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This paper presents an analytical feature for limit cycle oscillation (LCO) in the nonlinear aeroelastic system of an airfoil, withmajor
emphasis on its applications in LCO quantification.The nonlinear stiffness is modeled as the product of the 𝑝th power of vibration
displacement and the 𝑞th power of velocity, with its coefficient as a stochastic parameter. One interesting finding is that the LCO
amplitude is directly proportional to the 1/(1 − 𝑝 − 𝑞)th power of the coefficient, whereas the frequency is independent of the
coefficient. Based on this feature, the statistics and distribution functions of the LCO amplitude are obtained semianalytically,
which are validated by Monte Carlo simulations. In addition, we discuss the possible influences of the nonlinear stiffness on
flutter suppression of the airfoil subjected to Gaussian white noises. Surprisingly, increasing the nonlinear stiffness alone does not
necessarily reduce the vibration amplitude as expected. Instead, it may sometimes induce disastrous subcritical LCOs with much
higher vibration amplitudes.

1. Introduction

The nonlinear aeroelastic system of an airfoil is a typical self-
excited system, which can exhibit lots of nonlinear dynamical
behaviors such as bifurcations, limit cycle oscillations (LCO),
and chaotic responses [1, 2]. Quantification of airfoil LCOs
via analytical and/or semianalytical techniques has been an
active area of research for many years. It has stimulated the
interests and curiosities ofmany researchers [3–9]. Due to the
design and manufacturing errors, uncertainties are usually
inevitable in airfoil aeroelastic systems [10].They usually hap-
pen to system parameters as stochastic [11] or uncertain-but-
bounded variables [12]. As uncertainties are included, it will
become much more cumbersome to investigate nonlinear
aeroelastic responses such as LCOs, bifurcations, and chaos.

Recent years have witnessed an increasing amount of
research works focusing on the stochastic analysis of airfoil
LCO. Expansion technique has been widely used to propose
solution approaches on this topic. Mathematically, these
methods aim at transforming a stochastic problem into a
deterministic one, according to appropriate representations
of the output variables or stochastic processes. Attar and

Dowell [13] employedMonteCarlo simulation and a response
surface method, respectively, to map the output character-
istics of a delta wing into two input parameters. They con-
sidered two variables, that is, the thickness and modulus of
elasticity. Millman et al. [14] also applied the response surface
mapping to simulate the bifurcations of LCOs. Another
technique, called stochastic Galerkin method, was proposed
by Xiu et al. [15] to study LCOs arising in nonlinear systems
with uncertainties. Pettit and Beran proposed methods for
quantification of LCOs by using polynomial chaos [16] and
Wiener-Haar expansion [17], respectively. Additionally, Mill-
man et al. [18] applied Fourier chaos expansion to investigate
the bifurcation behaviors of an airfoil. The Gegenbauer poly-
nomial can also be applied in the orthogonal decomposition
of stochastic nonlinear flutter system, as suggested by Wu et
al. [19].

Aside from the above-mentioned approaches based on
expansion technique, there are some other approaches devel-
oped to solve nonlinear stochastic aeroelastic systems. The
stochastic collocation method was applied by Deng et al.
[20] to solve the nonlinear aeroelastic system of an airfoil
with a control surface. In thismethod, deterministic solutions
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are obtained at a series of discrete values for stochastic
parameters. Based on the attained solutions, the stochastic
analysis can be carried out using an interpellation method.
Chen et al. [21] applied the incremental harmonic method
to solve a nonlinear aeroelastic system with uncertain-but-
bounded parameters. In addition, the B-spline stochastic pro-
jection technique was utilized by Millman et al. to quantify
uncertainties [22]. It was also extended, by Beran et al. [23],
to the treatment of aerodynamic nonlinearities governed by
discrete Euler equations. More recently, the normal form
theory was adopted to investigate the flutter boundary of an
airfoil [24].

As mentioned above, a lot of numerical analysis has
been made to better understand the effect of uncertain
parameters on LCOs as well as other responses. Analytical
or semianalytical prediction on aeroelastic responses is of
fundamental significance to aeroelastics research; for exam-
ple, Balakrishnan and Tuffaha established an explicit formula
to determine aeroelastic divergence speed [25]. Nevertheless,
it is rare to find more analytical and even semianalytical
results. This study is motivated by an analytical dependence
of the airfoil LCO on the nonlinear stiffness coefficient. More
specifically, this parametric dependence regards the analyti-
cal relationship between the amplitude (frequency) and the
coefficient of the nonlinear coefficient. It will be proved
and extended, in Section 2, to general self-excited systems
with multiple nonlinearities. Based on these features, we will
present an algorithm to quantify the main statics of LCOs
arising in the aeroelastic systemwith the nonlinear coefficient
as a stochastic parameter. Furthermore, we will discuss the
effects of the nonlinear coefficients on LCO suppression
when the airfoil is subjected to Gaussian white noises.

2. Parametric Dependence of LCO

The nonlinear aeroelastic system [1, 2] of an airfoil is usually
modeled as a set of ordinary differential equations. To
elucidate the parametric dependence of the LCO, the system
is rewritten as the following self-excited oscillator:

Mẍ + Cẋ + Kx + 𝑐F (x, ẋ) = 0 (1)

in which the superscript denotes the differentiation with
respect to time 𝑡, x is the unknown vector of dimension 𝑛, and
M, C, and K are the mass, damping, and stiffness matrixes,
respectively. The coefficient, 𝑐, is a nonzero constant. The
nonlinear term, F(x, ẋ), is given as a continuous function in
one component of x:

F (x, ẋ) = [0, . . . , 0, (x𝑖)𝑝 (ẋ𝑖)𝑞, 0, . . . , 0]T (2)

with 𝑝 and 𝑞 as given constants. The superscript “T” denotes
the transpose and x𝑖 the 𝑖th component of vector x. The
major result regarding the relationship between LCO and the
nonlinear coefficient is given as follows:

(I) The LCO amplitude is directly proportional to𝑐1/(1−𝑝−𝑞).
(II) The LCO frequency is independent of 𝑐.

Table 1: The frequency and amplitude of the van der Pol equation
with 𝜀 = 1, by Delamotte’s and 100th-order HAM solution, respec-
tively.

Solution 𝑎 𝜔
𝛿 = 1

Delamotte 2.0086198609 0.94295584744161
HAM 2.00861986087484 0.94295584744161

𝛿 = 0.25
HAM 4.01723972174969 0.94295584744161

𝛿 = 0.01
HAM 20.08619860874844 0.94295584744161

Denote the LCO solution as x = y when 𝑐 = 1, with the
angular frequency as 𝜔. Under the transformation 𝜏 = 𝜔𝑡, (1)
becomes

𝜔2Mx󸀠󸀠 + 𝜔Cx󸀠 + Kx + 𝑐F (x, 𝜔x󸀠) = 0, (3)

where the superscript denotes the differentiation with respect
to 𝜏. Considering that y is a solution of (3) as 𝑐 = 1, we have

𝜔2My󸀠󸀠 + 𝜔Cy󸀠 + Ky + F (y, 𝜔y󸀠) = 0. (4)

For any nonzero constant 𝜆, substituting x = 𝜆y into the left
side of (3), we obtain

𝜔2My󸀠󸀠 + 𝜔Cy󸀠 + Ky + 𝜆𝑝+𝑞−1𝑐F (y, 𝜔y󸀠) . (5)

Comparing (4) and (5), we know that as long as 𝜆𝑝+𝑞−1𝑐 = 1,
x = 𝜆y is also a solution to (3); that is,

𝜆 = 𝑐1/(1−𝑝−𝑞). (6)

As the coefficient 𝑐 varies, one of the LCOs can be expressed
as 𝑐1/(1−𝑝−𝑞)y, which implies that the amplitude is in direct
proportion to 𝑐1/(1−𝑝−𝑞) and that the frequency is independent
of 𝑐.

We take the famous van der Pol equation as an illustration

𝑥̈ + 𝑥 − 𝜀𝑥̇ + 𝛿𝑥2𝑥̇ = 0. (7)

As is well known, as both 𝜀 and 𝛿 are positive constants, this
system has a stable LCO. In this example, we have 𝑝 = 2 and𝑞 = 1. According to the above properties, the amplitude of
the LCO is in inverse proportion to√𝛿.

We examine the above-mentioned properties with the
help of some highly accurate solutions. Tables 1 and 2
present the results obtained by Delamotte [26], Buonomo
[27], and the homotopy analysis method (HAM) [28, 29],
respectively. Here, Delamotte’s and Buonomo’s solutions are
provided, respectively, to validate the HAM ones. With such
excellent agreement between these solutions, it is reasonable
to consider the HAM results to be precise and use it
as a benchmark for comparison in examining the above-
mentioned features. One can observe that the frequency
remains the same as nonlinear coefficient 𝛿 varies. On the
other hand, as 𝛿 increases (or decreases) by 100 times, the
amplitudes decreases (or increases) 10 times. That means the
amplitude is inversely proportional to√100 = 10.
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Table 2: The frequency and amplitude of the van der Pol equation
with 𝜀 = 0.3, by Buonomo’s and 100th-order HAM solution, respec-
tively.

Solution 𝑎 𝜔
𝛿 = 0.3

Buonomo Not given 0.994419844392168
HAM 2.000922385554212 0.994419844392168

𝛿 = 1.2
HAM 1.000461192777106 0.994419844392168

𝛿 = 30
HAM 0.2000922385554212 0.994419844392168

3. Quantification of LCOs in Nonlinear
Aeroelastic Systems

The physical model presented in Figure 1 is a two-dimen-
sional airfoil, oscillating in pitch and plunge, which has been
employed by many authors [5–9].

The pitch angle about the elastic axis is denoted by 𝛼,
positive with the nose up; the plunge deflection is denoted byℎ, positive in the downward direction. In terms of nondimen-
sional time 𝑡 = 𝜔𝛼𝑡1 (𝑡1 is the real time) and nondimensional
plunge displacement 𝜉 = ℎ/𝑏, the coupled motions of the
airfoil in incompressible unsteady flow can be described as
[30, 31]

𝐶0𝜉̈ + 𝐶1𝛼̈ + 𝐶2𝜉̇ + 𝐶3𝛼̇ + 𝐶4𝜉 + 𝐶5𝛼 + 𝐶6𝑤1 + 𝐶7𝑤2
+ 𝐶8𝑤3 + 𝐶9𝑤4 + 𝐶10𝜉 + 𝜂𝜉3 = 0,

𝑑0𝜉̈ + 𝑑1𝛼̈ + 𝑑2𝜉̇ + 𝑑3𝛼̇ + 𝑑4𝜉 + 𝑑5𝛼 + 𝑑6𝑤1 + 𝑑7𝑤2
+ 𝑑8𝑤3 + 𝑑9𝑤4 + 𝑑10𝜉 + 𝛿𝛼3 = 0,

(8)

where 𝜂 and 𝛿 are the coefficients of the cubic stiffness; and𝑤𝑖’s are given as

𝑤1 = ∫𝑡
0
𝑒−𝜀1(𝑡−𝜎)𝛼 (𝜎) d𝜎,

𝑤2 = ∫𝑡
0
𝑒−𝜀2(𝑡−𝜎)𝛼 (𝜎) d𝜎,

𝑤3 = ∫𝑡
0
𝑒−𝜀1(𝑡−𝜎)𝜉 (𝜎) d𝜎,

𝑤4 = ∫𝑡
0
𝑒−𝜀2(𝑡−𝜎)𝜉 (𝜎) d𝜎,

(9)

in which 𝜀1 = 0.335 and 𝜀2 = 0.0455. The coefficients and
more details about the model are stated in Li et al. [30]
or Liu and Dowell [31]. As one of the nonlinear stiffness
coefficients (𝜂 and 𝛿) is given as 0, the system contains a single
nonlinearity.The nonlinear coefficients are given as bounded
random parameters

𝜂 = 𝜂0 + 𝜂1V,
𝛿 = 𝛿0 + 𝛿1V, (10)
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Figure 1: Sketch of a two-dimensional airfoil. 𝑏 is the length of mid-
chord, 𝑎𝑏 is the distance between the elastic axis and the mid-chord,
and 𝑥𝑏 is the distance between the mass center and the elastic axis.

where 𝜂0, 𝛿0 and 𝜂1, 𝛿1 are positive constants and 𝜂0 > 𝜂1,𝛿0 > 𝛿1; V ∈ [−1, 1] is given as a stochastic parameter with
the probability function as 𝑓(V).
Case 1 (pitch nonlinearity 𝜂 = 0, 𝛿 ̸= 0). The system param-
eters in (8) are given in Table 3, and the value of nondimen-
sional wind speed𝑈 varies. Numerical solutions are obtained
by the Runge-Kutta method. Using analytical techniques
developed for linear flutter analysis, the critical flutter speed
is found to be 𝑈 = 𝑈𝑓 = 6.0385. As 𝑈 increases beyond 𝑈𝑓,
a stable LCO arises. As 𝑈/𝑈𝑓 increases further, a secondary
Hopf bifurcation arises following a jump for LCO amplitude
[31].

We now turn to calculate the statistics of the LCO
amplitudes. Since we consider a cubic nonlinearity such that𝑝 = 3 and 𝑞 = 0, the extremes of the LCOs, denoted as𝐻 for𝜉 and 𝐴 for 𝛼, respectively, can be expressed as

𝐻 = 𝐻(1)√𝛿 ,
𝐴 = 𝐴 (1)√𝛿 ,

(11)

where 𝐻(1) and 𝐴(1) are the extremes as 𝛿 (or 𝜂) equals 1.
According to (11), the statistics and distribution functions of𝐴 and 𝐻 can be determined by the following procedures.
Note that this special casewas revealed byChen and Liu using
the homotopy analysis method [32].

Mathematically, the mean and standard deviation of 𝐴
can be, respectively, given as

𝐸𝐴 = ∫1
−1
𝐴 (𝛿) 𝑓 (V) dV = 𝐴 (1) ∫1

−1

𝑓 (V)
√𝛿0 + 𝛿1VdV, (12)

𝐷𝐴 = √∫1
−1
𝐴2 (𝛿) 𝑓 (V) dV − (𝐸𝐴)2

= √𝐴2 (1) ∫1
−1

𝑓 (V)(𝛿0 + 𝛿1V)dV − (𝐸𝐴)
2.

(13)
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Table 3: Parameter values in system (8).

Parameter 𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6
Value 1.01 0.255 0.01 0.02 0.0022 0.0122 1.4𝐸 − 4
Parameter 𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6
Value 1.02 1.015 0 0.04 0 0 0
Parameter 𝑐7 𝑐8 𝑐9 𝑐10 𝑑7 𝑑8 𝑑9 𝑑10
Value 0.0014 −6.8𝐸 − 6 −6𝐸 − 8 0.0625𝑈−2 0 0 0 𝑈−2

Table 4: Comparisons between the mean and standard derivation by the presented method and by MCS.

EA DA EH DH
𝑈 = 1.5𝑈𝑓, 𝛿0 = 100, 𝛿1 = 10

MCS, 5000 samples 0.1230 3.0929𝐸 − 3 0.3179 8.0184𝐸 − 3
Presented method 0.1233 3.0927𝐸 − 3 0.3195 8.0945𝐸 − 3
Relative difference 0.2% 0.007% 0.5% 0.09%

𝑈 = 2𝑈𝑓, 𝛿0 = 100, 𝛿1 = 50
MCS, 5000 samples 0.2003 0.0271 0.6342 0.0858
Presented method 0.2009 0.0272 0.6315 0.0856
Relative difference 0.3% 0.4% 0.4% 0.2%

A bounded probability density function with monopeak
and symmetrically distributed within [−1, 1], named as arc-
like probability density function, is defined as follows [10]:

𝑓 (V) = {{{{{
2√1 − V2𝜋 , |V| ≤ 1
0, |V| > 1. (14)

Since the amplitude of the LCO can be semianalytically
expressed asmonotonous function of 𝛿, theminimum (𝐴min)
and maximum (𝐴max) of 𝐴 can be easily determined as 𝛿
varies in a bounded region. Moreover, the probable density
function of𝐴(𝛿) can be obtained according to the probability
theory as

𝑔 (𝑎) = 𝑓 [𝛿 (𝑎)] 󵄨󵄨󵄨󵄨󵄨𝛿󸀠 (𝑎)󵄨󵄨󵄨󵄨󵄨 , 𝐴min ≤ 𝑎 ≤ 𝐴max. (15)

And, the distribution function can then be integrated as

𝐺 (𝑎) = ∫𝑎
𝐴min

𝑔 (𝑎) d𝑎, 𝐴min ≤ 𝑎 ≤ 𝐴max. (16)

Table 4 shows the comparisons between the solutions
provided by the presented method (i.e., (12) and (13)) and
Monte Carlo simulation (MCS) results. The relative discrep-
ancies are less than 0.5% when 5000 samples are taken into
account.The distribution functions of𝐴 and𝐻 are plotted in
Figures 2 and 3, respectively. Excellent agreement can also be
observed. Note that the distribution curves for 𝐴 and 𝐻 are
similar to each other. That is because the functions of 𝐴 and𝐻 can be expressed by the same functions in 𝛿.

As 𝑈/𝑈𝑓 increases beyond 2.1, there are three extremes
for pitch displacement, as revealed by Liu and Dowell [31].

Table 5: The mean and standard derivation of A of the three
extremes obtained by the presented method and by MCS with 5000
samples, respectively. Parameters are given as𝑈/𝑈𝑓 = 2.5, 𝛿0 = 100,
and 𝛿1 = 50.

EA DA
MCS 0.2881 0.0390
Presented method 0.2880 0.0390
MCS 0.1839 0.0249
Presented method 0.1839 0.0249
MCS 0.0759 0.0103
Presented method 0.0760 0.0103

Table 5 shows the results obtained by the presented method
for the means and derivations. They are both in excellent
agreement with the MCS results. The distribution functions
for the extremes are plotted in Figure 4. It also shows that the
results of the presentedmethod agreewell with theMCSones.

Case 2 (plunge nonlinearity 𝜂 ̸= 0, 𝛿 = 0). As a cubic plunge
stiffness is considered, the bifurcation chart obtained by the
incremental harmonic balance method is plotted in Figure 5.
Note that the critical flutter speed depends on the linear
coefficients rather than nonlinear coefficients. Different from
the first case, a subcritical Hopf bifurcation is detected at𝑈𝑓. As 𝑈/𝑈𝑓 decreases from 1 to 0.68 or so, there exists an
unstable LCO. The LCO gains its stability at 𝑈/𝑈𝑓 = 0.68,
and a stable LCO always arises again as 𝑈/𝑈𝑓 increases from
0.68.

Table 6 presents the comparisons of the results by the
presented method andMCS ones. The distribution functions
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Figure 2: Distribution functions of 𝐴 obtained by the presented
method and byMCS, respectively. Parameters are given as𝑈 = 2𝑈𝑓,𝛿0 = 100, and 𝛿1 = 50.
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Figure 3: Distribution functions of 𝐻 obtained by the presented
method and by MCS, respectively. Parameters are given as 𝑈/𝑈𝑓 =2, 𝛿0 = 100, and 𝛿1 = 50.

are also obtained for both the pitch and plunge amplitudes,
respectively. Excellent agreement can be also observed in
Figure 6.

4. Influence of Nonlinear Stiffness to
LCO Suppression

For the aeroelastic system with a cubic stiffness, the LCO
amplitude is inversely proportional to the square root of the
nonlinear coefficient. Accordingly, one would like to reduce
the LCO amplitude by raising the nonlinear stiffness. As
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Figure 5: Bifurcation chart of the aeroelastic system with 𝛿 = 0 and𝜂 = 80.

an illustrative example, Figure 7 shows that the amplitude
reduces to a large extent as the nonlinear coefficient increases
from 8 to 100. The initial condition (IC) is defined as[𝛼(0), 𝛼̇(0), 𝜉(0), 𝜉̇(0)]. The single fixed point of system (8) is
the origin, which is unstable as 𝑈 is larger than 𝑈𝑓. In such
a case, the motions converge to the stable LCO regardless of
ICs. As expected, increasing the cubic stiffness can suppress
the LCO for the case of 𝑈/𝑈𝑓 > 1.
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Table 6: Comparisons of the mean and standard derivation by the presented method with those by MCS.

EA DA EH DH
𝑈 = 1𝑈𝑓, 𝛿0 = 100, 𝛿1 = 80

MCS, 5000 samples 1.2605 0.3273 0.7330 0.1902
Presented method 1.2646 0.3295 0.7339 0.1912
Relative difference 0.3% 0.7% 0.1% 0.5%

𝑈 = 2𝑈𝑓, 𝛿0 = 100, 𝛿1 = 80
MCS, 4000 samples 1.3349 0.3494 1.0236 0.2640
Presented method 1.3364 0.3482 1.0269 0.2676
Relative difference 0.1% 0.3% 0.3% 1.3%

H

A (degree)

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0D
ist

rib
ut

io
n 

fu
nc

tio
n

D
ist

rib
ut

io
n 

fu
nc

tio
n

2.521.51

1.51.2510.750.5

Pitch

Plunge

Presented method
MCS, 5000 samples 

Figure 6:The distribution functions for the three extremes of𝐴 and𝐻 with 𝑈/𝑈𝑓 = 1, 𝛿0 = 100, and 𝛿1 = 80.

When 𝑈/𝑈𝑓 < 1, however, increasing the cubic stiffness
does not necessarily lead to decreasing of the LCO amplitude
as expected. According to Figure 5, two LCOs coexist when𝑈/𝑈𝑓 is located between 0.68 and 1, with the lower one
being unstable and the other stable. Note that the single
fixed point is also stable. That implies the motions may
converge to either the fixed point or the stable LCO. By
choosing different ICs, the convergent region of the LCO
can be determined according to time histories obtained by
timemarching integration. As Figure 8 shows, there is critical
boundary in the 𝛼(0) − ℎ(0) plane (when 𝛼̇(0) = 𝜉̇(0) = 0).
The vibration approaches the stable LCOwhen the IC is given
within the shadow region; otherwise it diminishes to the fixed
point.

Generally, it is useful for vibration suppression to enlarge
the convergent region of the fixed point because it implies
that the motions being convergent as noises happen is more
probable. As mentioned above, the smaller the nonlinear
coefficient is, the larger the convergent region of the fixed
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Parameters are 𝑈/𝑈𝑓 = 1.5 and 𝜂 = 8 (solid lines) or 𝜂 = 100
(dashed lines).

point becomes. Figure 9 shows the time histories of system
(8) with the same value for 𝑈 but with different values for
the nonlinear coefficient. As 𝜂 = 8, the motion converges to
the fixed point. If 𝜂 = 100 is chosen, the motion approaches
a LCO finally. In this case, increasing the cubic stiffness
results in larger amplitude vibration rather than vibration
suppression.

Consider Gaussian white noises in both the pitching and
plunging DOFs, such as

𝐶0𝜉̈ + 𝐶1𝛼̈ + 𝐶2𝜉̇ + 𝐶3𝛼̇ + 𝐶4𝜉 + 𝐶5𝛼 + 𝐶6𝑤1 + 𝐶7𝑤2
+ 𝐶8𝑤3 + 𝐶9𝑤4 + 𝐶10𝜉 + 𝜂𝜉3 = 0.1𝜀1 (𝑡) ,

𝑑0𝜉̈ + 𝑑1𝛼̈ + 𝑑2𝜉̇ + 𝑑3𝛼̇ + 𝑑4𝜉 + 𝑑5𝛼 + 𝑑6𝑤1 + 𝑑7𝑤2
+ 𝑑8𝑤3 + 𝑑9𝑤4 + 𝑑10𝜉 + 𝛿𝛼3 = 0.1𝜀2 (𝑡)

(17)

in which the perturbations 𝜀𝑖(𝑡)’s are given as white Gaussian
noises with mean values as 1. The time histories, as plotted
in Figure 10, show that the vibration amplitude for 𝜂 = 8 is
smaller than that for 𝜂 = 100. Actually, the vibrations resulted
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from the white noises as 𝜂 = 8. The vibration is too small
to cause the vibration to reach the convergent region of the
stable LCO. For the case of 𝜂 = 100, on the other hand, the
motions are in essence LCOs subjected to noises.

5. Conclusions

We have investigated the LCO of an airfoil aeroelastic system
with a nonlinear stiffness. The nonlinearity is expressed
as a product of 𝑝th power of vibration displacement and𝑞th power of the velocity. Interestingly, the LCO amplitude
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Figure 10: Time histories for system (17) with IC = [1∘, 0, 0, 0].
Parameters are 𝑈/𝑈𝑓 = 0.8 and 𝜂 = 8 (solid lines) or 𝜂 = 100
(dashed lines).

is directly proportional to 1/(1 − 𝑝 − 𝑞)th power of the
nonlinear coefficient, while the frequency is independent of
this coefficient.

Special emphasis has been placed on the applications of
the above-mentioned feature. An illustrative application is
in LCO quantification for the nonlinear aeroelastic system
with the nonlinear coefficient as a stochastic parameter. The
statistics and distribution functions of the LCO amplitudes
can be semianalytically determined. Excellent agreement
between the obtained results and the MCS ones validates
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the feasibility and efficiency of the applications in LCO
quantification.

In addition, the influence of the nonlinear stiffness on
LCO suppression has been discussed in detail. When a stable
LCO exists and the fixed point is unstable, that is, for the
case when the wind speed increases beyond the critical flutter
speed, the LCO can be suppressed by means of increasing the
cubic stiffness. Below the flutter speed, however, increasing
the cubic stiffness cannot reduce (as expected) but possibly
result in larger magnitude of vibration.

As is well known, parameters in nonlinear dynamical
systems are closely related to system stability, bifurcations,
chaos, and so on.Therefore, parametric study is one of major
tasks in nonlinear dynamics analysis. This study could also
be considered to be a preliminary and useful attempt at the
dependence of vibration on system parameters (especially
nonlinear coefficients) of self-excited systems.The simple yet
efficient applications imply that the feature revealed in this
paper could be more applicable in more nonlinear systems.
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