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This paper introduces a new parallel algorithm based on the Gram-Schmidt orthogonalization
method. This parallel algorithm can find almost exact solutions of tridiagonal linear systems of
equations in an efficient way. The system of equations is partitioned proportional to number
of processors, and each partition is solved by a processor with a minimum request from the
other partitions’ data. The considerable reduction in data communication between processors
causes interesting speedup. The relationships between partitions approximately disappear if some
columns are switched. Hence, the speed of computation increases, and the computational cost
decreases. Consequently, obtained results show that the suggested algorithm is considerably
scalable. In addition, this method of partitioning can significantly decrease the computational cost
on a single processor and make it possible to solve greater systems of equations. To evaluate the
performance of the parallel algorithm, speedup and efficiency are presented. The results reveal
that the proposed algorithm is practical and efficient.

1. Introduction

Linear systems of equations occur frequently in many fields of engineering and mathematics.
Different approaches have been used to solve the linear systems of equations [1], for
example, QR factorization. There are different QR factorization methods, such as Givens
transformations, Householder transformations, and Gram-Schmidt orthogonalisation.

A considerable amount of study has been done on parallel QR factorization
algorithms [2, 3]. In addition, some numerical libraries and softwares have supplied the QR
factorization, such as ScaLAPACK [4], and Parallel Linear Algebra Software for Multicore
Architectures (PLASMA) [5]. PLASMA Tile QR factorization is provided for multicore
system architectures using the block algorithms [6].
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Tridiagonal system is a well known form that arises in areas such as linear algebra,
partial differential equations, orthogonal polynomials, and signal processing. Problem of
solving tridiagonal systems on parallel computers has been studied widely. It seems that first
parallel tridiagonal system solver, referred to as cyclic reduction, was introduced by Hockney
in 1965 [7]. Throughout more than forty years since then, different parallel algorithms have
been proposed and developed. The recursive doubling algorithm was presented by Stone for
fine grained parallel systems in 1973 [8]. Wang suggested a partitioning algorithm for coarse
grained systems in 1981 [9]. The classical method is the inverse of the matrix containing
unknown elements; recently, an explicit formula was given by Kilic [10].

In this paper, we consider a novel parallel algorithm based on the modified Gram-
Schmidt orthogonalization method [11]. This method is a kind of QR factorization, in which
firstly orthogonal and upper-triangular matrices are computed and then the solution of
the system of equations is found using these matrices. Amodio et al. proposed a parallel
factorization for tridiagonal matrices [12, 13]. On the other hand, parallel implementation of
modifiedGram-Schmidt algorithm has been studied in different literatures [14–17]. Although
the proposed method in this paper is currently developed and verified for tridiagonal
systems, the authors are working on extension of the method to other systems.

The scalability of parallel algorithms is a vital problem, so different techniques have
been developed to overcome it such as processors load balancing [18] and reducing the
number of synchronizations [19]. The obtained results show that the suggested parallel
algorithm is practically scalable.

Therefore, the objective of this paper is to propose an efficient parallel algorithm. In
Section 2, the QR factorization is introduced as a base of this algorithm. In Section 3, the
procedure of the suggested parallel algorithm is completely described. A numerical example
is given in Section 4. In Section 5, accuracy, speedup, and efficiency of the algorithm are
evaluated. Finally, conclusions are given in Section 6.

2. QR Factorization

A QR factorization of a nonsingular matrix A ∈ Rn×n is a decomposition of the matrix into
a unitary orthogonal matrix Q ∈ Rn×n (i.e., QTQ = I) and an upper-triangular matrix R ∈
R

n×n as

A = QR, (2.1)

where the decomposition is unique. One of the most well-known QR methods is the
Classical Gram-Schmidt (CGS) process. To overcome numerical instability, the modified
Gram-Schmidt algorithm (MGS) is preferred after a simple change in the classical algorithm
[20]. Each column of orthogonal matrix can be normalized as follows:

qk =
u(k)

∥
∥u(k)

∥
∥
, (2.2)



Mathematical Problems in Engineering 3

where q(k) is a column of orthogonal matrix and 1 ≤ k ≤ n. Column u(k) is determined from
previously computed orthogonal columns q(i), where 1 ≤ i ≤ k − 1, as

u(k) = a(k) −
k−1∑

i=1

(

a(k), q(i)
)

q(i), (2.3)

where (a(k), q(i))q(i) denotes the projection operator of the column a(k) onto the column q(i)

and

(

a(k), q(i)
)

=

〈

a(k), q(i)
〉

〈

q(i), q(i)
〉 , (2.4)

where, 〈a(k), q(i)〉 presents the inner product of the columns a(k) and q(i). Loss of
orthogonality depends on matrix A, and the amount of deviation from orthogonality is
minimized when A is a well-conditioned matrix [21].

Additionally, an upper-triangular matrix is constructed column by column as

rik =
(

u(k), q(i)
)

, (2.5)

where rik is a typical element of upper-triangular matrix and 1 ≤ i ≤ n.
Furthermore, the QR factorization can be used as a part of solution of a linear system

of equations. To obtain the solution of a linear system

AX = B , [7] X ∈ R
n, B ∈ R

n, (2.6)

we consider the QR factorization

QR X = B. (2.7)

Then we multiply the transpose of Q by both sides of (2.7), where QTQ = I and QTB = B′.
Finally, a linear system with an upper-triangular coefficient matrix is achieved as

R′X = B′, (2.8)

where R′ = R. The final step is computing the matrix X by usual back substitution.

3. Parallel Algorithm

The concept of novel parallel algorithm based on the Gram-Schmidt methodwill be described
here. The parallel implementation of the Gram-Schmidt method is not efficient compared
with other methods, particularly when it is employed to solve a tridiagonal system of
equations. However, some modifications allow appropriate conditions needed to parallelize
the Gram-Schmidt method. In the Gram-Schmidt method, computation of each column of the
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q(1) = a(1)

q(2) = a(2) +

+

| a(2) · q(1) |
| q(1) · q(1) | q

(1)

q(3) = a(3) +
| a(3) · q(1) |
| q(1) · q(1) | q

(1) +
| a(3) · q(2) |
| q(2) · q(2) | q

(2)
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(2) +
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Figure 1: The zero and nonzero terms in the equation of each orthogonal column, where q(m) is the mth
column of orthogonal matrix and a(m) is mth column of matrix A. Also, the zero terms are crossed out.

orthogonal and upper-triangular matrices depends on the previously computed columns of
the orthogonal matrix.

Most of the elements of a tridiagonal matrix are zero, except for those on three
diagonals. Each term of projection operator in (2.3) consists of inner product of one column
of this tridiagonal matrix with a computed column of orthogonal matrix. When most of the
elements of one of these columns are zero, then a few elements of projection operator can be
nonzero. As a result, only the last two terms of projection operator in the computation of each
column of orthogonal matrix are nonzero, as

rik /= 0, i = k − 2, k − 1. (3.1)

Figure 1 shows the terms of (2.3) for the first six columns of orthogonal matrix Q.
As a result, computation of each column of the orthogonal and upper-triangular

matrices depends only on the two previous adjacent columns of the orthogonal matrix Q. It
means that, if the column (k) of orthogonal matrix is computing, only two computed columns
(k − 1) and (k − 2) of matrix Q and the column (k) of matrix A are requested, as

u(k) = a(k) −
(

a(k), q(k−2)
)

q(k−1) −
(

a(k), q(k−1)
)

q(k−1). (3.2)

This property is a base of our parallel algorithm. In this situation, if we omit two adjacent
columns of matrix A, then all terms of projection operator for the next columns are zero.
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(a) (b)

Figure 2: The partitioning (a) and transformation (b) of matrix’s columns. The amount of partition can be
related to the number of processor. The last partition is made by transferred columns from between other
blocks.

It means that the relation of columns of orthogonal matrix in (2.3) is disrupted. In order to use
this feature, if two columns of matrix An×n, for instance, a(k−2) and a(k−1), are transferred to
the end of matrix, the next corresponding columns in the orthogonal matrix are disconnected
from the previous ones. It means that (a(k), q(k−2)) = 0 and (a(k), q(k−1)) = 0 and as a result,

u(k) = a(k). (3.3)

This transformation decreases the amount of computation significantly.
The parallel algorithm is achieved by partitioning the matrix An×n intom − 1 (m is the

number of processors) blocks of fairly equal size, that is, each block contains approximately
Ne = n/(m − 1) columns, and each processor is concerned with computing only its block.
The computation can be done mostly independently by each processor, but at some points,
communication is required. The first column of the matrix owned by processor e is denoted
as je, where je < je+1 for e = 1, . . . , m − 1 and Ne = je+1 − je.

To disconnect the relationship between adjacent blocks, two columns between them,
that is, je+1 − 1 and je+1 for e = 1, . . . , m − 2, are transferred to the end of matrix (3.4). These
transferred columns make another partition, as shown in Figure 2. Therefore, the number of
columns of the new block is H = 2 × (m − 2):

jm + (e − 1)←− je+1 − 1, jm + e ←− je+1 for e = 1, . . . , m − 2. (3.4)

It should be noticed that the place of each element of matrix X corresponding to the
transferred columns of matrix A is also changed.

Each processor, except for the last one, can start computing some columns of the
orthogonal and upper-triangular matrices that are related to the columns of its own block
without receiving any data from other processors. This feature plays a significant role in
improving the speedup of the algorithm. If processor Pe is responsible for a block consisting of
columns from a(je) to a(je+1−1), it computes the columns from q(je) to q( je+1−1) of the orthogonal
matrix with a minimum request for data of other partition, and the same holds for r(je) to
r(je+1−1) of the upper-triangular matrix. All the blocks, except the last one, only need data of
the last block, because the first two and last two columns of each block have some relation to
some columns of the last block.
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To achieve more speedup, another switching is used in each block, except for the last
block. The last two columns in each block are transferred between the second and third
columns of block. This switching causes the first four columns to be computed firstly and
then be sent to the last processor before other columns of block are determined. As a result,
all processors are in use simultaneously, and the efficiency of the parallel algorithm increases.

Lastly, all columns of the orthogonal and upper-triangular matrices are computedwith
the least network transaction. To show the final result, each processor sends its block to the
last processor.

The next step is to find the solution of the linear system of equations. According to
(2.7), the values of QTQ and QTB should be determined. Because data of each block of
matrix Q and also matrix B exist in each processor, the computation of these matrices can
be done without any request to the other processors’ data.

Finally, the unknown matrix is obtained by a back substitution procedure. In this step,
each processor just needs to communicate with the last processor. The back substitution
is started from the last processor which consists of H columns. The last H elements of
the unknown matrix are computed using just the last processor and are sent to other
ones. Because the H elements of matrix X are computed, the last processor can compute
independently, the last H terms of each linear equation. As a result, instead of H columns,
just one column is needed to broadcast to the other processors. Then the other processors
compute the related unknown elements with the received data. The complete flowchart of
described parallel algorithm is shown in Figure 3.

It may seem that the amount of computation in the last processor is more than the
others. However, it should be mentioned that the number of columns in the last block is
less than the number of columns in the others. If the number of unknowns increases, the
difference between size of the last block and other blocks becomes greater.

4. Example

Let A be a 15 × 15 nonsingular tridiagonal matrix. The results of three cases are presented
here and compared with each other; we use the label case (a) for one processor, case (b) for
two, and case (c) for three. In Figure 4, the transformations of two columns in case (b) (two
processors) and four columns in case (c) (three processors) are shown.

The computed orthogonal matrices in the three cases are presented in Figure 5. The
number of nonzero elements is 135 in case (a), 97 in case (b), and “93” in case (c). Hence,
the computational cost decreases as the computational power (i.e., the number of processors)
increases. This situation is an ideal condition for a parallel algorithm.

Finally, the upper-triangular matrices are shown in Figure 6. Notice that, in cases (b)
and (c), the elements in the last row of each block are zero, except for elements that belong
to the last processors, in addition to an element which is equal to 1. Therefore, the back
substitution procedure in each block does not require the data of the other processors, only
the last processor. This feature is also significant for solving a huge system of equations.

5. Results

The testbed specification is shown in Table 1. The results of using up to 16 processors are
presented here. The numerical experiment is done on a parallel systemwith MIMD (Multiple
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Figure 3: The flowchart of proposed parallel algorithm.

Data, Multiple Instruction) structure and shared memory [22]. The language of parallel
processing that is used in this paper is standard MPI [23].

The results of the procedure described above consist of different aspects. Its main
purpose was to find the solution of a tridiagonal system of equations in a fast and
efficient manner. The other achievements were computing the orthogonal and upper-
triangular matrices which are useful computations in different fields. This entire procedure in
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32 22 0 0 0 0 0 0 0 0 0 0 0 0 0
13 5 −9 0 0 0 0 0 0 0 0 0 0 0 0
0 118 85 19 0 0 0 0 0 0 0 0 0 0 0
0 0 17 86 41 0 0 0 0 0 0 0 0 0 0
0 0 0 27 38 55 0 0 0 0 0 0 0 0 0
0 0 0 0 34 10 46 0 0 0 0 0 0 0 0
0 0 0 0 0 49 20 61 0 0 0 0 0 0 0
0 0 0 0 0 0 74 50 77 0 0 0 0 0 0
0 0 0 0 0 0 0 62 22 4 0 0 0 0 0
0 0 0 0 0 0 0 0 12 −11 99 0 0 0 0
0 0 0 0 0 0 0 0 0 85 104 56 0 0 0
0 0 0 0 0 0 0 0 0 0 35 20 38 0 0
0 0 0 0 0 0 0 0 0 0 0 59 37 52 0
0 0 0 0 0 0 0 0 0 0 0 0 56 90 94
0 0 0 0 0 0 0 0 0 0 0 0 0 64 7

(a)

32 22 0 0 0 0 0 0 0 0 0 0 0 0 0
13 5 −9 0 0 0 0 0 0 0 0 0 0 0 0
0 118 85 19 0 0 0 0 0 0 0 0 0 0 0
0 0 17 86 41 0 0 0 0 0 0 0 0 0 0
0 0 0 27 38 55 0 0 0 0 0 0 0 0 0
0 0 0 0 34 10 46 0 0 0 0 0 0 0 0
0 0 0 0 0 49 20 0 0 0 0 0 0 61 0
0 0 0 0 0 0 74 0 0 0 0 0 0 50 77
0 0 0 0 0 0 0 4 0 0 0 0 0 62 22
0 0 0 0 0 0 0 −11 99 0 0 0 0 0 12
0 0 0 0 0 0 0 85 104 56 0 0 0 0 0
0 0 0 0 0 0 0 0 35 20 38 0 0 0 0
0 0 0 0 0 0 0 0 0 59 37 52 0 0 0
0 0 0 0 0 0 0 0 0 0 56 90 94 0 0
0 0 0 0 0 0 0 0 0 0 0 64 7 0 0

(b)

32 22 0 0 0 0 0 0 0 0 0 0 0 0 0
13 5 −9 0 0 0 0 0 0 0 0 0 0 0 0
0 118 85 19 0 0 0 0 0 0 0 0 0 0 0
0 0 17 86 0 0 0 0 0 0 0 41 0 0 0
0 0 0 27 0 0 0 0 0 0 0 38 55 0 0
0 0 0 0 46 0 0 0 0 0 0 34 10 0 0
0 0 0 0 20 61 0 0 0 0 0 0 49 0 0
0 0 0 0 74 50 77 0 0 0 0 0 0 0 0
0 0 0 0 0 62 22 0 0 0 0 0 0 4 0
0 0 0 0 0 0 12 0 0 0 0 0 0 −11 99
0 0 0 0 0 0 0 56 0 0 0 0 0 85 104
0 0 0 0 0 0 0 20 38 0 0 0 0 0 35
0 0 0 0 0 0 0 59 37 52 0 0 0 0 0
0 0 0 0 0 0 0 0 56 90 94 0 0 0 0
0 0 0 0 0 0 0 0 0 64 7 0 0 0 0

(c)

Figure 4: The matrix A15×15; (a) one processor, (b) two processors, and (c) three processors.

Table 1: The Specification of test bed.

CPU RAM Cache Network OS Language
up to 16× Intel Core 2 Due 3.0GHz 4GB 4MB 100Mb/s Win XP MPI

a sequential form requires O(n2) number of operations, where n is the number of equations.
The complexity of the parallel algorithm is

9H2 + 26H + 32n + 130, (5.1)

where H = n/p is the ratio of the number of equations to the number of processors.
Furthermore, as mentioned in Section 3, the number of zero elements raises as the number
of blocks increases. This feature can be thought of as being on route to linear complexity.
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32 1.37 2.15 −9.96 4.52 6.58 −5.40 −1.99 5.39 0.64 −6.27 0.32 0.45 −0.82 −0.34
13 −3.38 −5.28 24.5 −11.1 −16.2 13.3 4.90 −13.3 −1.57 15.4 −0.87 −1.10 2.03

0.92

0.84
0 118 −0.18 0.82 −0.37 −0.54 0.44 0.16 −0.44 −5.23 0.51 −2.62 −3.69 6.76 2.80
0 0 17 8.89 −4.04 −0.87 4.82 1.78 −4.81 −0.57 5.60 −0.28 −0.40 0.73 0.30
0 0 0 27 13.1 19.1 −15.6 −5.77 15.6 1.85 −18.2 1.30 −2.39 −0.99
0 0 0 0 34 −14.2 11.69 4.31 −11.7 −1.38 13.6 −0.69 −0.97 1.78 0.74
0 0 0 0 0 49 15.19 5.60 −15.2 −1.79 17.6 −0.90 −1.26 2.32 0.96
0 0 0 0 0 0 74 −4.19 11.3 1.34 −13.2 0.67 0.94 −1.73 −0.72
0 0 0 0 0 0 0 62 5.76 0.68 −6.71 0.34 0.48 −0.88 −0.36
0 0 0 0 0 0 0 0 12 −9.86 97.1 −4.94 −6.95 12.7 5.27
0 0 0 0 0 0 0 0 0 85 12.9 −0.65 −0.92 1.69 0.70
0 0 0 0 0 0 0 0 0 0 35 15.9 22.3 −41.1 −17.0
0 0 0 0 0 0 0 0 0 0 0 59 −6.71 12.3 5.10
0 0 0 0 0 0 0 0 0 0 0 0 56 19.7 8.17
0 0 0 0 0 0 0 0 0 0 0 0 0 64 −15.6

(a)

32 1.37 2.15 −9.96 4.52 6.58 −5.40 0 0 0 0 0 0 −1.99 5.41
13 −3.38 −5.28 24.5 −11.1 −16.2 13.3 0 0 0 0 0 0 4.90 −13.3
0 118 −0.18 0.82 −0.37 −0.54 0.44 0 0 0 0 0 0 0.16 −0.44
0 0 17 8.89 −4.04 −0.87 4.82 0 0 0 0 0 0 1.76 −4.83
0 0 0 27 13.1 19.1 −15.6 0 0 0 0 0 0 −5.77 15.7
0 0 0 0 34 −14.2 11.69 0 0 0 0 0 0 4.31 −11.7
0 0 0 0 0 49 15.19 0 0 0 0 0 0 5.60 −15.2
0 0 0 0 0 0 74 0 0 0 0 0 0 −4.19 11.4
0 0 0 0 0 0 0 4 −4.21 −2.12 1.98 −0.75 −2.51 61.1 5.78
0 0 0 0 0 0 0 −11 110.6 −5.11 −6.96 12.8 5.21 3.84 0.36
0 0 0 0 0 0 0 85 14.5 −0.56 −0.99 1.70 0.79 −2.37 −0.22
0 0 0 0 0 0 0 0 35 16.1 22.6 −41.4 −17.1 −3.80 −0.36
0 0 0 0 0 0 0 0 0 59 −6.73 12.4 5.04 3.54 0.33
0 0 0 0 0 0 0 0 0 0 56 19.9 8.26 0.24 0.02
0 0 0 0 0 0 0 0 0 0 0 64 −15.7 −3.22 −0.30

(b)

32 1.37 2.15 −9.96 0 0 0 0 0 0 0 4.52 7.02 0.64 −6.08
13 −3.38 −5.28 24.5 0 0 0 0 0 0 0 −11.1 −17.3 −1.57 14.9
0 118 −0.18 0.82 0 0 0 0 0 0 0 −0.37 −0.58 −0.05 0.50
0 0 17 8.89 0 0 0 0 0 0 0 −4.04 −6.3 −0.57 5.42
0 0 0 27 0 0 0 0 0 0 0 13.1 20.3 1.85 −17.6
0 0 0 0 46 −28.3 −25.9 0 0 0 0 10.1 −15.2 −1.38 13.1
0 0 0 0 20 48.7 −26.1 0 0 0 0 −8.29 16.7 −1.79 17.1
0 0 0 0 74 4.44 23.2 0 0 0 0 −4.06 4.94 1.34 −12.8
0 0 0 0 0 62 6.96 0 0 0 0 11.4 −20.4 0.68 −6.50
0 0 0 0 0 0 12 0 0 0 0 5.08 5.73 −9.85 94.1
0 0 0 0 0 0 0 56 −23.5 24.8 −0.99 0 0 11.1 12.5
0 0 0 0 0 0 0 20 29.6 −16.1 22.6 0 0 17.8 20.0
0 0 0 0 0 0 0 59 12.2 −18.1 −6.73 0 0 −16.6 −18.6
0 0 0 0 0 0 0 0 56 22.8 56 0 0 −1.12 −1.26
0 0 0 0 0 0 0 0 0 −17.5 56 0 0 15.1 16.9

(c)

Figure 5: The orthogonal matrices; (a) one processor, (b) two processors, and (c) three processors.

Choosing a proper method to solve tridiagonal system of equations depends on
different criteria, such as the order of complexity, accuracy and variety of achievements. For
instance, the order of complexity of Gaussian elimination without pivoting is O(n), but it is
not well suited for parallel processing [24]. On the other hand, in spite of favorable order of
complexity of parallel iterative algorithms, their main focus is just on solution of the system
with good enough accuracy but without any further outcomes.
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1 0.64 −0.1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0.72 0.16 0 0 0 0 0 0 0 0 0 0 0
0 0 1 4.53 2.17 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0.92 0.98 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0.71 1.05 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0.1 0.90 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0.73 0.90 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0.26 0.06 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −0.09 1.04 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1.07 0.65 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0.12 0.11 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0.74 0.81 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1.25 1.41
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.35
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(a)

1 0.64 −0.1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0.72 0.16 0 0 0 0 0 0 0 0 0 0 0
0 0 1 4.53 2.17 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0.92 0.98 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0.71 1.05 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0.1 0 0 0 0 0 0 0.90 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0.73 0.91
0 0 0 0 0 0 0 1 1.05 0.65 0 0 0 0.03 0
0 0 0 0 0 0 0 0 1 0.11 0.1 0 0 −0.02 0.09
0 0 0 0 0 0 0 0 0 1 0.74 0.81 0 −0.03 0.03
0 0 0 0 0 0 0 0 0 0 1 1.25 1.40 0.03 −0.01
0 0 0 0 0 0 0 0 0 0 0 1 0.35 0 0.02
0 0 0 0 0 0 0 0 0 0 0 0 1 −0.23 0.01
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.27
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(b)

1 0.64 −0.1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0.72 0.16 0 0 0 0 0 0 0 0 0 0 0
0 0 1 4.53 0 0 0 0 0 0 0 2.17 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0.92 0.98 0 0
0 0 0 0 1 0.61 0.71 0 0 0 0 0.19 0.18 0 0
0 0 0 0 0 1 0.24 0 0 0 0 −0.14 0.30 0.03 0
0 0 0 0 0 0 1 0 0 0 0 −0.42 −0.74 −0.05 0.57
0 0 0 0 0 0 0 1 0.42 0.44 0 0 0 0.68 0.93
0 0 0 0 0 0 0 0 1 1.20 1.11 0 0 −0.42 −0.29
0 0 0 0 0 0 0 0 0 1 0.38 0 0 0.05 −0.17
0 0 0 0 0 0 0 0 0 0 1 0 0 1.04 0.99
0 0 0 0 0 0 0 0 0 0 0 1 0.61 −0.01 0.74
0 0 0 0 0 0 0 0 0 0 0 0 1 −0.08 0.31
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.76
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(c)

Figure 6: The Upper-triangular matrices; (a) one processor, (b) two processors, and (c) three processors.

The complexities of differentQR factorization methods in sequential form are brought
here as follows [25]:

(1) Gram-Schmidt: (2/3)n3 +O(n2),

(2) Householder: (4/3)n3 +O(n2),

(3) Given: (8/3)n3 +O(n2),

(4) Fast Given: (4/3)n3 +O(n2).
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Table 2: A norm of ‖X‖ to evaluate error over all computed unknowns and a norm of ‖QTQ − I‖ to
determine the accuracy of the orthogonal matrix.

order ‖X‖ ‖QTQ − I‖
n = 200 000 6.91e-7 9.39e-12
n = 300 000 4.48e-8 8.62e-12
n = 400 000 8.78e-8 9.32e-12
n = 500 000 3.01e-9 8.52e-12

There are some important points to justify our algorithm. The first is the accuracy
of obtained results. Obviously, the accuracy of direct solvers, that is, mostly exact, is better
than that of the iterative ones. The second item is the variety of results, such as computing
the orthogonal and upper-triangular matrices. The QR decomposition is usually used to
solve the linear least squares problem and find the eigenvalues of system. The third is
the scalability of the algorithm, which is a crucial parameter for success of a parallel
algorithm, that is, the proposed algorithm can employ more processors to solve larger
problems efficiently. Consequently, development of this efficient algorithm based on the
QR factorization is valuable and practical. Some sequential and parallel QR factorization
methods are investigated by Demmel et al. [26].

The obtained results are mostly exact. The accuracy of the algorithm was investigated
using two methods. The first method was a norm of ‖X‖ to evaluate error over all computed
unknowns, and the second one was a norm of ‖QTQ − I‖ to determine the accuracy of the
orthogonal matrix. The level of error for systems of order n = 10 000, 20 000, 30 000, and 40 000
is shown in Table 2. The order of error in these cases is acceptable. The final results, that
is, the computed unknown, became more accurate in larger matrices. Moreover, the level of
orthogonality is high in all cases.

Furthermore, this algorithm includes a new and interesting parallel feature. The
parallel algorithm can decrease the computational cost and the requested memory on a single
processor. The MPI can be used on a single processor to divide it into different parts. In other
words, the parallel algorithm based on the MPI library can be executed on different parts of
a processor in the same way as it is executed on a network of parallel CPUs. The enormous
number of equations causes the processor to return the “insufficient virtual memory” error.
Increasing the number of blocks in the matrix results in increasing the amount of zero
elements and decreasing the size of the requested memory (physical and virtual). In Figure 7,
the size of the requested memory for a matrix of order n = 20 000 and 50 000 is shown. For
instance, computation of amatrix of order n = 50 000 was not possible on a specified processor
with a single block. However, the computationwas done on this processor with 4 blocks using
4.75 GB of memory. When the number of blocks was 16, the used memory decreased to 1.48
GB. The consumed time to find the solution of a system of equations of order n = 20 000 and n
= 50 000 is presented in Figure 8. It is shown that when the number of blocks increased, time
consumption was reduced. The rate of reduction nearly vanished when the number of blocks
reached 16.

The key issue in the parallel processing of a single application is speedup, especially
its dependence on the number of processors used. Speedup is defined as a factor by which
the execution time for the application changes:

Sp =
Ts
Tp

, (5.2)
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Figure 7: The size of requested memory in computation by a single CPU.

where, p, Ts, and Tp are the number of processor, the executing time of the sequential
algorithm, and the executing time of the parallel algorithm with p processors, respectively.

On the other hand, the efficiency of parallel processing is a performance metric which
is defined as

Ep =
S

p
. (5.3)

It is a value, typically between zero and one, estimating how well utilized the processors
are in solving the problem, compared to how much effort is wasted in communication and
synchronization.

To investigate the ability of the parallel algorithm, the CPU time (T), the speedup (Sp),
and the efficiency (Ep)were considered in different cases (Table 3). The mentioned orders are
20 000, 40 000, 60 000, 80 000, and 100 000. The first column shows the computational time in a
sequential case. A critical problem in solving a large system of equations using one processor,
as mentioned before (e.g., order more than 50 000 in this study), is insufficient memory. To
conquer this obstacle, the virtual memory was increased to 10GB. Although using virtual
memory can remove the “insufficient memory” error, it causes the speed of the computation
to decrease, leading to inefficiency. The memory problem is completely solved in the parallel
algorithm because each processor just needs to have the data of its block. For instance, if the
order of matrix is 100 000, then in two processors the order of the data is 50 000, and in three
processors it will reach to about 33 000. Therefore, the size of a huge system of equations does
not create any computational limitation on the parallel cases.

The speedup and efficiency curves for the computation of a tridiagonal system of
equations from orders 20 000 to 100 000 using different numbers of processors are presented
in Figures 9–11. The comparison between computation times of different sizes of systems of
equations using up to 16 processors is shown in Figure 9. The rate of time reduction was
greater in larger systems. For instance, the time was reduced from 267 milliseconds to 22
milliseconds, that is, 11 times less than sequential form.
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Figure 8: Time of computation by a single CPU.

Table 3: The computation time, speed up, and efficiency of parallel solution of the systems of equations
with different order.

Processors no.
1 2 4 6 10 12 14 16 18

n = 100 000
T 0.00338 0.00175 0.00092 0.00067 0.00056 0.00051 0.00051 0.00052 0.00054
Sp — 1.927 3.651 5.027 5.954 6.528 6.566 6.466 6.171
Ep — 0.964 0.913 0.838 0.744 0.653 0.547 0.462 0.386

n = 200 000
T 0.02495 0.01289 0.00678 0.00487 0.00406 0.00365 0.00347 0.00336 0.00336
Sp — 1.935 3.679 5.121 6.139 6.822 7.180 7.425 7.423
Ep — 0.968 0.920 0.854 0.767 0.682 0.598 0.530 0.464

n = 300 000
T 0.05973 0.03025 0.01601 0.01140 0.00931 0.00821 0.00761 0.00700 0.00662
Sp — 1.974 3.731 5.239 6.413 7.272 7.845 8.523 9.017
Ep — 0.987 0.933 0.873 0.802 0.727 0.654 0.609 0.564

n = 400 000
T 0.12345 0.06221 0.03225 0.02252 0.01787 0.015.441 0.01427 0.01320 0.01236
Sp — 1.984 3.828 5.482 6.907 7.995 8.635 9.350 9.983
Ep — 0.992 0.957 0.914 0.863 0.800 0.720 0.668 0.624

n = 500 000
T 0.26724 0.12916 0.06842 0.04718 0.03648 0.03094 0.02694 0.02397 0.02248
Sp — 2.069 3.905 5.664 7.325 8.635 9.918 11.147 11.887
Ep — 1.034 0.976 0.944 0.916 0.864 0.827 0.796 0.743

The amount of speedup in different problem sizes is shown in Figure 10. When the
order of the systemwas 20 000 and the number of processors was greater than 12, the speedup
decreased. The reason for this inefficiency is the effect of network delay on computation time.
On the other hand, in the larger problem sizes, this problem does not exist.

It is encouraging to note that, with an increase in problem size, the efficiency of the
parallel algorithm increases. In Figure 11, the efficiency of different executions is presented.
It is obvious that the rate of reduction in the efficiency of the parallel algorithm decreased
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Figure 10: The speedup of parallel algorithm.

by raising the problem size. This characteristic makes this parallel algorithm a practical
subroutine in numerical computations.

In addition, the speedup of proposed algorithm is compared with parallel Cycle
Reduction algorithm (Figure 12). Cycle Reduction is a well-known algorithm for solving
system of equations [27]. The speedup of both algorithms is shown in two orders of system
of equations, that is, n = 200 000 and 400 000. Obviously, the speedup of proposed algorithm
is more than that of Cycle Reduction and also would be greater by increasing number of
equations and processors.
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Figure 12: The speedup comparison between proposed algorithm and Cycle Reduction in two different
orders of system of equations: (a) n = 200 000 and (b) n = 400 000.

6. Conclusion

In this paper, a novel parallel algorithm based on the Gram-Schmidt method was presented
to solve a tridiagonal linear system of equations in an efficient way. Solving linear systems
of equations is a famous problem in different scientific fields, especially systems in the
tridiagonal form. Therefore, the efficiency and accuracy of the algorithm can play a vital role
in the entire solution procedure.

In this parallel algorithm, the coefficient matrix is partitioned according to the
number of processors. After that, some columns in each block are switched. Therefore,
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the corresponding orthogonal and upper-triangular matrices are computed by each processor
with a minimum request from the other partitions’ data. Finally, the system of equations is
solved almost exactly.

The proposed algorithm has some remarkable advantages, which include the
following:

(1) the ability to find almost exact solutions to tridiagonal linear systems of equations
of different sizes, as well as the corresponding orthogonal and upper-triangular
matrices;

(2) considerable reduction of computation cost proportional to the number of
processors and blocks;

(3) increasing the efficiency of the algorithm by raising the size of the system of
equations;

(4) the significant ability of a single processor using the MPI library; the requested
memory decreases by partitioning the matrix, and hence the computational speed
increases.

The orders of the systems of equations that are presented in this paper range from
10 000 to 100 000. The results show that the suggested algorithm is scalable and completely
practical.
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