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This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream
partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To
solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In
addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight
method (PSOA IWM), 𝑉Max method (PSOA VMM), and constriction factor method (PSOA CFM), which we employed to find
solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to
compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model
proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding
objective function value, the GA, PSOA IWM, and PSOA CFM could obtain a lower convergence value than PSOA VMM could.
Finally, PSOA IWM demonstrated a faster convergence speed than PSOA VMM, PSOA CFM, and the GA did.

1. Introduction

Intense competition within the global market has prompted
enterprise competition to change from a competition among
companies to that among supply chains. In addition to reduc-
ing operating costs and improving competitiveness, effec-
tively integrating the upstream and downstream suppliers
and manufacturers of a supply chain can reflect market
changes and meet consumer needs efficiently.

Previous studies on the design problems of supply net-
works include [1–8]. In addition, Che and Cui [9] addressed
the network design on unbalanced supply chain system. For
the integrity of supply chain circulation, reverse logistics
should be implemented to form a complete logistics circula-
tion. Reverse logistics was first proposed by Stock [10]; then
Trebilcock [11] indicated that, in the past, most enterprises
focused only on forward logistics andmisunderstood reverse
logistics as a nonprofitable activity.

Cohen [12] suggested that enterprises could save 40%–
60% ofmanufacturing costs annually by adopting the remake
method, compared with using newmaterials. In recent years,
enterprises have begun paying increased attention to reverse
logistics activities such as customer returns, product mainte-
nance, replacement, and recycling.White et al. [13] described
in detail the essential aspects and challenges in acquiring,
assessing, disassembling, and reprocessing computer equip-
ment as it moves through this reversemanufacturing process.
Proper planning of a comprehensive product recycling plan
can reduce the environmental damage caused by disposing
of used equipment.

Based on literature review, reverse logistics includesman-
agement functions related to returned products, depot repair,
rework, material reprocessing, material recycling, and dis-
posal of waste and hazardous materials.These allow products
to be returned upstream for processing in a reverse logistics
system; thus, the circulation of an integral supply chain can be
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Figure 1: The reverse logistics flow of the products (Gattorna [14]).

implemented. The reverse logistics flow of products is shown
in Figure 1.

Many scholars have defined reverse logistics briefly and
clearly [10, 15–18], and some have studied the reverse logistics
network design for different fields such as the steel industry
[19], electronic equipment [20], sand recycling [21], reusable
packaging [22], and general recovery networks [23]. Amini
et al. [24] demonstrated how an effective and profitable
reverse logistics operation for an RSSC was designed for
an MDM in which customer operations demanded a quick
repair service. Fleischmann et al. [25] considered a logistics
network design in a reverse logistics context and presented a
generic facility location model by discussing the differences
compared with traditional logistics settings. This model was
then used to analyze the impact of product return flow on
logistics networks.

In addition, Savaskan et al. [26] developed a detailed
understanding of the implications that a manufacturer’s
reverse channel choice has on forward channel decisions and
the used product return rate from customers. Chouinard
et al. [27] addressed problems related to integrating reverse
logistics activities within an organization and to coordinat-
ing this new system. Kainuma and Tawara [28] proposed
the multiple-attribute utility theory method for assessing a
supply chain, including reusing and recycling throughout the
life cycle of products and services. Nagurney and Toyasaki
[29] developed a model linking these decisions to prices and
material shipments among end-of-life electronics sources,
recyclers, processors, and suppliers for deterministic scenar-
ios. Nikolaidis [30] proposed a single-period mathematical
model for determining a reverse supply chain plan that con-
siders procurement and returns’ remanufacturing, andNenes
and Nikolaidis [31] extended Nikolaidis’s model to a multi-
period model. Salema et al. [32] developed a multiperiod,
multiproduct model for designing supply chain networks
regarding reverse flows.More recently, Pinto-Varela et al. [33]
considered an environmental perspective to develop amixed-
integer linear programming model for planning reverse
supply chains. Amin and Zhang [34] presented a mixed-
integer linear programming model for designing a closed-
loop supply chain network regarding product life cycles. In

addition,Huang et al. [35] analyzed strategies of a closed-loop
supply chain containing a dual recycling channel. Although
cross-stage logistics in reverse supply chains generally exists
in practice, our research suggests that it has yet to be ade-
quately addressed. Hence, the motivation of this study is to
design the reverse supply chain with cross-stage logistics.

Reverse logistics is more complex than forward logistics,
and this study aimed to develop a mathematical foundation
for modeling a cross-stage reverse logistics plan that enables
defective products with differing degrees of damage to be
returned to upstream partners in the stages of a supply chain
for maintenance, replacement, or restructuring. This cross-
stage reverse logisticsmodel can help save time, lessen unnec-
essary deliveries, and, more importantly, meet the conditions
of reverse logistics operation more efficiently.

Recently, GAs have been regarded as a novel approach
to solving complex, large-scale, and real-world optimiza-
tion problems [6, 36–42]. Moreover, the PSO proposed by
Kennedy and Eberhart [43] was an iteration optimization
instrument, generating a group of initial solutions at the
beginning and then acquiring the optimal value through
iteration. Liao and Rittscher [44] applied this instrument
to scheduling problems related to industrial piece work
requiring minimal completion time. Zhang et al. [45] applied
PSO to solve the minimization problems of the project
duration for resource-constrained scheduling. Shi et al. [46]
applied a PSO to the traveling salesman problem. Che [47]
developed a PSO-based back-propagation artificial neural
network for estimating the product and mold costs of plastic
injection molding and Che [48] proposed a modified PSO
method for solving multiechelon unbalanced supply chain
planning problems. Priya and Lakshmi [49] applied PSO for
performing the real time control of spherical tank system
and Ali et al. [50] used the PSO for solving the constrained
numerical and engineering benchmark problems. Other
related studies concerning the use of PSO for the optimization
problems are [51–54].

In addition, Dong et al. [55] compared the improved PSO,
a combinatorial particle swarm optimization (CPSO), with
GA, and the results showed that the improved PSO was more
effective in solving nonlinear problems. Yin and Wang [56]
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Figure 2: The transportation model of reverse logistics.

used PSO to solve nonlinear resource allocation problems
and compared PSO with the GA. They found that the
efficiency and potency of a PSO were higher than those of
a GA. Salman et al. [57] applied PSO to solve the efficiency
rates of tasks assigned to computers or parallel computer
systems and compared the results with those of GA. The
results showed that PSOhas faster execution and convergence
speeds than the GA. Based on our research, no previous stud-
ies have applied PSO to cross-stage reverse logistics problems;
therefore, to solve this problem, this study used three updated
PSO methods: the inertia weight method (PSOA IWM),
constriction factor method (PSOA CFM), and 𝑉Max method
(PSOA VMM). The results were then compared with those
using the GA regarding system execution time, convergence
time, and objective function value.

The remainder of this paper is structured as follows.
Section 2 introduces the proposed mathematical foundation
and solving algorithms for modeling and solving cross-
stage reverse logistics problems. Section 3 presents illustrative
examples and the comparative and analytical results of the
algorithms. Finally, Section 4 provides the conclusion of this
study and offers suggestions for future research.

2. Mathematical Foundation and
Solving Models for Cross-Stage Reverse
Logistics Problems

2.1. Problem Description. Reverse logistics activities include
recycling, rework, replacement, and waste disposal; however,
the reverse logistics activity of each function differs. There-
fore, this study designed a forward and reverse cross-stage
logistics system for maintaining, reassembling, and packag-
ing recycled defective products. The structure is shown in
Figure 2.

When downstream partners generate defective products,
the products can be returned directly to upstream supply
chain partners for maintenance to restore product function
and value, based on the degree of damage. Therefore, this
study supposed that, when defective products are generated,
they can be divided into N parts according to the average
volume of defective products generated by a particular
supplier. Downstream partners can then return defective
products, based on the divided quantity, to upstreampartners
for maintenance. For example, when the first partner of the
fourth stage generates defective products, the total defective
amount is divided into three parts and then sent to the first,
second, and third stage partners separately in the supply
chain, thereby reducing general reverse logistics costs and
transportation time.

For supply chain partner selection, this study considered
productivity restrictions, transportation costs, manufactur-
ing costs, transportation time, manufacturing quality, and
other parameters. The 𝑇-transfer approach is a common sta-
tistical technology that is employed to integrate variables. In
this study, the𝑇-transfer of transportation costs, manufactur-
ing costs, transportation time, andmanufacturing qualitywas
integrated into the objective function standards. 𝑇-transfer
is a common statistics technology first proposed by McCall
[58]; it is defined as follows: “𝑇-Scores are a transformation
of raw scores into a standard form, where the transformation
is made when there is no knowledge of the population’s
mean and standard deviation.” 𝑇-scores have a mean of 50
and a standard deviation of 10. Che [59] considered the
manufacturing cost and time, transportation cost and time,
product quality, and green appraisal score in selecting green
suppliers when establishing a green supply chain and used
𝑇-transfer technology to transform the data. Cost, time,
quality, and green appraisal score aremeasurable criteria with
different units; thus, in this study the𝑇-transfer approachwas
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Figure 3: The structure of this study.

also employed to first transform the original scores of each
criterion into a standard form and then to integrate them.

To satisfy the conditions of the actual production situa-
tion, this study used transportation losses andmanufacturing
losses to construct an unbalanced supply chain network. In
considering the characteristics of all the suppliers addressed
in this study, we developed a cross-stage reverse logistics
course planning system for single-product and multiperiod
programming.

We programmed the reverse logistics for recycled defec-
tive products, which were returned directly to the upstream
supply chain partners for maintenance, reassembly, and
repackaging through the cross-stage reverse logistics course
programming based on the degree and nature of the damage.
For selecting supply chain partners, this study considered
the manufacturing characteristics (transportation costs, pro-
duction costs, upper and lower limit of productivity, man-
ufacturer’s defective product rate, transportation losses rate,
and manufacturing quality) to construct the reverse logistics
programming model. Based on these data, optimal manufac-
turing quality with minimal production cost, transportation
cost, and transportation time can be determined.

In considering the different evaluation criteria, this study
𝑇-transferred the database and used theVisual Basic program
language to compile four solution models, including GA,
PSOA IWM, PSOA VMM, and PSOA CFM. The consid-
ered parameters in the supplier database were combined to
develop a set for designing reverse logistics course planning
systems. The framework of this study is shown in Figure 3.

Analysis of variance (ANOVA) and Scheffé analyseswere per-
formed to compare the objective function values (𝑇-score),
convergence times, and run times of the four algorithms to
verify the validity of this study and the performance of the
four algorithms.

2.2. Mathematical Foundation for Cross-Stage Reverse Logis-
tics Problems. The optimal mathematical model of cross-
stage reverse logistics was developed as described in the
following steps. The definitions of notations used in this
model are listed as follows.
Notations for developing the optimal mathematical model:

Parameters

𝑖, 𝑗: Serial number of supplier
𝑖 = 1, 2, 3, . . . , 𝐼; 𝑗 = 1, 2, 3, . . . , 𝐽

𝑛: Production period 𝑛 = 1, 2, 3, . . . , 𝑁

𝑠, 𝑟𝑠: Stages of the supply chain network,
𝑠 = 1, 2, 3, . . . , 𝑆; 𝑟𝑠 = 1, 2, 3, . . . , 𝑆

𝐼, 𝐽: Total number of suppliers
𝑁: Total production periods
𝑆: Total stages of supply chain network
𝐶𝐷
𝑛

(𝑠.𝑖)
: Customer requirement of supplier 𝑖 at

stage 𝑠 for period 𝑛

Min𝐶𝑃
(𝑠.𝑖)

: Minimal starting up productivity of
supplier 𝑖 at stage 𝑠

Max𝐶𝑃
(𝑠.𝑖)

: Maximal starting up productivity of
supplier 𝑖 at stage 𝑠
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𝑃𝐶
(𝑠.𝑖)

: Manufacturing cost of supplier 𝑖 at
stage 𝑠

𝑃𝑄
(𝑠.𝑖)

: Product quality of supplier 𝑖 at stage 𝑠
𝑇𝐶
((𝑠.𝑖),(𝑠+1.𝑗))

: Transportation cost from supplier 𝑖 at
stage 𝑠 to supplier 𝑗 at stage 𝑠 + 1

𝑇𝑆
((𝑠.𝑖),(𝑠+1.𝑗))

: Transportation time from supplier 𝑖 at
stage 𝑠 to supplier 𝑗 at stage 𝑠 + 1

𝑃𝐶
(𝑠.𝑖)

: Average manufacturing cost of supplier
𝑖 at stage 𝑠

𝑃𝑄
𝑠.𝑖
: Average product quality of supplier 𝑖 at

stage 𝑠
𝑇𝐶
((𝑠.𝑖),(𝑠+1.𝑗))

: Average transportation cost from
supplier 𝑖 at stage 𝑠 to supplier 𝑗 at stage
𝑠 + 1

𝑇𝑆
((𝑠.𝑖),(𝑠+1.𝑗))

: Average transportation time from
supplier 𝑖 at stage 𝑠 to supplier 𝑗 at stage
𝑠 + 1

𝑇

𝑃𝐶
(𝑠.𝑖)

: Manufacturing cost of supplier 𝑖 at
stage 𝑠 after 𝑇-transfer

𝑇

𝑃𝑄
𝑠.𝑖
: Product quality of supplier 𝑖 at stage 𝑠

after 𝑇-transfer
𝑇

𝑇𝐶
((𝑠.𝑖),(𝑠+1.𝑗))

: Transportation cost from supplier 𝑖 at
stage 𝑠 to supplier 𝑗 at stage 𝑠 + 1 after
𝑇-transfer

𝑇

𝑇𝑆
((𝑠.𝑖),(𝑠+1.𝑗))

: Transportation time from supplier 𝑖 at
stage 𝑠 to supplier 𝑗 at stage 𝑠 + 1 after
𝑇-transfer

𝑆𝐺
𝑃𝐶
𝑠.𝑖

: Manufacturing cost standard deviation
of supplier 𝑖 at stage 𝑠

𝑆𝐺
𝑇𝐶
((𝑠.𝑖),(𝑠+1.𝑗))

: Transportation cost standard deviation
of supplier 𝑖 at stage 𝑠 to supplier 𝑗 at
stage 𝑠 + 1

𝑆𝐺
𝑃𝑄
𝑠.𝑖

: Product quality standard deviation of
supplier 𝑖 at stage 𝑠

𝑆𝐺
𝑇𝑆
((𝑠.𝑖),(𝑠+1.𝑗))

: Transportation time standard deviation
of supplier 𝑖 at stage 𝑠 to supplier 𝑗 at
stage 𝑠 + 1

𝐹𝑅
(𝑠.𝑖)

: Defective product rates of supplier 𝑖 at
stage 𝑠

𝑇𝐹𝑅
((𝑠.𝑖),(𝑠+1.𝑗))

: Transportation loss rate from supplier 𝑖
at stage 𝑠 to supplier 𝑗 at stage 𝑠 + 1

𝑤
𝑃𝐶,

𝑤
𝑇𝐶,

𝑤
𝑇𝑆,

𝑤
𝑃𝑄,

: Weights of manufacturing cost,
transportation cost, transportation
time, and product quality

‖ ‖: Integer function for obtaining the
integer value of the real number by
eliminating its decimal.

Decision Variables

𝑈
𝑛

((𝑠.𝑖),(𝑠+1.𝑗))
: Transportation quantity from supplier 𝑖 at

stage 𝑠 to supplier 𝑗 at stage 𝑠 + 1 for period
𝑛

𝑅𝑈
𝑛

((𝑟𝑠.𝑗),(𝑠.𝑖))
: Defective products quantity from supplier

𝑗 at stage 𝑟𝑠 to supplier 𝑖 at stage 𝑠 stage for
term 𝑛.

Notations for developing the update models for the position
and velocity of each particle:

𝑐
1
, 𝑐
2
: Learning factors

𝐾: Constriction factor
rand(): Random numbers between 0 and 1
𝑠
∗

𝑖
: Pbest memory value of particle 𝑖

𝑠
#
𝑖
: Gbest memory value of particle 𝑖

𝑠
new
𝑖

: New position of particle 𝑖
Vold
𝑖
: Original velocity of particle 𝑖

Vnew
𝑖

: New velocity of particle 𝑖
Vmax: The set maximal velocity
𝑤: Inertia weight

𝜙:
Totaling of cognition parameter and social
parameter, which must exceed 4.

Notations for performing hypotheses on the objective func-
tion value, convergence time, and completion time among
four proposed approaches:

𝐶𝑇GA: Convergence time of GA
𝐶𝑇PSOA IWM: Convergence time of PSOA IWM
𝐶𝑇PSOA VMM: Convergence time of PSOA VMM
𝐶𝑇PSOA CFM: Convergence time of PSOA CFM
𝐹𝑇GA: Completion time of GA
𝐹𝑇PSOA IWM: Completion time of PSOA IWM
𝐹𝑇PSOA VMM: Completion time of PSOA VMM
𝐹𝑇PSOA CFM: Completion time of PSOA CFM
ObjGA: Objective function value of GA
ObjPSOA IWM: Objective function value of PSOA IWM
ObjPSOA VMM: Objective function value of PSOA VMM
ObjPSOA CFM: Objective function value of PSOA CFM.

Acquire the minimization of manufacturing costs, trans-
portation costs, and transportation time, as well as the
maximization of the manufacturing quality of the different
suppliers, at various stages of forward and reverse logistics.

Manufacturing cost for forward logistics:

𝑓𝑃𝐶

=

𝑁

∑

𝑛=1

𝑆

∑

𝑠=1

𝐼

∑

𝑖=1

𝑇

𝑃𝐶
(𝑠.𝑖)

× [

[



𝑈
𝑛

((𝑠.𝑖),(𝑠+1.1))

1 − 𝐹𝑅
(𝑠.𝑖)



+

𝐽

∑

𝑗=2


𝑈
𝑛

((𝑠−1.𝑗),(𝑠.𝑖))
(1−𝑇𝐹𝑅

((𝑠−1,𝑗),(𝑠.𝑖))
)

]

]

.

(1)

Transportation cost for forward logistics:

𝑓𝑇𝐶 =

𝑁

∑

𝑛=1

𝑆

∑

𝑠=1

𝐼

∑

𝑖=1

𝐽

∑

𝑗=1

𝑇

𝑇𝐶
(𝑠.𝑖),(𝑠+1,𝑗)

𝑈
𝑛

((𝑠.𝑖),(𝑠+1.𝑗))
. (2)
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Product quality for forward logistics:

𝑓𝑃𝑄

=

𝑁

∑

𝑛=1

𝑆

∑

𝑠=1

𝐼

∑

𝑖=1

𝑇

𝑃𝑄
(𝑠.𝑖)

× [

[



𝑈
𝑛

((𝑠.𝑖),(𝑠+1.1))

1 − 𝐹𝑅
(𝑠.𝑖)



+

𝐽

∑

𝑗=2


𝑈
𝑛

((𝑠−1.𝑗),(𝑠.𝑖))
(1−𝑇𝐹𝑅

((𝑠−1,𝑗),(𝑠.𝑖))
)

]

]

.

(3)

Transportation time for forward logistics:

𝑓𝑇𝑆 =

𝑁

∑

𝑛=1

𝑆

∑

𝑠=1

𝐼

∑

𝑖=1

𝐽

∑

𝑗=1

𝑇

𝑇𝑆
(𝑠.𝑖),(𝑠+1,𝑗)

𝑈
𝑛

((𝑠.𝑖),(𝑠+1.𝑗))
. (4)

Manufacturing cost for reverse logistics:

𝑟𝑃𝐶 =

𝑁

∑

𝑛=2

𝑆−1

∑

𝑠=1

𝐼

∑

𝑖=1

𝑇

𝑃𝐶
(𝑠.𝑖)

𝑆

∑

𝑟𝑠=𝑠+1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛

((𝑟𝑠.𝑗),(𝑠.𝑖))
. (5)

Transportation cost for reverse logistics:

𝑟𝑇𝐶 =

𝑁

∑

𝑛=2

𝑆

∑

𝑠=1

𝐼

∑

𝑖=1

𝑇

𝑇𝐶
((𝑟𝑠.𝑗),(𝑠.𝑖))

𝑆

∑

𝑟𝑠=𝑠+1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛

((𝑟𝑠.𝑗),(𝑠.𝑖))
. (6)

Product quality for reverse logistics:

𝑟𝑃𝑄 =

𝑁

∑

𝑛=2

𝑆−1

∑

𝑠=1

𝐼

∑

𝑖=1

𝑇

𝑃𝑄
(𝑠.𝑖)

𝑆

∑

𝑟𝑠=𝑠+1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛

((𝑟𝑠.𝑗),(𝑠.𝑖))
. (7)

Transportation time for reverse logistics:

𝑟𝑇𝑆 =

𝑁

∑

𝑛=2

𝑆

∑

𝑠=1

𝐼

∑

𝑖=1

𝑇

𝑇𝑆
((𝑟𝑠.𝑗),(𝑠.𝑖))

𝑆

∑

𝑟𝑠=𝑠+1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛

((𝑟𝑠.𝑗),(𝑠.𝑖))
. (8)

The objective function is expressed as follows:

Minimize 𝑍 = 𝑤
𝑃𝐶

(𝑓𝑃𝐶 + 𝑟𝑃𝐶)

+ 𝑤
𝑇𝐶

(𝑓𝑇𝐶 + 𝑟𝑇𝐶)

− 𝑤
𝑃𝑄

(𝑓𝑃𝑄 + 𝑟𝑃𝑄)

+ 𝑤
𝑇𝑆

(𝑓𝑇𝑆 + 𝑟𝑇𝑆)

s.t.

(9)

Upper and lower limits of productivity of all the suppliers:

Min𝐶𝑃
(𝑠.𝑖)

≤

𝐽

∑

𝑗=1


𝑈
𝑛

((𝑠−1.𝑗),(𝑠.𝑖))
(1 − 𝑇𝐹𝑅

((𝑠−1,𝑗),(𝑠.𝑖))
)


+

𝑆

∑

𝑟𝑠=𝑠+1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛−1

((𝑟𝑠.𝑗),(𝑠.𝑖))
≤ Max𝐶𝑃

(𝑠.𝑖)

for 𝑛 = 1, 2, 3, . . . , 𝑁;

𝑠 = 2, 3, . . . , 𝑆; 𝑖 = 1, 2, 3, . . . , 𝐼;

(10)

Min𝐶𝑃
(𝑠.𝑖)

≤

𝐽

∑

𝑗=1



𝑈
𝑛

((𝑠.𝑖),(𝑠+1.𝑗))

1 − 𝐹𝑅
(𝑠.𝑖)



+

𝑆

∑

𝑟𝑠=𝑠+1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛−1

((𝑟𝑠.𝑗),(𝑠.𝑖))
≤ Max𝐶𝑃

(𝑠.𝑖)

for 𝑛 = 1, 2, 3, . . . , 𝑁; 𝑠 = 1;

𝑖 = 1, 2, 3, . . . , 𝐼.

(11)

Ensure the balance between the input and output of all part-
ners by considering the transportation defective rate:

𝐽

∑

𝑗=1


𝑈
𝑛

((𝑠−1.𝑗),(𝑠.𝑖))
(1 − 𝑇𝐹𝑅

((𝑠−1,𝑗),(𝑠.𝑖))
)


+

𝑆

∑

𝑟𝑠=𝑠+1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛−1

((𝑟𝑠.𝑗),(𝑠.𝑖))

=

𝐽

∑

𝑗=1

𝑈
𝑛

((𝑠+1.𝑗),(𝑠.𝑖))
+

𝑠−1

∑

𝑟𝑠=1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛

((𝑠.𝑖),(𝑟𝑠.𝑗))

for 𝑛 = 1, 2, 3, . . . , 𝑁;

𝑠 = 1, 2, 3, . . . , 𝑆; 𝑖 = 1, 2, 3, . . . , 𝐼;

(12)

𝑠

∑

𝑟𝑠=1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛

((𝑟𝑠.𝑗),(𝑠.𝑖))

=



(

𝐽

∑

𝑗=1


𝑈
𝑛

((𝑠−1.𝑗),(𝑠.𝑖))
(1 − 𝑇𝐹𝑅

((𝑠−1,𝑗),(𝑠.𝑖))
)


+

𝑆

∑

𝑟𝑠=𝑠+1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛−1

((𝑟𝑠.𝑗),(𝑠.𝑖))
)𝐹𝑅
(𝑠.𝑖)



for 𝑛 = 1, 2, 3, . . . , 𝑁;

𝑠 = 1, 2, 3, . . . , 𝑆; 𝑖 = 1, 2, 3, . . . , 𝐼.

(13)
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The product quantity should meet customer requirements:

𝐽

∑

𝑗=1


𝑈
𝑛

((𝑠−1.𝑗),(𝑠.𝑖))
(1 − 𝑇𝐹𝑅

((𝑠−1,𝑗),(𝑠.𝑖))
)


−

𝑠−1

∑

𝑟𝑠=1

𝐽

∑

𝑗=1

𝑅𝑈
𝑛

((𝑠.𝑖),(𝑠−𝑟𝑠.𝑗))
= 𝐶𝐷

𝑛

(𝑠.𝑖)

for 𝑛 = 1, 2, 3, . . . , 𝑁; 𝑠 = 𝑆;

𝑖 = 1, 2, 3, . . . , 𝐼.

(14)

The weights of manufacturing cost, transportation cost,
transportation time, and product quality should be not less
than 0 and not more than 1:

0 ≤ 𝑤
𝑃𝐶

, 𝑤
𝑇𝐶

, 𝑤
𝑇𝑆
, 𝑤
𝑃𝑄

≤ 1,

𝑤
𝑃𝐶

+ 𝑤
𝑇𝐶

+ 𝑤
𝑇𝑆

+ 𝑤
𝑃𝑄

= 1.

(15)

The defective products returned in the first period during the
multiperiods of production number zero:

𝑅𝑈
𝑛

((𝑟𝑠.𝑗),(𝑠,𝑖))
= 0 for 𝑛 ≤ 0; 𝑠 = 1, 2, 3, 4, . . . , 𝑆 − 1;

𝑟𝑠 = 𝑠 + 1, . . . , 𝑆; 𝑖 = 1, 2, 3, . . . , 𝐼;

𝑗 = 1, 2, 3, . . . , 𝐽.

(16)

The forward and reverse transportation volume must be
larger than zero and be an integer:

𝑈
𝑛

((𝑠.𝑖),(𝑠+1.𝑗))
≥ 0 and 𝑈

𝑛

((𝑠.𝑖),(𝑠+1.𝑗))
∈ Integer

for 𝑛 = 1, 2, 3, . . . , 𝑁; 𝑠 = 1, 2, 3, . . . , 𝑆;

𝑖 = 1, 2, 3, . . . , 𝐼; 𝑗 = 1, 2, 3, . . . , 𝐽;

(17)

𝑅𝑈
𝑛

((𝑟𝑠.𝑗),(𝑠.𝑖))
≥ 0 and 𝑈

𝑛

((𝑠.𝑖),(𝑠+1.𝑗))
∈ Integer

for 𝑠 = 1, 2, 3, . . . , 𝑆; 𝑟𝑠 = 𝑆 + 1, . . . 𝑆;

𝑛 = 1, 2, 3, . . . , 𝑁; 𝑖 = 1, 2, 3, . . . , 𝐼; 𝑗 = 1, 2, 3, . . . , 𝐽.

(18)

Manufacturing costs, transportation costs, manufacturing
quality, and transportation time should be 𝑇-transferred:

𝑇

𝑃𝐶
(𝑠.𝑖)

=
𝑃𝐶
(𝑠.𝑖)

− 𝑃𝐶
(𝑠.𝑖)

𝑆𝐺
𝑃𝐶
(𝑠.𝑖)

/10
+ 50 for 𝑠 = 1, 2, 3, . . . , 𝑆;

𝑖 = 1, 2, 3, . . . , 𝐼;

𝑇

𝑇𝐶
((𝑠.𝑖),(𝑠+1.𝑗))

=

𝑇𝐶
((𝑠.𝑖),(𝑠+1.𝑗))

− 𝑇𝐶
((𝑠.𝑖),(𝑠+1.𝑗))

𝑆𝐺
𝑇𝐶
((𝑠.𝑖),(𝑠+1.𝑗))

/10
+ 50

for 𝑠 = 1, 2, 3, . . . , 𝑆; 𝑖 = 1, 2, 3, . . . , 𝐼;

𝑗 = 1, 2, 3, . . . , 𝐽;

𝑇

𝑃𝑄
(𝑠.𝑖)

=
𝑃𝑄
(𝑠.𝑖)

− 𝑃𝑄
(𝑠.𝑖)

𝑆𝐺
𝑃𝑄(
𝑠.𝑖
)
/10

+ 50 for 𝑠 = 1, 2, 3, . . . , 𝑆;

𝑖 = 1, 2, 3, . . . , 𝐼;

𝑇

𝑇𝑆
((𝑠.𝑖),(𝑠+1.𝑗))

=

𝑇𝑆
((𝑠.𝑖),(𝑠+1.𝑗))

− 𝑇𝑆
((𝑠.𝑖),(𝑠+1.𝑗))

𝑆𝐺
𝑇𝑆
((𝑠.𝑖),(𝑠+1.𝑗))

/10
+ 50

for 𝑠 = 1, 2, 3, . . . , 𝑆; 𝑖 = 1, 2, 3, . . . , 𝐼;

𝑗 = 1, 2, 3, . . . , 𝐽.

(19)

2.3. Proposed Models for Solving Cross-Stage Reverse Logistics
Problems

2.3.1. GA-Solving Model. The detailed procedures of a GA-
solving model are described as follows.

Step 1. The encoding of this study was performed according
to the cross-stage reverse logistics problem including forward
and reverse transportation routes; therefore, one route is one
encoding value. The scope is randomly generated based on
the demands and (10)–(14). The chromosome structure is
shown in Figure 4. The gene cell index 1.1–2.1 in the figure
represents the products sent from the first supplier of the first
stage to the initial supplier of the second stage within the
supply chain structure, whereas the gene value represents the
transportation volumes from upstream to downstream.

Step 2. Substitute all the generated encoding values in the
objective function equation (1) of this study to acquire the
fitness function value of each gene.

Step 3. This study adopted the roulette wheel selection
proposed by Goldberg [60], which is performed before
cloning to solve the minimization problem of this study.
It then selects the reciprocal of fitness function generated in
Step 2 and calculates the cumulative probability of each strip
of chromosome; the larger probability value indicates that
this chromosome has a greater likelihood of being duplicated.
One probability value between 0 and 1 is generated, the
suitable fitness function is determined, and cloning is carried
out.

Step 4. The crossover of this study involves using the single-
point crossover method. Randomly select two chromosomes
from the parent body for crossover, and generate one
crossover point, then exchange the genes of the chromosome.
The crossover course is shown in Figure 5.

Step 5. The mutation of this study also adopts a single-point
mutationmethod and treats the delivery route of one supplier
as a “single-point” of value.Themutationmethod is shown in
Figure 6.

Step 6. The new filial generation was generated through the
gene evolution of Steps 3–5; if the optimal fitness function
value of the filial generation is higher than that of the parental
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Gene cell index 1.1–2.1 1.2–2.1 1.3–2.1 1.1–2.2 1.2–2.2 1.3–2.2 · · · 3.1–4.6 3.2–4.6 3.3–4.6 3.4–4.6 3.5–4.6
Gene value 236 224 115 75 55 69 · · · 75 65 78 99 63

Figure 4: Chromosome structure.

Parent-1
Gene cell index 1.1–2.1 1.2–2.1 1.3–2.1 1.1–2.2 1.2–2.2 1.3–2.2 · · · 3.1–4.6 3.2–4.6 3.3–4.6 3.4–4.6 3.5–4.6

Gene value 236 224 115 75 55 69 · · · 75 65 78 99 63

Parent-2
Gene cell index 1.1–2.1 1.2–2.1 1.3–2.1 1.1–2.2 1.2–2.2 1.3–2.2 · · · 3.1–4.6 3.2–4.6 3.3–4.6 3.4–4.6 3.5–4.6

89 56 32 63 99 96 · · · 45 56 32 106 88Gene value

Child-1
Gene cell index 1.1–2.1 1.2–2.1 1.3–2.1 1.1–2.2 1.2–2.2 1.3–2.2 · · · 3.1–4.6 3.2–4.6 3.3–4.6 3.4–4.6 3.5–4.6

Gene value 236 224 115 75 55 69 · · · 45 56 32 106 88

Child-2
Gene cell index 1.1–2.1 1.2–2.1 1.3–2.1 1.1–2.2 1.2–2.2 1.3–2.2 · · · 3.1–4.6 3.2–4.6 3.3–4.6 3.4–4.6 3.5–4.6

Gene value 89 56 32 63 99 96 · · · 75 65 78 99 63

Crossover pointAfter crossover

Figure 5: Crossover process.

Old
Gene cell index 1.1–2.1 1.2–2.1 1.3–2.1 1.1–2.2 1.2–2.2 1.3–2.2 · · · 3.1–4.6 3.2–4.6 3.3–4.6 3.4–4.6 3.5–4.6

Gene value 236 224 115 75 55 69 · · · 45 56 32 106 88

New
Gene cell index 1.1–2.1 1.2–2.1 1.3–2.1 1.1–2.2 1.2–2.2 1.3–2.2 · · · 3.1–4.6 3.2–4.6 3.3–4.6 3.4–4.6 3.5–4.6

Gene value 89 56 32 56 99 44 · · · 75 65 78 99 63

Mutation point

After mutation

Figure 6: Mutation process.

Line
Particle 1 2 3 4 5 6 · · · 60 61 62

Volume 103 27 30 140 158 18 · · · 308 15 61

1.1−2.2F 1.1−2.2F 1.1−2.3F 1.1−2.4F 1.2−2.1F 1.2−2.2F · · · 3.3−4.6F 3.4−4.6F 3.5−4.6F

Figure 7: Particle swarm encoding for forward logistics.

Particle 1 2 3 4 5 6 117 118 119
Line

Volume 0 0 42 9 0 0 0 2 0

2.1−1.1R 2.1−1.2R 2.1−1.3R 2.2−1.1R 2.2−1.2R 2.2−1.3R · · ·

· · ·

· · ·

4.6−3.3R 4.6−3.4R 4.6−3.5R

Figure 8: Particle swarm encoding for reverse logistics.

generation, then this would replace the parental generation as
the new parent generation; otherwise, the original parental
generation would be reserved to conduct the evolution of the
next generation.

Step 7. This study sets the iteration times as the termination
condition for gene evolution.

2.3.2. PSO-Solving Models. The detailed procedures involved
in PSO-solving models are described as follows.

Step 8. Set the relative coefficients as particle population,
velocity, weight, and iteration times; then all forward and

reverse transportation routes are viewed as one particle based
on the supply chain structure. The forward and reverse
particle swarm encodings are shown in Figures 7 and 8,
1.1–2.1F in Figure 7 represents the products sent from the
first supplier of the first stage to the first supplier of the
second stage, and 2.1–1.1R in Figure 8 represents the products
returned to the first suppliers of the first stage from the first
suppliers of the second stage.

The forward transportation volume produces the parental
generation solution, adopting demand, transportation loss,
manufacturer’s defective products, and (10)–(14) as the ran-
dom variant scope for the particles. Each particle has its own
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initial parameters of velocity and position, generated within
the scope of 0–1.The velocity and position would be renewed,
and the reverse part is delivered according to the proportion,
based on the quantity of defective products generated by
the downstream suppliers of each stage. For example, the
defective products generated by the fourth stage retailer
would first be divided into 30%, 30%, and 40%, according
to the proportion, and then delivered to the suppliers of the
third, second, and first stages.

Step 9. All particles received by the initial solutions of objec-
tive function equation (1) are carried to conduct the opera-
tion to achieve minimal transportation costs, transportation
times, and manufacturing costs, as well as maximizing the
manufacturing quality for each granule particle.

Step 10. The target value of each particle generated in Step 9
is compared to receive Gbest.

Step 11. Modify the Pbest andGbest. If the Pbest is better than
the Gbest, then the Pbest would replace the Gbest.

Step 12. For the renewal portion of this study, the inertia
weight method (PSOA IWM) proposed by Eberhart and Shi
[61], the constriction factor method (PSOA CFM) proposed
by Clerc [62], and the𝑉Max method (PSOA VMM) proposed
by Eberhart and Kennedy [43, 63] were used to update the
position and velocity of each particle.The updated modes are
listed as follows (descriptions of notations are listed in the
appendix).

(1) PSOA IWM (Eberhart and Shi [61]):

Vnew
𝑖

= 𝑤Vold
𝑖

+ 𝑐
1
× rand () × (𝑠

∗

𝑖
− 𝑠

old
𝑖

) + 𝑐
2

× rand () × (𝑠
#
𝑖
− 𝑠

old
𝑖

) ,

𝑠
new
𝑖

= 𝑠
old
𝑖

+ Vnew
𝑖

.

(20)

(2) PSOA VMM (Eberhart and Kennedy [43, 63]):

Vnew
𝑖

= Vold
𝑖

+ 𝑐
1
× rand () × (𝑠

∗

𝑖
− 𝑠

old
𝑖

) + 𝑐
2

× rand () × (𝑠
#
𝑖
− 𝑠

old
𝑖

) ,

𝑠
new
𝑖

= 𝑠
old
𝑖

+ Vnew
𝑖

if V
𝑖
> Vmax, V

𝑖
= Vmax

else if V
𝑖
< −Vmax, V

𝑖
= −Vmax.

(21)

When the particle velocity was too extreme, it could be
guided to the normal velocity vector.

(3) PSOA CFM (Clerc [62]):

Vnew
𝑖

= 𝑘 × ⟨Vold
𝑖

+ 𝑐
1
× rand () × (𝑠

∗

𝑖
− 𝑠

old
𝑖

)

+𝑐
2
× rand () × (𝑠

#
𝑖
− 𝑠

old
𝑖

)⟩ ,

𝑠
new
𝑖

= 𝑠
old
𝑖

+ Vnew
𝑖

,

𝐾 =
2

2 − 𝜑 − √𝜑2 − 4𝜑

,

𝜙 = 𝑐
1
+ 𝑐
2
, 𝜙 > 4.

(22)

Step 13. After the velocity and position of the particles are
updated, theymust be verified to determinewhether theymet
(10)–(18) and the set maximal velocity; if these conditions are
not met, then the renewal formulae would be used until the
renovation meets the restriction formula.

Step 14. Steps 9–13 would be repeated based on iteration
times, the Gbest of each iteration time would be compared,
and then the iteration times would be used as the condition
for stopping the calculation. The final algorithm presents the
delivery quantity and target value of the forward and reverse
routes.

3. Illustrative Example and Results Analysis

This section presents an illustrative example involving a semi-
conductor supply chain network to demonstrate the effective-
ness of the proposed approaches. A typical semiconductor
supply chain network is shown in Figure 9.The chain includes
a multistage process: obtaining silicon material, material
fabrication, wafer fabrication, and a final test. In each stage,
there are many enterprises that perform the production
processes to fulfill the demand of the customer.

This case programmed one unbalanced supply chain net-
work structure, including forward and reverse logistics, so
that downstream suppliers or retailers can return defective
products directly to upstream supply chain partners. The
manufacturer can restore a broken product’s function,
depending on the damage, so that the product’s purpose is
recovered. This case addressed forward and reverse logistics
partner selection and quantity delivery problems using a {3-
4-5-6} network structure. It also programmed a three-period
customer requirement list for a single product.This case sup-
posed that the initial inventory of the first period was
zero, transportation losses were considered waste and cannot
be reproduced, and different reverse logistics for defective
products of different damage levels were programmed. For
example, when 10 defective products were generated by the
first supplier of the fourth stage, this study assumes that 30%
were returned to the third stage, 30% were returned to the
second stage, and the rest were returned to the first stage.
Therefore, the reverse logistics of this study would generate
a cross-stage reverse delivery status.

This study considered the productivity restrictions, man-
ufacturing costs, delivery costs, manufacturing quality, and
transportation time for all suppliers in selecting supply chain
partners.This study also considered themanufacturer’s defec-
tive product rate and the transportation loss rate of suppliers
to form a so-called “unbalanced” supply chain network. The
details of all of the suppliers are shown in Figure 10 and
Table 1. In addition, the weights of manufacturing costs,
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Figure 9: Typical supply chain network for semiconductor.

transportation costs, transportation time, and product qual-
ity were assumed to be equal.

This study used GA, PSOA IWM, PSOA CFM, and
PSOA VMM both to solve the problem of the optimal math-
ematical model of cross-stage reverse logistics constructed by
this study and to determine the optimal parameter values.
We used the experimental design to determine the optimal
parameter values, and the parameters of the GA used in this
study refer to the proposal of Eiben et al. [64]. It is possible
to determine the optimal solution when the mutation rate
is 0.005–0.01 and the crossover rate is 0.75–0.95. This study
conducted 16 groups of experimental designs for the parental
bodies (10, 20), crossover rates (0.6, 0.95), mutation rates
(0.02, 0.05), and generation (1000, 2000). Each group was
repeated 10 times to obtain the average, and the optimal
parameter values were as follows: parental generation (20);
crossover rate (0.6); mutation rate (0.05); generation (2000).
The experimental results are shown in Table 2.

For the PSO, this study used PSOA IWM, PSOA CFM,
and PSOA VMM to solve the problems. PSOA IWM was
suggested by Eberhart and Shi [61], so, when𝑊 was between
0.9–1.25, it had a higher chance of achieving the optimal solu-
tion; the design of PSOA IWM parameters was as follows:
particle population (10, 20), velocity (30, 50), weight (0.4, 0.9),
and generation (1000, 2000). Sixteen groups of experiments
were designed and each group was repeated 10 times to
gain the average convergence value, completion time, and
convergence time.The optimal parameters of the experimen-
tal results were as follows: particle: 20; weight: 0.4; veloc-
ity: 50; generation: 2000. The experimental results are shown
in Table 3. PSOA CFM refers to the 𝑐

1
= 2.05, 𝑐

2
= 2.05 pro-

posed byClerc [62], 𝑐
1
= 2.8, 𝑐

2
= 1.3proposed byZhang et al.

[45], the particle (10, 20), and the generation (1000, 2000);
16 groups of experiments were designed, respectively, with
each group being repeated 10 times to acquire the average
convergence value, completion time, and convergence time.
The optimal parameters of the experimental result were as
follows: particle = 20, 𝑐

1
= 2.8, 𝑐

2
= 1.3, velocity = 50,

and generation = 2000. The experimental results are shown
in Table 4. PSOA VMM used the following values: particle
(10, 20), velocity (30, 50), and generation (1000, 2000), to
conduct eight groups of experimental designs, respectively,
with each group repeated 10 times to acquire the average
convergence value, completion time, and convergence time.
The optimal parameters of the experimental results were as
follows: particle = 20; velocity = 50; generation = 2000. The
experimental results are shown in Table 5.

For the hardware configuration of this experiment, the
CPU was P4-3.0GHz and the RAM DDR was 512 MB. This
study used ANOVA and Scheffé to verify system operation
times and convergence times and to select the indices for the
GA and the three renovation methods. The Scheffé method
was first promoted by Scheffé [65] to assess the relationship
among the selection factors. ANOVA is a statistical technique
that can be used to evaluate whether there are differences
between the average values or means across several popu-
lation groups. The Scheffé method, one of the multiple-
comparison approaches, refers to tests designed to establish
whether there are differences between particular levels in an
ANOVA design, that is, to determine which variable among
several independent variables is statistically the most differ-
ent. The verification results are shown in Tables 6, 7, and 8.

Tables 6–8 show that all 𝐻
0
are rejected. Finally, the

Scheffé method was used to make multiple comparisons of
the selection index, system execution time, and convergence
time of all the algorithms, and their differences. The Scheffé
formula is presented as

(𝑥
𝑖
− 𝑥
𝑗
− √(𝑘 − 1) 𝐹

𝛼(𝑘−1)(𝑛−𝑘)
√MSE(

1

𝑛
𝑖

+
1

𝑛
𝑗

),

𝑥
𝑖
− 𝑥
𝑗
+ √(𝑘 − 1) 𝐹

𝛼(𝑘−1)(𝑛−𝑘)
√MSE(

1

𝑛
𝑖

+
1

𝑛
𝑗

)) .

(23)
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Figure 10: {3-4-5-6} forward and reverse supply chain network.

Table 9 shows ObjPSOA VMM > ObjGA = ObjPSOA IWM =

ObjPSOA CFM; that is, GA, PSOA IWM, and PSOA CFM are
all better than PSOA VMM, and there are no clear differ-
ences in the selection indices of the three algorithms. The
comparative result of system execution is shown in Table 10,
and 𝐹𝑇GA > 𝐹𝑇PSOA IWM = 𝐹𝑇PSOA VMM = 𝐹𝑇PSOA CFM
is the three PSO updating methods that are all superior to
GA. The convergence times of the algorithms are shown
in Table 11, and 𝐶𝑇GA > 𝐶𝑇PSOA CFM > 𝐶𝑇PSOA VMM >

𝐶𝑇PSOA IWM, that is, PSOA IWM, has faster convergence
speed than PSOA VMM, PSOA VMM, and GA. The results
show that PSOA IWM performs better in objective function
value solutions, execution times, and convergence times.

For validating the solving capabilities of the proposed
approaches in cross-stage reverse logistics problems, more
large-scope network structures {6-6-6-6}, {6-6-6-6-6}, {3-
10-10-60}, {6-8-8-10-30}, and {8-10-20-20-60} were demon-
strated. The analysis results also show that PSOA IWM has
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Table 2: Experimental design results of GA with different groups of parameters.

GA
Generation Population Mutation rate Crossover rate Convergence time (S) Execution time (S) Objective function value

1000

10
0.02 0.6 45.65 65.22 585845.5

0.95 36.91 52.72 586401.9

0.05 0.6 58.88 84.12 582052.4
0.95 60.12 85.88 585355.2

20
0.02 0.6 99.07 141.53 585731.7

0.95 58.49 83.57 579156.2

0.05 0.6 111.26 158.94 578879.4
0.95 94.15 134.51 578760.4

2000

10
0.02 0.6 59.42 112.12 583037.4

0.95 51.87 97.88 587388.3

0.05 0.6 90.85 171.42 576988.8
0.95 89.87 169.58 580298.8

20
0.02 0.6 88.23 166.49 576920.3

0.95 72.51 136.81 579347.1

0.05 0.6 155.42 293.72 575504.7
0.95 133.79 252.45 576902.9

Table 3: Experimental design results of PSOA IWM with different groups of parameters.

PSOA IWM
Generation Particle Velocity Weight Convergence time (S) Execution time (S) Objective function value

1000

10
20 0.4 1.17 2.49 581660.2

0.9 1.26 2.69 585355.5

50 0.4 2.28 4.86 588147.3
0.9 2.94 5.62 593565.2

20
20 0.4 3.45 5.21 593858.8

0.9 2.71 5.77 582468.5

50 0.4 5.76 10.12 581133.8
0.9 6.17 11.21 589921.1

2000

10
20 0.4 2.96 4.89 612950.3

0.9 2.38 5.21 581756.6

50 0.4 4.69 9.24 584003.4
0.9 5.10 10.26 585192.6

20
20 0.4 4.73 9.31 591258.4

0.9 5.02 10.06 580391.2

50 0.4 7.56 18.88 573972.1
0.9 11.94 22.34 580979.8

better capabilities for the proposed problems, as shown in
Table 12. Therefore, this study used PSOA IWM to solve
cross-stage reverse logistics problems.

Tables 13, 14, and 15 show the received forward and reverse
transportation volume of the three periods; since there were
no defective products generated in the first period, there is no
returned transportation volume. While this study considers
the transportation losses andmanufacturer’s losses, upstream
suppliers produced more products than required to ensure

that final demandwasmet.The quantity of defective products
from the second stage was acquired through the defective
product rate of all the suppliers. The reverse transportation
volume was divided and returned to the upstream supply
chain partners, respectively, according to the splitting ratio of
defective product quantity. For example, 30% of the defective
products generated by the fourth stage retailer would be
returned to the third stage, 30% to the second stage, and the
rest would be returned to the first stage; the third stage would
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Table 4: Experimental design results of PSOA CFM with different groups of parameters.

PSOA CFM
Generation Particle Velocity 𝑐

1
, 𝑐
2

Convergence time (S) Execution time (S) Objective function value

1000

10
20 2.05, 2.05 2.77 3.76 596860.2

2.8, 1.3 1.84 3.92 580909.7

50 2.05, 2.05 4.85 8.18 591679.5
2.8, 1.3 4.14 7.95 575782.2

20
20 2.05, 2.05 3.37 5.05 604557

2.8, 1.3 4.43 7.29 588076.4

50 2.05, 2.05 9.01 19.16 598957.1
2.8, 1.3 8.54 15.41 583530.4

2000

10
20 2.05, 2.05 6.45 9.08 579670.6

2.8, 1.3 6.20 8.68 574969.5

50 2.05, 2.05 11.53 19.22 601022.2
2.8, 1.3 9.86 16.44 583479.2

20
20 2.05, 2.05 8.34 15.57 594554.6

2.8, 1.3 9.91 16.53 579629.1

50 2.05, 2.05 22.64 37.74 605729.6
2.8, 1.3 18.84 31.40 574033.9

Table 5: Experimental design results of PSOA VMMwith different groups of parameters.

PSOA VMM
Generation Particle Velocity Convergence time (S) Execution time (S) Objective function value

1000
10 20 1.97 2.95 620767.6

50 3.89 5.81 626354.4

20 20 3.91 5.83 621080.6
50 8.74 13.04 616409.3

2000
10 20 3.53 5.21 617751.6

50 7.27 12.12 614025.9

20 20 7.13 10.05 614276.1
50 14.45 24.09 609603.7

Table 6: ANOVA verification of objective function.

Algorithm Total Average Variance
GA 17244286.9 574809.5 32263393.4
PSOA IWM 17206940.5 573564.6 25588275.7
PSOA VMM 18113738.4 603791.2 106679602.3
PSOA CFM 17252708.0 575090.2 157150309.7

Hypothesis: 𝐻
0
: ObjGA = ObjPSOA IWM = ObjPSOA VMM = ObjPSOA CFM 𝐻

1
: otherwise

𝑃 value = 3.59𝐸 − 28⇒ 𝐻
0
is rejected.

Table 7: ANOVA verification of completion time.

Algorithm Total Average Variance
GA 9207.5 306.9 3999.0
PSOA IWM 567.3 18.9 8.3
PSOA VMM 608.7 20.2 12.5
PSOA CFM 661.2 22.0 15.5

Hypothesis:𝐻
0
: 𝐹𝑇GA = 𝐹𝑇PSOA IWM = 𝐹𝑇PSOA VMM = 𝐹𝑇PSOA CFM 𝐻

1
: otherwise

𝑃 value = 7.62𝐸 − 71 ⇒ 𝐻
0
is rejected.
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Table 8: ANOVA verification of convergence time.

Algorithm Total Average Variance
GA 4662.6 155.4 96.7
PSO IWM 226.9 7.5 3.2
PSO VMM 433.2 14.4 10.1
PSO CFM 567.2 18.9 12.0

Hypothesis:𝐻
0
: 𝐶𝑇GA = 𝐶𝑇PSOA IWM = 𝐶𝑇PSOA VMM = 𝐶𝑇PSOA CFM 𝐻

1
: otherwise

𝑃-value = 3.25𝐸 − 122 ⇒ 𝐻
0
is rejected

Table 9: Multiple comparison on objective function.

ObjGA ObjPSOA IWM ObjPSOA VMM

ObjPSOA IWM (−, +)
ObjPSOA VMM (−, −) (−, −)
ObjPSOA CFM (+, −) (−, +) (+, +)

Table 10: Multiple comparison on execution time.

𝐹𝑇GA 𝐹𝑇PSOA IWM 𝐹𝑇PSOA VMM

𝐹𝑇PSOA IWM (+, +)
𝐹𝑇PSOA VMM (+, +) (−, +)
𝐹𝑇PSOA CFM (+, +) (−, +) (−, +)

Table 11: Multiple comparison on convergence time.

𝐶𝑇GA 𝐶𝑇PSOA IWM 𝐶𝑇PSOA VMM

𝐶𝑇PSOA IWM (+, +)
𝐶𝑇PSOA VMM (+, +) (−, −)
𝐶𝑇PSOA CFM (+, +) (−, −) (−, −)

Table 12: Analysis results on different network structures.

Network GA PSOA IWM PSOA CFM PSOA VMM

Objective function

3-4-5-6 574809.5a/1b 573564.6/1 575096.2/1 603791.2/2
6-6-6-6 644482.1/2 642426.8/1 650475.1/3 725523.7/4

3-10-10-60 972412.2/2 954457.3/1 980211.5/3 1022415.6/4
6-6-6-6-6 760460.1/2 758655.5/1 761552.1/3 823544.4/4
6-8-8-10-30 1201225.3/2 1153252.1/1 1242273.4/3 1345758.7/4
8-10-20-20-60 1685442.3/2 1637241.6/1 1711412.5/3 1811279.4/4

Execution time

3-4-5-6 306.9/2 18.9/1 22.0/1 20.2/1
6-6-6-6 326.4/2 41.8/1 42.4/1 39.0/1

3-10-10-60 621.4/4 74.5/3 65.8/2 61.3/1
6-6-6-6-6 533.1/3 61.0/2 51.3/1 48.4/1
6-8-8-10-30 782.6/4 112.5/3 92.1/2 85.2/1
8-10-20-20-60 997.8/4 187.4/3 138.5/2 102.7/1

Convergence time

3-4-5-6 155.4/4 7.5/1 18.9/3 14.4/2
6-6-6-6 196.6/2 18.6/1 22.7/1 22.6/1

3-10-10-60 415.3/3 28.7/1 30.2/2 31.2/2
6-6-6-6-6 302.9/3 23.6/1 26.5/2 27.2/2
6-8-8-10-30 557.4/3 35.2/1 40.7/2 42.5/2
8-10-20-20-60 632.5/4 39.8/1 44.2/2 48.6/3

aAverage value; branking (by multiple comparison).
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Table 13: The first period transportation plan by PSOA IWM.

From To Stage 1 Stage 2 Stage 3 Stage 4
1.1 1.2 1.3 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 4.4 4.5 4.6

Stage 1
1.1 0 0 0 34
1.2 5 646 17 0
1.3 1615 154 6 15

Stage 2

2.1 379 392 190 237 327
2.2 38 0 8 261 459
2.3 0 10 10 0 2
2.4 0 0 48 0 0

Stage 3

3.1 6 28 194 163 1 5
3.2 0 9 114 13 146 100
3.3 0 0 0 27 168 56
3.4 126 61 1 154 0 137
3.5 291 366 0 8 0 72

Demand 400 450 300 350 300 350

Table 14: The second period transportation plan by PSOA IWM.

From To Stage 1 Stage 2 Stage 3 Stage 4
1.1 1.2 1.3 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 4.4 4.5 4.6

Stage 1
1.1 29 142 72 158
1.2 120 43 150 24
1.3 576 845 194 128

Stage 2

2.1 12 0 19 177 115 148 90 164
2.2 9 6 8 189 139 51 183 421

2.3 0 0 0 104 78 130 74 12

2.4 0 0 0 136 30 15 91 37

Stage 3

3.1 1 2 1 3 1 0 0 67 95 130 69 126 95
3.2 2 4 0 2 0 3 0 41 54 111 106 27 5
3.3 0 0 1 0 1 0 0 11 2 74 73 81 95
3.4 2 0 3 1 1 2 0 36 45 23 148 127 43
3.5 2 1 5 0 1 1 5 162 165 131 24 92 25

Stage 4

4.1 2 0 2 0 4 0 0 0 1 1 0 2
4.2 0 2 0 0 1 0 0 0 1 0 0 0
4.3 2 0 0 0 0 0 2 0 0 0 1 1
4.4 1 0 0 0 0 1 0 0 0 0 0 1
4.5 0 3 0 1 2 0 0 2 1 0 0 0
4.6 3 1 0 1 2 0 0 2 0 0 0 1

Demand 300 350 450 400 430 250
Bold data are the reverse transportation volumes.

return 50% to the second stage, the rest would be returned to
the first stage, and the second stage supplier would directly
return the defective products to the first stage.

4. Conclusion and Suggestion

Enterprises should react to market changes to meet con-
sumer demands in a timely manner to maintain and enhance
competitive advantages in this rapidly changing market.

The cross-stage reverse logistics course described in this
study could help downstream partners return defective prod-
ucts to the upstream partners directly for maintaining and
recovering product function, which in turn could reduce
transportation costs and time. With this paper, we have
accomplished three tasks. (1) We presented a mathematical
model for partner selection and production-distribution
planning in multistage supply chain networks with cross-
stage reverse logistics. Based on our research, a mathematical



The Scientific World Journal 17

Table 15: The third period transportation plan by PSOA IWM.

From To Stage 1 Stage 2 Stage 3 Stage 4
1.1 1.2 1.3 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 4.4 4.5 4.6

Stage 1
1.1 227 24 48 73
1.2 17 47 0 65
1.3 900 738 84 37

Stage 2

2.1 7 3 3 133 156 180 239 383
2.2 4 2 23 172 121 144 234 96
2.3 2 4 1 45 0 66 27 0
2.4 2 1 0 3 0 73 33 71

Stage 3

3.1 5 0 1 2 2 1 4 0 4 129 11 134 64
3.2 3 2 0 2 0 2 1 4 3 100 53 57 49
3.3 1 0 1 0 1 0 0 0 81 75 50 139 107
3.4 0 1 3 0 0 4 0 80 50 49 174 36 125
3.5 1 5 0 1 3 1 1 180 172 64 27 0 77

Stage 4

4.1 1 1 1 0 0 2 1 1 1 0 1 0
4.2 0 1 0 0 0 1 0 0 1 0 0 0
4.3 1 0 2 0 0 0 3 0 0 2 0 1
4.4 2 0 0 0 0 1 0 0 0 0 1 0
4.5 3 0 2 3 0 0 1 3 0 1 0 0
4.6 1 0 2 1 0 1 0 0 1 0 0 1

Demand 250 300 400 300 350 400
Bold data are the reverse transportation volumes.

model for solving multistage supply chain design problems
considering the cross-stage reverse logistics has yet to be
presented. However, cross-stage reverse logistics shouldmeet
the practical logistics operation conditions; therefore, (2)
we applied a GA and three PSO algorithms to efficiently
solve the mathematical model of cross-stage reverse logistics
problems. In this paper, we emphasized the suitability of
adopting a GA and three PSOs to find the solution to the
mathematical model; hence, (3) we compared four proposed
algorithms to find which one works best with the proposed
problem. The comprehensive results show that PSOA IWM
has the qualities and capabilities for dealing with a multi-
stage supply chain design problem with cross-stage reverse
logistics. Further research should be conducted to employ
other heuristic algorithms such as ant colony and simulated
annealing for solving this problem.Consideration should also
be given to extending this developed approach to encompass
more complex problems such as problems involving resource
constraints, transportation, and economic batches.
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