n (𝑡) , (2)

where s(𝑡) = [𝑠
1
(𝑡), 𝑠
2
(𝑡), . . . , 𝑠

𝐾
(𝑡)]
𝑇 is the vector of unknown

signals and n(𝑡) ∈ C𝑀+𝑁−1×1 denotes the additive white

Gaussian noises. A ∈ C𝑀+𝑁−1×𝐾 is the manifold matrix, the
column of which is corresponding to the directions of the
source

A = [a (𝜃
1
) , a (𝜃

2
) , . . . , a (𝜃

𝐾
)] , (3)

where a(𝜃
𝑘
) = [𝑒

−𝑗2𝜋𝑝
1
sin(𝜃
𝑘
)/𝜆
, 𝑒
−𝑗2𝜋𝑝

2
sin(𝜃
𝑘
)/𝜆
, . . .,

𝑒
−𝑗2𝜋𝑝

𝑀+𝑁−1
sin(𝜃
𝑘
)/𝜆
]
𝑇 (𝑘 = 1, . . . , 𝐾).

The covariance matrix of receive data vector y(𝑡) can be
obtained as

R = 𝐸 [y (𝑡) y𝐻 (𝑡)] = ARsA
𝐻
+ 𝜎
2

𝑛
I
𝑀+𝑁−1

, (4)

where Rs = 𝐸[s(𝑡)s𝐻(𝑡)] and I
𝑀+𝑁−1

represents an identity
matrix.

The classical DOA estimation problem can be reformu-
lated as a sparse representation problem. We consider a gird
of 𝐺 equally interval angles Φ = [𝜑

1
, . . . , 𝜑

𝐺
] with 𝐺 ≫ 𝐾.

Assuming Θ is a subset of Φ, we construct an overcomplete
matrix A by collecting the steering vectors corresponding to
all the potential source locations. Accordingly, received signal
model (2) can be represented as

y (𝑡) = Ax (𝑡) + n (𝑡) , (5)

where A = [a(𝜑
1
), a(𝜑
2
), . . . , a(𝜑

𝐺
)], x(𝑡) ∈ C𝐺×1 is a sparse

vector, and the nonzero entries of x(𝑡) are the positions which
correspond to the source locations. That is to say, the 𝑞th
component 𝑥

𝑞
(𝑡) of x(𝑡) is nonzero only if 𝜑

𝑞
= 𝜃
𝑘
.

Consequently, we can obtain a spatial covariance matrix
in terms of A; it takes the following form:

R = 𝐸 [y (𝑡) y𝐻 (𝑡)] = ARxA
𝐻

+ 𝜎
2

𝑛
I
𝑀+𝑁−1

, (6)

where Rx = 𝐸[x(𝑡)x𝐻(𝑡)]. In practice, the spatial covariance
matrix is replaced by the sample covariance matrix R̂ =

(1/𝑇)∑
𝑇

𝑡=1
y(𝑡)y𝐻(𝑡), where 𝑇 denotes the sample snapshots.

Under the assumption that sources are uncorrelated,Rx ∈

C𝐺×𝐺 is a sparse diagonal matrix, and only 𝐾 entries are
nonzero. Denote diag(Rx) = [𝑏

1
, 𝑏
2
, . . . , 𝑏

𝐺
]
𝑇
= b, and it is

obvious that b is a 𝐺 × 1 sparse vector with nonzero entries
at positions which correspond to source locations. Moreover,
the elements of b are real valued and negative; that is, b ∈

R𝐺×1
+

.
Applying vectorization to (6) yields

z = vec (R) = Ãb + 𝜎2
𝑛
Ĩ, (7)

where Ã = [ã(𝜑
1
), ã(𝜑
2
), . . . , ã(𝜑

𝐺
)], ã(𝜑

𝑔
) = a∗(𝜑

𝑔
) ⊗ a(𝜑

𝑔
),

and Ĩ = vec(I
𝑀+𝑁−1

). The distinct rows of Ã behave like the
manifold of an array whose sensor locations are given by the
values in the set of cross differences {(𝑁𝑚 − 𝑛)𝑑, 0 ≤ 𝑚 ≤

𝑀−1, 1 ≤ 𝑛 ≤ 𝑁−1} and the self-differences {(𝑛
1
−𝑛
2
)𝑑, 1 ≤

𝑛
1
, 𝑛
2
≤ 𝑁 − 1} and {(𝑁𝑚

1
− 𝑁𝑚

2
)𝑑, 0 ≤ 𝑚

1
, 𝑚
2
≤ 𝑀 − 1}.

The set of these differences include all the 2𝑁(𝑀 − 1) + 1

differences continuously from −𝑁(𝑀 − 1) to 𝑁(𝑀 − 1). As
such, z is similar to the observation data from a long array
which includes actual elements and virtual elements.
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To avoid the calculation of complex number and reduce
the computational cost, we can separate the real and image
part. Then (7) can be reformulated as

[
z
𝑟

z
𝑖

] = [
Ã
𝑟

Ã
𝑖

] b + 𝜎2
𝑛
[

Ĩ
0
(𝑀+𝑁−1)

2
×1

] , (8)

where z
𝑟
= Re(z), z

𝑖
= Im(z), Ã

𝑟
= Re(Ã), and Ã

𝑖
= Im(Ã).

Our proposed method can work on both real valued case
and complex valued case; we just take the complex valued case
into account in the following discussion.

3. Proposed Method

3.1. Proposed L0A Algorithm. The problem expressed in (7)
can be solved by the 𝑙

1
regularization method whose model

can be written as

b
∗
(ℎ) = argmin

b
𝐿 (b, ℎ) , (9)

𝐿 (b, ℎ) = 1

2


Ãb − z

2

2
+ ℎ ‖b‖1 , (10)

where ‖b‖
1
is the penalty term which approximates the 𝑙

0

norm. ℎ denotes the regularization parameter; it controls the
tradeoff between the sparsity of the signal and the residual
energy. In the following, we derive a gradient-based method
with double-threshold sigmoid (DTHS) penalty.

Before deriving our method, we first deal with the
problem that the derivation of |𝑏

𝑔
| is not defined at zero,

which always happens when handling the sparse problem.
Some approximation techniques for this problem are adopted
in practice [18]. Now we make an approximation to |𝑏

𝑔
| as

|𝑏
𝑔
| ≈ √𝑏

2

𝑔
+ 𝛿, where 𝛿 is a small positive constant, and

√𝑏
2

𝑔
+ 𝛿 approaches |𝑏

𝑔
| when 𝛿 → 0

+. It is set to 0.0001 in
this paper. Then

𝑑

𝑏
𝑔



𝑑𝑏
𝑔

≈
𝑏
𝑔

√

𝑏
𝑔



2

+ 𝛿

. (11)

Obviously, this equation is also held in the complex valued
case.

In order to approximate the 𝑙
0
norm more accurately,

some thresholding penalties have been utilized.Then (10) can
be rewritten as

𝐿 (b, ℎ) = 1

2


Ãb − z

2

2
+ ℎ

𝐺

∑

𝑔=1

Th (𝑏𝑔

) , (12)

where Th(⋅) denotes the thresholding function and
∑
𝐺

𝑔=1
Th(|𝑏
𝑔
|) is an approximation of ‖b‖

0
.

Now, we adopt a DTHS function in our method. The
ideal one is divided into three parts by the upper and lower
threshold points, which is shown in Figure 2. Denote the
upper threshold as 𝜏

𝑢
and the lower one as 𝜏

𝑙
. The values

smaller than 𝜏
𝑙
are set to zero; the values between 𝜏

𝑙
and

−0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

x

T
h
(x
)

DTHS
Ideal DTHS

Upper

Lower

Figure 2: The ideal DTHS function and DTHS function.

𝜏
𝑢
are multiplied by a particular constant, and the values

larger than 𝜏
𝑢
are set to a particular positive value. However,

the derivative in the two threshold points does not exist, so
we replace the ideal DTHS function by the flowing function
given by

Th (𝑥; 𝜏
𝑙
, 𝜏
𝑢
) =

1

𝛼 (𝜏
𝑢
− 𝜏
𝑙
)
ln 1 + 𝑒

𝛼(𝑥−𝜏
𝑙
)

1 + 𝑒𝛼(𝑥−𝜏𝑢)
(13)

which can approximate the ideal DTHS function greatly
when 𝛼 → +∞; we name this function the DTHS function
and set 𝛼 to 50 in this paper. Substituting the thresholding
function in (12) by (13), we obtain a new problem:

𝐿 (b, ℎ) = 1

2


Ãb − z

2

2
+ ℎ𝐹
𝜏
𝑙
,𝜏
𝑢
(b) , (14)

𝐹
𝜏
𝑙
,𝜏
𝑢
(b) =

𝐺

∑

𝑔=1

Th (𝑏𝑔

; 𝜏
𝑙
, 𝜏
𝑢
) . (15)

Figure 3 shows the graph of the DTHS function with four
different upper thresholds. For any given 𝑏 > 0, we have

lim
𝜏
𝑢
→0

Th (𝑏) = 1. (16)

Consequently, the function ∑
𝑁

𝑖=1
Th(𝑏
𝑖
) behaves like ‖𝑏‖

0
.

That is to say, the DTHS penalty will approach 𝑙
0
norm when

a smaller 𝜏
𝑢
is used. However, while we choose a smaller 𝜏

𝑢
,

the function 𝐹
𝜏
𝑙
,𝜏
𝑢

(𝑏
𝑔
) might have many local minima. As 𝜏

𝑢

increases, 𝐹
𝜏
𝑙
,𝜏
𝑢

(𝑏
𝑔
) becomes smoother. Then, we can handle

our problem by solving a sequence optimization problem.
Start solving (14) with a larger 𝜏

𝑢
; subsequently, we reduce 𝜏

𝑢

by a small factor 𝜌 and solve (14) again for 𝜏
𝑢
= 𝜌𝜏
𝑢
.

We can obtain the gradient of (11) as

∇b𝐿 (b, ℎ) = Ã𝐻 (Ãb − z) + ℎWb

= (Ã𝐻Ã + ℎW) b − Ã𝐻z,
(17)
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whereW is a diagonal matrix:

W =

[
[
[
[
[
[
[
[
[
[

[

Th (𝑏1
 ; 𝜏𝑙, 𝜏𝑢)

√𝑏1

2
+ 𝛿

⋅ ⋅ ⋅ 0

.

.

. d
.
.
.

0 ⋅ ⋅ ⋅
Th (𝑏𝐺

 ; 𝜏𝑙, 𝜏𝑢)

√𝑏𝐺

2
+ 𝛿

]
]
]
]
]
]
]
]
]
]

]

,

Th (𝑏
𝑔
; 𝜏
𝑙
, 𝜏
𝑢
)

=
1

𝜏
𝑢
− 𝜏
𝑙

(
1

1 + 𝑒
−𝛼(|𝑏
𝑔
|−𝜏
𝑙
)
−

1

1 + 𝑒
−𝛼(|𝑏
𝑔
|−𝜏
𝑢
)
) .

(18)

Instead of calculating theHessianmatrix of (12), we adopt
H = Ã𝐻Ã + ℎW to approximate it; that is, ∇2b𝐿(b, ℎ) ≈ H.
Then the iteration process can be accelerated, and we obtain
the 𝑞th quasi-Newton iteration formula of problem (8), which
is written as

b(𝑞+1) = b(𝑞) − 𝛽H−1 (Hb(𝑞) − Ã𝐻z)

= (1 − 𝛽) b(𝑞) + 𝛽H−1Ã𝐻z,
(19)

where𝛽 denotes the step size.Thewhole algorithm is summa-
rized inAlgorithm 1; we call ourmethod the 𝑙

0
approximation

(L0A) algorithm.

Algorithm 1 (L0A algorithm).

Initialization. b0 = b
0
, 𝛽 = 1, 𝜇, 𝜂, 𝜌 ∈ (0, 1), 𝜏

𝑢
= 𝜏
𝑢0
, 𝜏stop ∈

[0.1, 0.01], 𝜆 ∈ R.

Main Iteration

(1) Calculate H(𝑞): H(𝑞) = Ã𝐻Ã + ℎW(𝑞), W(𝑞) =

diag(Th(b(𝑞); 𝜏
𝑙
, 𝜏
𝑢
)/√|b(𝑞)|2 + 𝛿).

0

1

2

3

4

5

6

7

8

9

10

h

RM
SE

 (d
eg

.)

10
−2

10
−1

10
0

10
1

10
2

h = 0.1

h = 0.6
h = 15
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(2) Update b: b(𝑞+1) = (1 − 𝛽)b(𝑞) + 𝛽H−1Ã𝐻z.

(3) When 𝐿(b(𝑞+1), ℎ) > 𝐿(b(𝑞), ℎ), 𝛽 = 𝜂𝛽.

(4) If ‖b(𝑞+1) − b(𝑞)‖
2
≤ 𝜇𝜏
𝑢
, then 𝜏

𝑢
= 𝜌𝜏
𝑢
.

(5) If 𝜏
𝑢
< 𝜏stop, stop the iteration.

Output. The solution is b(𝑞) after 𝑞 iterations.

We initialize b0 by b
0
= Ã+z for accelerating the iteration,

where Ã+ denotes the Moore-Penrose pseudoinverse of Ã.
As discussed above, if 𝜏

𝑢0
is too small, function (15) may

have many local minima. This will degrade the estimation
performance of our method. So 𝜏

𝑢0
should be initialized by

a larger value. To preserve most of the advantages of 𝑙
0
norm,

𝜏
𝑢0

also should not be chosen to be too large. Consequently,
the value of 𝜏

𝑢0
should be selected moderately according to

the signal magnitude. Usually, we set 𝜏
𝑢0

= 5max(abs(b
0
)),

where abs(⋅) denotes the absolute value function. As for
the lower threshold 𝜏

𝑙
, some entries close to zero will be

picked into the nonzero components of b(𝑞) when 𝜏
𝑙
>

0. Consequently, we fixed it as 0. According to numerous
experiments, we suggest that 𝜇 should be set from 0.3 to 0.5,
and 𝜌 is set from 0.6 to 0.8. In this paper we set 𝜏stop to 0.01.

Now, we talk about the selection of the regularization
parameter ℎ. Firstly, we have estimated an approximate range
by calculating the root mean square error (RMSE) of our
proposed method as a function of ℎ, as shown in Figure 4.
It demonstrates that the low RMSE can be achieved when
0.01 < ℎ < 0.1 and 0.6 < ℎ < 15. However, if ℎ <

5, there will be false peaks. And it is going to worsen as
ℎ decreases; the speed of convergence also becomes slower
simultaneously. When ℎ > 10, some true peaks may
disappear, and the performance will be more terrible as ℎ
increases. Consequently, we set ℎ from 5 to 10. Some more
simulations about how ℎ affects the estimation performance
are conducted in Section 4.
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3.2. Applying MUSIC Algorithm. Now we make a brief
introduction about how to apply MUSIC algorithm correctly
for DOA estimation under the problem model z = vec(R) =
Ãb + 𝜎

2

𝑛
Ĩ which is obtained by vectorizing R in (4); more

details can be seen in [19]. It is obvious that the virtual
source signal becomes a single snapshot of b. And the rank
of the covariance matrix of z, Rz = zz𝐻, is one in the
noise-free case. Then the problem resembles dealing with
fully coherent sources. Consequently,MUSICwill fail towork
when multiple sources are impinging the array. As described
in [19], the spatial smoothing technique can be used to
overcome this problem. Since spatial smoothing requires a
continuous set of differences, we construct a new matrix Ã

1

of size 2𝑁(𝑀 − 1) + 1 × 𝐾 where we have extracted precisely
those rows from Ã which correspond to the 2𝑁(𝑀 − 1) + 1

successive differences and also sorted them.This is equivalent
to removing the corresponding rows from the observation
vector z and sorting them to get a new vector z

1
expressed

as

z
1
= Ã
1
b + 𝜎2
𝑛
Ĩ
1
. (20)

We divide this virtual array into𝑁(𝑀−1)+1 overlapping
subarrays and construct a full-rank covariance matrix so that
the MUSIC algorithm can be applied for DOA estimation.

4. Simulation Results

In this section, we illustrate the simulation results of our
proposed method. We consider the coprime arrays talked
about in Section 2 consisting of 12 array sensors,𝑀 = 6 and
𝑁 = 7.

We assume four uncorrelated sources impinging on the
array; their locations are 10∘, 14∘, 50∘, and 61∘. The SNR is set
to 5 dB and the number of snapshots is 200. The estimated
spectrum is shown in Figure 5 with above conditions, where
the grid resolution is 0.5∘. It demonstrates that L0A method
performs well in low SNR and can distinguish closely spaced
sources. We also consider two correlated sources at 21∘ and
30∘ based on the same conditions. As it is shown in Figure 6,
the estimated results are close to the actual angles with small
errors.

By adopting the coprime arrays, higher degrees of free-
dom can be achieved. Now we consider 25 uncorrelated
sources with uniform space between −60∘ and 60∘. We set the
number of snapshots to 500 and the SNR is 5 dB, and the grid
resolution is set to 0.2∘. We compare the performance of L0A
and MUSIC method under the same condition. As shown in
Figures 7 and 8, the L0A method apparently performs better
than MUSIC method in low SNR; it can recognize all the
closely spaced sources greatly, while the MUSICmethod fails
to solve some angles of sources.

Figure 9 shows the RMSEs of the L0A, OMP, ISL0, and
MUSIC as a function of the SNR. Twenty uncorrelated
sources with 500 snapshots are taken into account in the
simulations, and the grid resolution is set to 0.5∘. It man-
ifests that the estimation performance of these algorithms
degrades with SNR decreasing. Our proposed L0A enjoys a
better performance than others, especially in low SNR. In
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Figure 5: Spectrum of four uncorrelated sources.
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Figure 6: Spectrum of two correlated sources.

Figure 10, we make a comparison among their performance
of DOA estimation under different snapshots in 5 dB. With
the snapshots increasing, the performance becomes better.
However, to achieve the same RMSE, our proposed method
just needs smaller snapshots.

Our simulations were run on the computer with a
3.40GHz Intel (R) Core (TM) i7-2600 CPU, where the
operating system is Microsoft Windows XP with 32 bits.
Table 1 shows the computation time for different algorithms.
Here, we consider the same case used in Figure 9. We can see
that SNRhas little effect on the computation time ofOMPand
MUSIC. As SNR becomes low, the computation time of L0A
and ISL0 increases. However, our proposed L0A costs shorter
computation time than ISL0.
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Figure 7: Spectrum estimated by L0A-DOA.
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Figure 8: Spectrum estimated by MUSIC.

Table 1: Computation time comparison.

SNR (dB) Time (seconds)
L0A OMP ISL0 MUSIC

5 0.4404 0.0098 0.6362 0.0104
10 0.3637 0.0099 0.4586 0.0105
15 0.3346 0.0098 0.4303 0.0103

Finally, we show the effect of ℎ on the performance of
DOAestimation fromFigures 11 and 12.We consider the same
case used in Figure 7. Figure 11 shows the case where ℎ = 1.
Obviously, there are some false peaks in the spectrum.When
ℎ = 15, true peaks disappear at the position of −50∘ and 55∘
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Figure 9: RMSE as a function of SNR.
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Figure 10: RMSE as a function of the snapshot number.

as shown in Figure 12. Consequently, an appropriate value of
ℎ is important to the DOA estimation.

5. Conclusion

In this paper, we propose a new method based on sparse
reconstruction for finding the directions of sources imping-
ing on a coprime array. By approximating the 𝑙

0
norm

with the DTHS function and adjusting the upper threshold
dynamically, our method achieves an excellent performance.
The proposed method not only can perform well without the
knowledge of the number of sources but also could work on
correlated sources with small bias. Furthermore, it can also
distinguish the closely spaced sources. With the high DOFs,
this method could resolve much more the number of sources
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Figure 11: Spectrum of L0A-DOA with ℎ = 1.
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Figure 12: Spectrum of L0A-DOA with ℎ = 15.

and have a better performance in low SNR and with smaller
snapshots.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (61171155 and 61571364).

References

[1] R. J. Weber and Y. Huang, “Analysis for Capon and MUSIC
DOA estimation algorithms,” in Proceedings of the IEEE
Antennas and Propagation Society International Symposium
(APSURSI ’09), pp. 1–4, IEEE, Charleston, SC, USA, June 2009.

[2] X. Li, G. Yang, and Y. Gu, “Simulation analysis of music algo-
rithm of array signal proccessing DOA,” in Proceedings of the
International Conference on Automatic Control and Artificial
Intelligence (ACAI ’12), pp. 1838–1841, March 2012.

[3] A. T. Y. Lok, P. Davoodian, R. C. Chin, J. Bermudez, Z. Ali-
yazicioglu, and H. K. Hwang, “Sensitivity analysis of DOA
estimation using the ESPRIT algorithm,” in Proceedings of the
IEEE Aerospace Conference, pp. 1–7, Big Sky, Mont, USA, March
2010.

[4] P. Stoica andK. C. Sharman, “Maximum likelihoodmethods for
direction-of-arrival estimation,” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 38, no. 7, pp. 1132–1143,
1990.

[5] X. Mestre, P. Vallet, and P. Loubaton, “On the resolution proba-
bility of conditional and unconditional maximum likelihood
DOA estimation,” in Proceedings of the 21st European Signal
Processing Conference (EUSIPCO ’13), pp. 1–5, Marrakech,
Morocco, September 2013.

[6] J.-W. Shin, Y.-J. Lee, and H.-N. Kim, “Reduced-complexity
maximum likelihood direction-of-arrival estimation based on
spatial aliasing,” IEEE Transactions on Signal Processing, vol. 62,
no. 24, pp. 6568–6581, 2014.

[7] C. E. Chen, F. Lorenzelli, R. E. Hudson, and K. Yao, “Stochas-
tic maximum-likelihood DOA estimation in the presence of
unknown nonuniform noise,” IEEE Transactions on Signal
Processing, vol. 56, no. 7, pp. 3038–3044, 2008.

[8] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery
of sparse overcomplete representations in the presence of noise,”
IEEETransactions on InformationTheory, vol. 52, no. 1, pp. 6–18,
2006.

[9] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[10] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal
reconstruction perspective for source localization with sensor
arrays,” IEEE Transactions on Signal Processing, vol. 53, no. 8,
pp. 3010–3022, 2005.

[11] M. M. Hyder and K. Mahata, “Direction-of-arrival estimation
using a mixed approximation,” IEEE Transactions on Signal
Processing, vol. 58, no. 9, pp. 4646–4655, 2010.

[12] S. F. Cotter, B.D. Rao, K. Engan, andK.Kreutz-Delgado, “Sparse
solutions to linear inverse problemswithmultiplemeasurement
vectors,” IEEE Transactions on Signal Processing, vol. 53, no. 7,
pp. 2477–2488, 2005.

[13] S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime
array configurations for direction-of-arrival estimation,” IEEE
Transactions on Signal Processing, vol. 63, no. 6, pp. 1377–1390,
2015.

[14] K. Han and A. Nehorai, “Improved source number detection
and direction estimation with nested arrays and ULAs using
jackknifing,” IEEE Transactions on Signal Processing, vol. 61, no.
23, pp. 6118–6128, 2013.

[15] J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE Trans-
actions on Information Theory, vol. 53, no. 12, pp. 4655–4666,
2007.



8 Journal of Electrical and Computer Engineering

[16] M. M. Hyder and K. Mahata, “An improved smoothed 𝑙
0

approximation algorithm for sparse representation,” IEEE
Transactions on Signal Processing, vol. 58, no. 4, pp. 2194–2205,
2010.

[17] J. Shi, R. H. Ding, G. Xiang, and X. L. Zhang, “Complex-valued
sparse recovery via double-threshold sigmoid penalty,” Signal
Processing, vol. 114, pp. 231–244, 2015.

[18] M. Schmidt, G. Fung, and R. Rosales, “Optimization methods
for l
1
-regularization,” Tech. Rep. TR-2009-19, University of

British Columbia, 2009.
[19] P. Pal and P. P. Vaidyanathan, “Coprime sampling and themusic

algorithm,” in Proceedings of the IEEE Digital Signal Processing
Workshop and IEEE Signal Processing Education Workshop
(DSP/SPE ’11), pp. 289–294, IEEE, Sedona, Ariz, USA, January
2011.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


