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Oxidative stress-induced retinal pigment epithelial (RPE) cell damage is involved in the progression of diabetic retinopathy.
Argininemethylation catalyzed by protein argininemethyltransferases (PRMTs) has emerged as an important histonemodification
involved in diverse diseases. Sirtuin (SIRT1) is a protein deacetylase implicated in the onset of metabolic diseases. Therefore, we
examined the roles of type I PRMTs and their relationship with SIRT1 in human RPE cells under H

2
O
2
-induced oxidative stress.

H
2
O
2
treatment increased PRMT1 and PRMT4 expression but decreased SIRT1 expression. Similar to H

2
O
2
treatment, PRMT1 or

PRMT4 overexpression increased RPE cell damage. Moreover, the H
2
O
2
-induced RPE cell damage was attenuated by PRMT1 or

PRMT4 knockdown and SIRT1 overexpression. In this study, we revealed that SIRT1 expression was regulated by PRMT1 but not by
PRMT4. Finally, we found that PRMT1 and PRMT4 expression is increased in the RPE layer of streptozotocin-treated rats. Taken
together, we demonstrated that oxidative stress induces apoptosis both via PRMT1 in a SIRT1-dependent manner and via PRMT4
in a SIRT1-independent manner. The inhibition of the expression of type I PRMTs, especially PRMT1 and PRMT4, and increased
SIRT1 could be therapeutic approaches for diabetic retinopathy.

1. Introduction

Diabetic retinopathy is the leading cause of blindness. The
breakdown of the blood-retinal barrier (BRB) mediated by
oxidative stress is related to the progression of diabetic
retinopathy [1, 2]. Retinal pigment epithelial (RPE) cells are a
vital component of the outer BRB and are vulnerable to oxida-
tive stress [3]. However, the molecular mechanisms of oxida-
tive stress-induced RPE cell damage are not fully understood.

Protein argininemethyltransferases (PRMTs) catalyse the
methylation of the arginine residues of histone and nonhi-
stone proteins. Mammals possess nine PRMTs, which are
divided into three types according to their method of methy-
lation. Type 1 PRMTs (PRMT1, PRMT2, PRMT3, PRMT4,
PRMT6, and PRMT8) catalyse asymmetric dimethylation
at arginine residues, whereas type II PRMTs (PRMT5 and
PRMT9) catalyse symmetric dimethylation, and type III
PRMTs (PRMT7) catalyse monomethylation [4]. PRMT1 is
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thought to be involved in diabetic retinopathy, as PRMT1
expression is increased via the generation of reactive oxygen
species (ROS) in the retinas of streptozotocin-treated rats
and high-glucose-treated bovine retinal capillary endothelial
cells, which are a crucial component of the inner BRB [5].
However, the regulation of PRMTs by oxidative stress in RPE
cells has not been elucidated.

Sirtuin (SIRT1), a mammalian ortholog of yeast Sir2
(Silent Information Regulator 2), is an NAD-dependent
histone deacetylase that regulates diverse physiological and
pathophysiological processes, such as senescence, circa-
dian rhythms, autophagy, and apoptosis [6]. In RPE cells,
decreased SIRT1 expression caused by ultraviolet light is
related to RPE cell damage [7]. The treatment of RPE cells
with resveratrol, which increases SIRT1 activity, suppresses
inflammatory cytokine-induced vascular endothelial growth
factor (VEGF) secretion, which is involved in age-related
macular degeneration (AMD) [8]. These reports suggest that
SIRT1 protects against RPE cell dysregulation. However, the
mechanisms regulating SIRT1 in RPE cells have not been
evaluated.

In this study, we evaluated type I PRMT expression
and SIRT1 expression under hydrogen peroxide- (H

2
O
2
-)

induced oxidative stress and demonstrated that oxidative
stress-induced PRMT1 expression increases RPE cell apop-
tosis via SIRT1 downregulation, whereas PRMT4 does so
independently of SIRT1 expression.

2. Materials and Methods

2.1. Materials. Dulbecco’s Modified Eagle’s Medium
(DMEM), Ham’s nutrient mixture F-12, and fetal bovine
serum (FBS) were purchased from Life Technologies
(Gibco BRL, Grand Island, NY, USA). Hydrogen peroxide
was obtained from Sigma-Aldrich (St. Louis, MO, USA).
PRMT1 antibody (#2449), PRMT4 antibody (#4438), PARP1
antibody (#9532), and Caspase-3 antibody (#9662) were
purchased from Cell Signaling Technology (Beverly, MA,
USA). SIRT1 antibody (sc-15404) and 𝛽-actin antibody
(sc-1616) were purchased from Santa Cruz Biotechnology
(CA, USA). HA antibody (MMS-101R) was obtained from
Covance (WI, USA). PRMT3 antibody was kindly provided
by Mark T. Bedford (University of Texas, M. D. Anderson
Cancer Center, Smithville, TX). All reagents were of the
highest purity commercially available.

2.2. Cell Culture. The human RPE cell line ARPE-19 was
obtained from the American Type Culture Collection
(ATCC, Rockville, MD, USA). ARPE-19 cells were grown in
DMEM/Ham’s F-12 (1 : 1) supplemented with 10% fetal bovine
serum (FBS) at 37∘C in 5%CO

2
in air. Stock cultures ofARPE-

19 cells were subcultured once a week (split ratio 1 : 6). Cells
were grown to confluence in 60mm dishes in DMEM/Ham’s
F-12 with 15mM HEPES buffer, 10% FBS, 5.5mM glucose,
0.35% additional sodium bicarbonate, 2.5mM L-glutamine,
and 1% penicillin/streptomycin at 37∘C. The media were
changed every other day. Passaged cells were plated to yield
near-confluent cultures at the end of the experiments.

2.3. MTT Assay. ARPE-19 cells were cultured on a 96-well
plate in DMEM/Ham’s F-12 (1 : 1) medium supplemented
with 10% FBS. After treatments, the cells were treated with
500𝜇g/mL of 3-(4,5-dimethysssl-thiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT; Sigma) and incubated for 3 h
in a CO

2
incubator. Cells with a functional mitochondrial

succinate dehydrogenase can convert MTT to formazan.The
formazan crystals formed were solubilized in DMSO (Sigma)
andmeasuredwith an ELx808microplate spectrophotometer
reader at 𝜆 = 570 nm (BioTek).

2.4. Western Blotting. Western blot analysis was performed
according to methods described previously [9]. Transferred
membranes were probed with various antibodies. The bands
were visualized with Luminescent image analyzer (Image-
Quant LAS 4000, GE Healthcare, UK) using Amersham ECL
Western Blotting Detection Reagents (GE Healthcare, UK).

2.5. Plasmids and DNA Transfection. The Flag, Flag-SIRT1,
and Flag-SIRT1 H363Y plasmids were kindly provided by Dr.
Hueng-Sik Choi (School of Biological Sciences and Technol-
ogy, ChonnamNational University, Korea). HA, HA-PRMT1,
and HA-PRMT4 were kindly provided by Dr. Fukamizu A
(Life Science Center of TsukubaAdvanced Research Alliance,
University of Tsukuba, Japan).The plasmids were transfected
into ARPE-19 cells using PolyExpress transfection reagent
(Excellgen, Gaithersburg, MD, USA) in accordance with the
manufacturer’s instructions.

2.6. siRNA Transfection. siRNA for PRMT1 (sc-41069; Santa
Cruz Biotechnology, Santa Cruz, CA, USA), PRMT4 (sc-
44875; Santa Cruz Biotechnology), and scramble siRNA
(Qiagen, Hilden, Germany) were used to silence endogenous
PRMT1 and PRMT4 expression. Lipofectamine RNAiMAX
reagent (Invitrogen, Carlsbad, CA, USA) was used to trans-
fect each siRNA (30 nM) following reverse transfection in
accordance with the manufacturer’s instructions.

2.7. Animal Experiments. Hyperglycemia was induced in
overnight fasted, 10-week-old male SD rats (𝑛 = 7) by
intraperitoneal injection of streptozotocin (55mg/kg) dis-
solved in cold and fresh citrate buffer (0.1M and pH 4.5).
Control rats (𝑛 = 7) were injected with citrate buffer.
Three days after STZ injection, plasma glucose level was
determined after overnight fasting with Accu-Chek Aviva
(Roche, Swiss). Rats with a blood glucose level of 300mg/dL
or higher were considered as diabetes. After 2 weeks, for
preparation of cryosections, the rats were anaesthetized and
eyeballs were enucleated, and then they were killed by
CO
2
inhalation. All animal experiments were performed

in accordance with National Institutes of Health animal
research standards. And protocols were approved by the
Chonnam National University Laboratory Animal Research
Center.

2.8. Immunohistochemistry (IHC) and Digital Image Analysis.
Eyeballs were fixed in 4% paraformaldehyde in phosphate-
buffered saline (PBS, pH 7.4) for 2 hours at 4∘C. Eyeballs were
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Figure 1: H
2
O
2
increases PRMT1 and PRMT4 expression but decreases SIRT1 expression. (a, b) ARPE-19 cells were treatedwith 250𝜇MH

2
O
2

for 12 and 24 h. (a) Cell viability was measured by the MTT assay. The data represent the means ± SEM of three independent experiments,
each performed in triplicate. ∗𝑃 < 0.05 versus 0 h. (b) Cell extracts were subjected toWestern blotting with the indicated antibodies.The data
represent the means ± SEM of three independent experiments. ∗𝑃 < 0.05 versus 0 h.

frozen in OCT compound (Cellpath, Hemel Hempstead,
UK). Cryosections of the retina (10 𝜇m) were cut through
the optic nerve head. Fixation was performed with precooled
(−20∘C) acetone for 10min. After allowing acetone to evap-
orate, immunostaining was performed according to the Vec-
tastain ABC kit (Vector Labs; PK-6101). Briefly, endogenous
peroxidase activity was quenched by 0.3% H

2
O
2
treatment

for 30min and then sections were blocked with goat serum
for 20min and then probed with PRMT1 antibody (diluted
1 : 200) or PRMT4 antibody (diluted 1 : 300) for 60min. After
washing with PBS, sections were incubated with biotinylated
secondary antibody for 30min and then incubated with ABC
reagent for 30min. DAB (Vector Labs; SK-4100) was used for
peroxidase substrate solution. Hematoxylin staining was per-
formed for counter-staining. The immunohistochemistry-
stained sections were observed using a BX-40 apparatus
(Olympus, Tokyo, Japan) with an eXcope X3 digital cam-
era (DIXI Optics, Daejeon, South Korea). Semiautomated
analysis protocol was used to quantify the IHC images.

Using imageJ, pure DAB images were deconvoluted from
IHC images. The pixel intensities of pure DAB images were
analyzed with histogram range from 0 to 255.The lower pixel
value represents the higher positive signals of DAB.The pixel
valuesweremainly spread from 111 to 200.The values between
111 and 140 were considered as high positive, 141–170 were
positive, and 171–200 were low positive.

2.9. Statistical Analysis. The results were expressed as the
mean ± SEM. Values are the mean ± SEM of three or four
independent experiments. All the experiments were analyzed
by analysis of variance (ANOVA). A 𝑃 value < 0.05 was
considered significant.

3. Results

3.1. H2O2 Increases PRMT1 and PRMT4 Expression and
Decreases SIRT1 Expression. To induce oxidative stress,
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Figure 2: SIRT1 overexpression attenuates oxidative stress-induced RPE cell apoptosis. (a, b) ARPE-19 cells were transfected with empty
vector, SIRT1 WT, or SIRT1 H363Y plasmids. After 24 h, the medium was changed to serum-free medium and 250 𝜇M H

2
O
2
was added

for 24 h. (a) Cell viability was measured by the MTT assay. The data represent the means ± SEM of three independent experiments, each
performed in triplicate. ∗𝑃 < 0.05 versus empty vector, ∗∗𝑃 < 0.05 versus empty vector + 250 𝜇M H

2
O
2
, and #
𝑃 < 0.05 versus SIRT1 WT

+ 250 𝜇MH
2
O
2
. (b) Cell extracts were subjected to Western blotting with the indicated antibodies. The data represent the means ± SEM of

three independent experiments. ∗𝑃 < 0.05 versus empty vector, ∗∗𝑃 < 0.05 versus empty vector + 250 𝜇MH
2
O
2
, and #
𝑃 < 0.05 versus SIRT1

WT + 250 𝜇MH
2
O
2
(n.s. = nonspecific).

human retinal pigment epithelial cells (ARPE-19 cells) were
treated with 250 𝜇M H

2
O
2
. As expected, H

2
O
2
treatment

decreased cell viability and increased the cleavage of PARP1
and caspase-3, which are associated with RPE cell apoptosis
(Figures 1(a) and 1(b)) [10]. Furthermore, H

2
O
2
treatment

increased PRMT1 and PRMT4 expression and decreased
SIRT1 expression, while PRMT3 expression was unchanged
(Figure 1(b)).

3.2. SIRT1 Overexpression Attenuates Oxidative Stress-Induced
RPE Cell Apoptosis. As H

2
O
2
treatment decreased SIRT1

expression, we postulated that oxidative stress-induced RPE
cell damage is regulated by SIRT1. To confirm this, ARPE-19
cells were transfected with empty vector or SIRT1 followed
by H
2
O
2
. SIRT1 overexpression restored the cell viability

lowered by H
2
O
2
treatment (Figure 2(a)). Moreover, the

increased cleavage of PARP1 and caspase-3 was attenuated by

SIRT1 overexpression (Figure 2(b)). However, transfection of
SIRT1 H363Y, an enzymatic-dead mutant that lacks deacety-
lase activity because histidine 363 is converted to tyrosine
[11], did not restore cell viability or attenuate PARP1 and
caspase-3 cleavage (Figures 2(a) and 2(b)). SIRT1 or SIRT1
H363Y overexpression did not influence PRMT1 or PRMT4
expression under oxidative stress (Figure 2(b)).

3.3. PRMT1 or PRMT4 Overexpression Increases RPE Cell
Apoptosis and PRMT1OverexpressionDecreases SIRT1 Expres-
sion. H

2
O
2
treatment increased PRMT1 and PRMT4 expres-

sion (Figure 1(b)). To determine the effect of the increased
PRMT1 or PRMT4 on RPE cell apoptosis, ARPE-19 cells were
transfected with HA, HA-PRMT1, or HA-PRMT4. PRMT1
overexpression decreased cell viability and SIRT1 expression
(Figures 3(a) and 3(b)). Moreover, PRMT1 overexpression
increased the cleavage of PARP1 and caspase-3 (Figure 3(b)).
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Figure 3: PRMT1 or PRMT4 overexpression increases RPE cell apoptosis, while PRMT1 overexpression decreases SIRT1 expression. (a, b)
ARPE-19 cells were transfected with HA or HA-PRMT1 plasmid DNA. After 36 h, (a) cell viability was measured by the MTT assay. The
data represent the means ± SEM of three independent experiments, each performed in triplicate. ∗𝑃 < 0.05 versus HA. (b) Cell extracts
were subjected to Western blotting with the indicated antibodies. The data represent the means ± SEM of three independent experiments.
∗
𝑃 < 0.05 versus HA. (c, d) ARPE-19 cells were transfected with HA or HA-PRMT4 plasmid DNA. After 36 h, (c) cell viability was measured
by theMTT assay.The data represent themeans ± SEM of three independent experiments, each performed in triplicate. ∗𝑃 < 0.05 versus HA.
(d) Cell extracts were subjected toWestern blotting with the indicated antibodies. The data represent the means ± SEM of three independent
experiments. ∗𝑃 < 0.05 versus HA (n.s. = nonspecific).

PRMT4 overexpression also decreased cell viability and
increased the cleavage of PARP1 and caspase-3 but did not
alter SIRT1 expression (Figures 3(c) and 3(d)).

3.4. PRMT1 or PRMT4 Knockdown Attenuates Oxidative
Stress-Induced RPE Cell Damage and PRMT1 Expression Reg-
ulates SIRT1 Expression. To confirm these findings, PRMT1
or PRMT4 expression was silenced by siRNA transfec-
tion (Figure 4(a)). PRMT1 or PRMT4 knockdown restored
the H

2
O
2
-induced decrease in cell viability (Figure 4(b)).

Moreover, the increased cleavage of PARP1 and caspase-3

was attenuated by knockdown of PRMT1 or PRMT4
(Figure 4(c)). The H

2
O
2
-induced SIRT1 downregulation was

restored by PRMT1 knockdown but not by PRMT4 knock-
down (Figure 4(c)).

3.5. PRMT1 and PRMT4 Expression Is Increased in the RPE
Layer of Streptozotocin-Treated Rats. To confirm the increase
of PRMT1 and PRMT4 expression in vivo, we generated
rats with streptozotocin- (STZ-) induced diabetes, which
show severe hyperglycemia and are known to have induced
diabetic retinopathy via oxidative stress [12, 13]. As shown in
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was added for 24 h. (b) Cell viability wasmeasured by theMTT assay.The data represent themeans± SEMof three independent

experiments, each performed in triplicate. ∗𝑃 < 0.05 versus scramble siRNA, ∗∗𝑃 < 0.05 versus scramble siRNA + 250 𝜇M H
2
O
2
. (c)

Cell extracts were subjected to Western blotting with the indicated antibodies. The data represent the means ± SEM of three independent
experiments. ∗𝑃 < 0.05 versus scramble siRNA, ∗∗𝑃 < 0.05 versus scramble siRNA + 250 𝜇MH
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O
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(n.s. = nonspecific).

Figures 5(a) and 5(b), PRMT1 and PRMT4 expression was
significantly increased in the RPE layer of STZ rats compared
with vehicle-treated rats (white arrows). Furthermore, high
positive and positive signals of PRMT1 and high positive sig-
nals of PRMT4 were greatly increased in STZ rats compared
with vehicle-treated rats (Figures 5(a) and 5(b)).

4. Discussion

Type I PRMTs are important pathophysiological regulators
as they promote the production of asymmetric dimethylargi-
nine (ADMA), a metabolic by-product that inhibits nitric
oxide synthase (NOS), which is involved in cardiovascular
disease, diabetes, and other metabolic disorders [14–16]. In
addition to producing ADMA, type I PRMTs regulate various
cellular processes, such as transcription, RNA splicing, and

signal transduction, by catalysing the asymmetric dimethy-
lation of histone or nonhistone proteins [17]. Recent studies
have revealed the role of type I PRMTs in diabetic nephropa-
thy [18, 19]. However, their roles in diabetic retinopathy are
rarely known. In this study, we demonstrated that increased
expression of the type I PRMTs, PRMT1 andPRMT4, induced
RPE cell damage under oxidative stress. This was supported
by the following evidence: (1) H

2
O
2
treatment increased not

only RPE cell damage but also PRMT1 and PRMT4 expres-
sion; (2) PRMT1 or PRMT4 overexpression increased RPE
cell damage; (3) PRMT1 or PRMT4 knockdown attenuated
the H

2
O
2
-induced RPE cell damage; and (4) PRMT1 and

PRMT4 expression was increased in the RPE layer of STZ-
treated rats.

Many studies have demonstrated that oxidative stress-
induced cellular damage is mediated by increased type I
PRMT expression. For example, H

2
O
2
-induced oxidative
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Figure 5: PRMT1 and PRMT4 expression is increased in the RPE layer of streptozotocin-treated rats. Eyeballs were enucleated from
vehicle-treated and STZ-treated rats and cryosections were prepared. (a, b) PRMT1 (a) and PRMT4 (b) expressions were measured by
immunohistochemistry analysis (C: choroid, RPE: retinal pigment epithelium, PL: photoreceptor layer, OLM: outer limiting membrane,
ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, and GCL: ganglion-cell layer).
Representative images were from at least three independent experiments. To quantify the DAB signaling, semiautomated analysis protocol
was performed as described in Section 2.

stress increases PRMT3 expression, leading to increased
ADMA generation in preglomerular vascular smoothmuscle
cells [20]. Treatment with human serum albumin, which
induces oxidative stress in renal proximal tubular epithelial
cells, increased PRMT1 expression [21]. In contrast, few
studies have revealed the protective effects of type I PRMTs
in oxidative stress. Very recently, Huang et al. reported
that arsenic-induced oxidative stress recruits PRMT1 to the
histone 4 arginine 3 and PRMT4 to the histone 3 arginine
17 for asymmetric dimethylation, which leads to increased
ferritin transcription via the antioxidant responsive element
in HaCaT cells (human keratinocytes) [22]. In the report
by Huang et al., in contrast to our results, the expression
of PRMT1 and PRMT4 was not changed and PRMT1 and
PRMT4 increased ferritin to protect cells from oxidative
stress. This discrepancy was likely due to the different cell

types (retinal pigment epithelial cells versus keratinocyte) or
the kind of oxidative stress (H

2
O
2
versus arsenic), as arsenic

treatment induces superoxide anion (O
2

∙−) and hydroxyl rad-
ical (∙OH) production [23]. Moreover, PRMT1 and PRMT4
were examined within 6 h of arsenic treatment, while our
experiment involved a relatively long duration of H

2
O
2

treatment. Wang et al. reported that treatment with lithium
and valproate acid, which protect against H

2
O
2
-induced

oxidative stress, increase PRMT4 expression in NSC34
cells [24]. However, they did not establish the function of
PRMT4.

In this study, we also showed that H
2
O
2
-induced SIRT1

downregulation is involved in RPE cell damage. Several lines
of evidence support our findings. Wu et al. reported that
SIRT1 overexpression reverses H

2
O
2
-mediated complement

factor H downregulation in ARPE-19 cells [25]. Moreover,
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PRMT1

Oxidative stress

PRMT4

RPE cell
apoptosis

Diabetic retinopathy 
(for example, hyperglycemia)

SIRT1

Figure 6: PRMT1 and PRMT4 regulate oxidative stress-induced
RPE cell damage in SIRT1-dependent and SIRT1-independent man-
ners.

Bhattacharya et al. reported that decreased SIRT1 expression
in RPE cells induces p53 acetylation-mediated apoptosis,
leading to the progression of age-related macular degenera-
tion (AMD) [26]. Indeed, p53 and its target genes are closely
involved in RPE cell apoptosis [27, 28]. As a deacetylase,
SIRT1 inhibits p53 activity via deacetylation at lysine 382 [29].
In our study, transfection with an enzymatic-dead mutant,
SIRT1, did not inhibit the H

2
O
2
-induced RPE cell apoptosis.

Here, we provide novel evidence that SIRT1 expression and
its enzymatic activity are vital for RPE cell maintenance.

Interestingly, we found that SIRT1 expression is negatively
regulated by PRMT1 but not by PRMT4. Scalera et al.
reported that red wine decreased PRMT1 expression in a
SIRT1-dependent manner in human endothelial cells [30].
However, in our study, SIRT1 overexpression did not alter
PRMT1 expression. This may be due to a cell-type-specific
response (endothelial versus epithelial cells). We speculated
that PRMT4 regulates SIRT1 expression, as PRMT4 increases
the stability of SIRT1 mRNA by methylating HuR protein at
arginine 217 in stem cells and HeLa cells [31, 32]. However,
PRMT4 did not influence SIRT1 protein expression in ARPE-
19 cells. To our knowledge, this is the first report on the
relationship between PRMT and SIRT1 in cell function. We
provide the first evidence that PRMT1 regulates SIRT1 under
oxidative stress.

Signaling induced by high-glucose is highly associated
with oxidative stress [33]. Very recently, we reported that
PRMT4 expression is increased by high-glucose in RPE cells
[34]. Consistent with previous results, PRMT4 expression
was increased in the RPE and outer limiting membrane

(OLM) layers of STZ rats. In addition, PRMT1 expression
was increased in the RPE and overall layers of retina of STZ
rats. It may be speculated that increased PRMT1 and PRMT4
expression in other layers by STZ treatment contributes to
the progression of retinopathy. Further studies should be
performed to reveal this speculation.

In this study, we demonstrated that oxidative stress-
induced RPE cell damage is regulated by type I PRMTs
(PRMT1 and PRMT4) and oxidative stress-induced SIRT1
downregulation is involved in the PRMT1-mediated RPE
cell apoptosis pathway. Oxidative stress is a major cause of
diabetic retinopathy. Taken together, our data suggest amodel
of signaling pathways involved in oxidative stress-induced
RPE cell apoptosis (Figure 6). Therefore, the inhibition of
type I PRMT expression, especially PRMT1 and PRMT4,
and the increase in SIRT1 expression could be therapeutic
approaches for diabetic retinopathy.
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