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This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid
power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with
exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAXmodel. Because
the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear
constrainedmodel predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor.
The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as
limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can
optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the
lifetime of the fuel cell.

1. Introduction

As the rapid development of modern industrial technology,
Ocean technology, and space technology, more and more
mobile robots are demanded in these areas. Because of the
advantages in operating time,weight, and dimensions, proton
exchangemembrane (PEM) fuel cells have been considered as
alternative power sources for mobile robots.

A mobile robot usually has multiple freedoms, which
cause the electric load drastically to fluctuate. Sudden changes
in power may significantly reduce the operating life of fuel
cells in a long term [1, 2]. Furthermore, fuel cells have the
characteristics of unidirectional power flow and they cannot
absorb the energy from regenerative braking of a robot. As
a result, fuel cells are usually arranged with auxiliary power
sources to form hybrid power systems and drive mobile
robots. Ultracapacitors are highly suitable for the bulk of the
transient power demands since the charge/discharge current
of an ultracapacitor can vary in a wide range. In this paper we
choose a bank of ultracapacitors as auxiliary power source.

A smart power split strategy is indispensable to enhance
performance and lifetime of the hybrid power system. Jiang

et al. [3] presented an adaptive control algorithm that
adjusted the output current set point of the fuel cell. Ferreira
et al. [4], Li et al. [5], and Kim et al. [6] developed a fuzzy
controller to optimally distribute the power between the fuel
cell and the battery. Rodatz et al. [7] designed an optimal
control strategy to minimize the hydrogen consumption in
a hybrid fuel cell system. Paladini et al. [8] proposed an
optimal control strategy to power a vehicle with both fuel
cell and battery to reduce fuel consumption. Lin et al. [9]
studied a dynamic programming (DP) algorithm based on
the fuel consumption and exhaust gas emission for a parallel
electric vehicle. These strategies are effective in dealing with
system efficiency but address little the lifetime of the fuel
cell stack due to rapid load demand variations. Zhang et al.
[10] presented a wavelet-transform algorithm to identify and
allocate power demands with different frequency contents to
corresponding sources to achieve an optimal power manage-
ment control algorithm. This algorithm can protect fuel cell
effectively but is complex and difficult to apply online. Xu et
al. [11, 12] and Simmons et al. [13] proposed optimal real-time
energy management strategies for a proton electrolyte mem-
brane (PEM) fuel cell bus based on the Pontryagin’s Minimal
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Principle and the determined dynamic programming (DDP).
Ziogou et al. [14] deployed a dynamic optimization approach
based on nonlinear model of fuel cell. Li et al. [15] developed
a constrained model predictive control of a solid oxide fuel
cell based on genetic optimization.

Undoubtedly, the fuel cell power systems are nonlinear.
Therefore, the global optimization based energymanagement
strategies depend on nonlinear models of the fuel cell power
systems and are time costly. Model predictive control (MPC)
has been recognized as a powerful methodology for control-
ling a wide class of nonlinear dynamic system [16]. In this
paper we use MPC appropriately, distribute power between
the fuel cell and ultracapacitor, avoid frequent fluctuation of
fuel cell current, and so enhance the transient performance
and extend the operating life of the hybrid system.

There have been three main methods for nonlinear sys-
temmodeling and predictive control [17].The first one uses a
piecewise linearization to describe the nonlinear behavior of
a system. Eachmodel is effective only in a small region, which
results in that a mass of models is required [18]. The second
one directly employs nonlinear models, but these involve
a nonlinear online optimization problem with constraints,
which is usually time-consuming and may even be unable
to guarantee a feasible solution for real time control [19].
The third method is to use a local linearization approach
representing a nonlinear plant, which is valid and simplifies
the implement [20–24].

This paper proposes an ARMAX (Autoregressive Moving
Average with Exogenous input) modeling approach for fuel
cell power systems. Time-variant coefficients of the ARMAX
model are estimated by a recurrent neural network. The
RNN-ARMAXmodel is an equal linear model of the fuel cell
power system.Therefore, we design linear constrainedmodel
predictive control based on the RNN-ARMAXmodel for the
nonlinear fuel cell power system. The design and implemen-
tation of the controller are significantly simplified and the
method can protect fuel cell from substantial fluctuation of
current by trading off transient current demand from the
fuel cell to the ultracapacitor, according to constraints and
weighting matrices of the output errors.

The remainder of this paper is organized as follows.
Section 2 describes RNN-ARMAX modeling of the fuel cell
power system. MPC is designed in Section 3. In Section 4, we
implement and discuss simulation results. Conclusions are
given in Section 5.

2. RNN-ARMAX Modeling

We aim at the optimization of electric power distribution
between the fuel cell and ultracapacitor of a fuel cell robot.

2.1. System Structure and Description. The fuel cell power
system studied in this paper, as shown in Figure 1, is designed
for a mobile robot. The electrical output of the PEM fuel cell
is connected to the load through a unidirectional DC/DC
converter, and an ultracapacitor bank is also connected to
the load through a bidirectional DC/DC converter to form

a hybrid fuel cell system. The ultracapacitor bank should
supply peak power and be recharged by the fuel cell.

The distribution of power between the fuel cell and the
ultracapacitor depends on the duty ratio of the DC/DC
converters. Duty ratio of a DC/DC converter is defined as the
ratio of switch on time interval, 𝑇ON, to switching period 𝑇;
that is,

𝑑 =
𝑇ON
𝑇

. (1)

There is one duty ratio, 𝑑fc, in the unidirectional DC/DC
converter for controlling output power of the fuel cell. In
the bidirectional DC/DC converter, one duty ratio, 𝑑

𝑐
, is for

charging the ultracapacitor, and the other, 𝑑
𝑑
, is for discharg-

ing the ultracapacitor. Power distribution is optimized by
controlling the three duty ratios.

2.2. Identification. The hybrid system is a multiple input and
multiple output nonlinear system.The control input variables
are three duty ratios of the power converters. Input variables
are expressed as

𝑢 (𝑡) = (𝑑fc 𝑑
𝑑

𝑑
𝑐
)
𝑇

. (2)

The output variables contain output voltage of the fuel
cell and the state of charge of the ultracapacitor and so forth.
Output variables are chosen as

𝑦 (𝑡) = ( 𝑉fc 𝐼fc 𝐼
𝑐
SOC 𝑉

𝑏
𝐼
𝑏
)
𝑇

, (3)

where𝑉fc is voltage of the fuel cell, 𝐼fc is current of the fuel cell,
𝐼
𝑐
is current of the ultracapacitor, SOC is state of charge of the

ultracapacitor,𝑉
𝑏
is the bus voltage: and 𝐼

𝑏
is the bus current,

respectively. Power demanded by the load, 𝑃
𝑑
, is viewed as a

disturbance to the system. We can describe the model as the
following nonlinear function:

𝑦 (𝑡) = 𝑓 (𝜑 (𝑡)) + 𝜉 (𝑡) , (4)

𝜑 (𝑡) = [𝑦
𝑇

(𝑡 − 1) . . . 𝑦
𝑇

(𝑡 − 𝑛) 𝑢
𝑇

(𝑡) . . . 𝑢
𝑇

(𝑡 − 𝑚 + 1)]
𝑇

≜ [𝜑
𝑖
(𝑡)]
[𝑛∗𝑛𝑦+(𝑚+1)∗𝑛𝑢]×1

,

(5)

where 𝜑(𝑡) is the regression vector with known order 𝑛 and
𝑚, 𝑛
𝑦
and 𝑛

𝑢
are dimensions of output and input, 𝜉(𝑡) is

the system disturbance, and 𝑓(⋅) is an unknown nonlinear
function, respectively.

If we design MPC based on direct use of the nonlinear
model, it involves the online solution of a higher order
nonlinear optimization problem with constraints, which is
usually computationally expensive and may even be unable
to guarantee a feasible solution for real time control.

Here we use RNN-ARMAX to model the system. Per
forming Taylor expansion on the nonlinear function
𝑓(𝜑(𝑡)) around the region 𝜑(𝑡) = 0 as

𝑦 (𝑡) = 𝑓 (0) + 𝑓


(0) 𝜑 (𝑡) +
1
2
𝜑
𝑇

(𝑡) 𝑓


(0) 𝜑 (𝑡)+ . . .+𝜉 (𝑡) .
(6)
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Figure 1: Fuel cell power system of a robot.
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Figure 2: RNN modeling principle.

We introduce the notation

𝑦
0
= 𝑓 (0) , (7)

Θ(𝜑 (𝑡)) = (𝑓


(0) +
1

2
𝜑
𝑇

(𝑡) 𝑓


(0) + . . .)

𝑇

= [𝑎
𝑇

1,𝑡
𝑎
𝑇

2,𝑡
. . . 𝑎
𝑇

𝑛,𝑡
𝑏
𝑇

0,𝑡
. . . 𝑏
𝑇

𝑚,𝑡
]
𝑇

,

(8)

where Θ ∈ R𝑛𝑦×[𝑛∗𝑛𝑦+(𝑚+1)∗𝑛𝑢] and the coefficients 𝑎
𝑖,𝑡

=

𝑎
𝑖
(𝜑(𝑡)), 𝑏

𝑖,𝑡
= 𝑏
𝑖
(𝜑(𝑡)) are nonlinear function of 𝜑(𝑡).

We have a regression form of the system described by (4)
as follows:

𝑦 (𝑡) = 𝑦
0
+ Θ (𝜑 (𝑡)) 𝜑 (𝑡) + 𝜉 (𝑡) . (9)

Here the parameter vector Θ(𝜑(𝑡)) is time variant. The
recurrent neural network (RNN) that consists of feed-
forward and feedback connections is well known to be

capable of modeling and control nonlinear system. We use
RNN to estimate Θ(𝜑(𝑡)). The recurrent neural network
modeling principle is shown in Figure 2.

The RNN is expressed as

𝑂 (𝑡) = 𝐾𝑆 (𝑡) ,

𝑆 (𝑡) = Γ (𝑊𝜑 (𝑡) + 𝑊𝑆 (𝑡 − 1)) ,

Γ (𝑥) = [𝜎 (𝑥
1
) 𝜎 (𝑥

1
) . . . 𝜎 (𝑥

𝑛ℎ
)] ,

𝜎 (𝑥
𝑗
) =

1

1 + 𝑒
−𝑥𝑗

,

(10)

where 𝑂(𝑡) ∈ R𝑛𝑦[𝑛∗𝑛𝑦+(𝑚+1)∗𝑛𝑢] is output of the RNN
and 𝐾,𝑊,𝑊 are weights for the RNN among the output
layer, the input layer, and the hidden layer. Define 𝑛

𝑜
, 𝑛
𝑖
, and

𝑛
ℎ
as the node amounts of the output layer, the input layer,
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and the hidden layer, respectively. 𝐾,𝑊 and𝑊are expressed
as

𝐾 = [𝑘
1
𝑘
2
. . . 𝑘
𝑛ℎ
]
𝑛𝑜×𝑛ℎ

, 𝑆 (𝑡) = [𝑠
𝑖
(𝑡)]
𝑛ℎ×1

,

𝑊 = [𝑤
𝑙𝑘
]
𝑛ℎ×𝑛𝑖

, 𝑊 = [𝑤
𝑙𝑘
]
𝑛ℎ×𝑛ℎ

,

𝑛
𝑜
= 𝑛
𝑦
[𝑛 ∗ 𝑛

𝑦
+ (𝑚 + 1) 𝑛

𝑢
] , 𝑛

𝑖
= 𝑛 ∗ 𝑛

𝑦
+ (𝑚 + 1) 𝑛

𝑢
.

(11)

Then the output of the system is predicted by

𝑦 (𝑡) = 𝑦
0
+ Ψ (𝑡) 𝑂 (𝑡) , (12)

where Ψ(𝑡) ∈ R𝑛𝑦×𝑛𝑦[𝑛∗𝑛𝑦+(𝑚+1)∗𝑛𝑢] and

Ψ (𝑡) =

[
[
[
[

[

𝜑
𝑇

(𝑡) 0 0 0

0 𝜑
𝑇

(𝑡) 0 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝜑
𝑇

(𝑡)

]
]
]
]

]

≜

[
[
[
[

[

Ψ
1
(𝑡)

Ψ
2
(𝑡)

...
Ψ
𝑛𝑦
(𝑡)

]
]
]
]

]

. (13)

The performance criterion 𝜓(𝑡) of the neural network is
then defined by

𝜓 (𝑡) =
1

2
(𝑦 (𝑡) − 𝑦

0
− Ψ (𝑡) 𝑂 (𝑡))

𝑇

(𝑦 (𝑡) − 𝑦
0
− Ψ (𝑡) 𝑂 (𝑡)) ,

(14)

where 𝑦(𝑡) is sampled output of the system. Therefore, the
weights are adjusted to reduce the cost function 𝜓(𝑡) to a
minimum value by the gradient descent method. The weight
vectors are updated along with

𝐾 (𝑡 + 1) = 𝐾 (𝑡) − 𝜂
𝜕𝜓 (𝑡)

𝜕𝐾
,

𝑊 (𝑡 + 1) = 𝑊 (𝑡) − 𝜂
𝜕𝜓 (𝑡)

𝜕𝑊
,

𝑊 (𝑡 + 1) = 𝑊 (𝑡) − 𝜂
𝜕𝜓 (𝑡)

𝜕𝑊
,

(15)

where 𝜂 is a positive learning rate.
Let 𝑞, 𝑟 be the quotient and remainder of 𝑖/[𝑛 ∗ 𝑛

𝑦
+ (𝑚+

1)𝑛
𝑢
], respectively. If ℎ = 0, then set 𝑟 = [𝑛 ∗ 𝑛

𝑦
+ (𝑚 + 1)𝑛

𝑢
].

Else set 𝑞 = 𝑞 + 1. 𝜕𝜓(𝑡)/𝜕𝐾, 𝜕𝜓(𝑡)/𝜕𝑊, and 𝜕𝜓(𝑡)/𝜕𝑊 are
then calculated as follows:

𝜕𝜓 (𝑡)

𝜕𝑘
𝑖𝑗

= (𝑦
0,𝑞

+ Ψ
𝑞
(𝑡) 𝑂 (𝑡) − 𝑦

𝑞
(𝑡)) 𝑠
𝑗
(𝑡) 𝜑
𝑟
(𝑡) ,

𝜕𝜓 (𝑡)

𝜕𝑤
𝑖𝑗

= (𝑦
0
+ Ψ (𝑡) 𝑂 (𝑡) − 𝑦 (𝑡)) Ψ (𝑡) 𝑘

𝑖
(𝑡)𝐻
𝑖
(𝑡) 𝜑
𝑗
(𝑡) ,

𝜕𝜓 (𝑡)

𝜕𝑤
𝑖𝑗

= (𝑦
0
+ Ψ (𝑡) 𝑂 (𝑡) − 𝑦 (𝑡)) Ψ (𝑡) 𝑘

𝑖
(𝑡)𝐻
𝑖
(𝑡) 𝑠
𝑗
(𝑡 − 1) ,

(16)

where

𝐻
𝑖
(𝑡) =

𝑒
−ℎ𝑖(𝑡)

(1 + 𝑒−ℎ𝑖(𝑡))
2
,

ℎ
𝑖
(𝑡) =

𝑛𝑖

∑

𝑙=1

𝑤
𝑖𝑙
(𝑡) 𝜑
𝑙
(𝑡) +

𝑛ℎ

∑

𝑙=1

𝑤
𝑖𝑙
(𝑡) 𝑠
𝑙
(𝑡 − 1) .

(17)

The update rules of (15) call for a proper choice of the
learning rate 𝜂. For a small value of 𝜂 the convergence is
guaranteed but the speed is slow; if 𝜂 is too big, the algorithm
becomes unstable. Here we develop a guideline in selecting
the learning rate properly. A discrete Lyapunov function is
given by

𝑉 (𝑡) =
1

2
𝑒
𝑇

(𝑡) 𝑒 (𝑡) , (18)

where

𝑒 (𝑡) = 𝑦 (𝑡) − 𝑦
0
− Ψ (𝑡) 𝑂 (𝑡) . (19)

Thus the change of Lyapunov function due to the training
process is obtained by

Δ𝑉 (𝑡) = 𝑉 (𝑡 + 1) − 𝑉 (𝑡)

=
1

2
[𝑒
𝑇

(𝑡 + 1) 𝑒 (𝑡 + 1) − 𝑒
𝑇

(𝑡) 𝑒 (𝑡)] .

(20)

The error difference due to the learning is represented by

𝑒 (𝑡 + 1) = 𝑒 (𝑡) + Δ𝑒 (𝑡) = 𝑒 (𝑡) + [
𝜕𝑒(𝑡)

𝜕𝑊
]

𝑇

Δ𝑊, (21)

where Δ𝑊 represents a change in an arbitrary weight vector.
From the update rule (15),

Δ𝑊 = −𝜂
𝜕𝜓 (𝑡)

𝜕𝑊
= 𝜂

𝜕𝑂
𝑇

(𝑡)

𝜕𝑊
Ψ
𝑇

(𝑡) 𝑒 (𝑡) . (22)

Thenwe have the following general convergence theorem.

Theorem1. 𝜂 is the learning rate for theweights of RNNand ‖⋅

‖ is the usual Euclidean norm in 𝑅
𝑛. Then the convergence is

guaranteed if 𝜂 is chosen as

0 < 𝜂 <
2

max
𝑡
‖Ψ (𝑡) (𝜕𝑂(𝑡)/𝜕𝑊)‖

2
. (23)
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Proof. From equations (20)–(22), Δ𝑉(𝑡) can be calculated as

Δ𝑉 (𝑡) = Δ𝑒
𝑇

(𝑡) [𝑒 (𝑡) +
1

2
Δ𝑒 (𝑡)]

= [[
𝜕𝑒(𝑡)

𝜕𝑊
]

𝑇

𝜂
𝜕𝑂
𝑇

(𝑡)

𝜕𝑊
Ψ
𝑇

(𝑡) 𝑒(𝑡)]

𝑇

× {𝑒 (𝑡) +
1

2
[
𝜕𝑒(𝑡)

𝜕𝑊
]

𝑇

𝜂
𝜕𝑂
𝑇

(𝑡)

𝜕𝑊
Ψ
𝑇

(𝑡) 𝑒 (𝑡)}

= −𝑒
𝑇

(𝑡) {𝜂Ψ (𝑡)
𝜕𝑂 (𝑡)

𝜕𝑊

𝜕𝑂
𝑇

(𝑡)

𝜕𝑊
Ψ
𝑇

(𝑡)

−
1

2
Ψ (𝑡)

𝜕𝑂 (𝑡)

𝜕𝑊

𝜕𝑂
𝑇

(𝑡)

𝜕𝑊
Ψ
𝑇

(𝑡)

∗ Ψ (𝑡)
𝜕𝑂 (𝑡)

𝜕𝑊

𝜕𝑂
𝑇

(𝑡)

𝜕𝑊
Ψ
𝑇

(𝑡)} 𝑒 (𝑡)

= −
1

2
𝜂[

𝜕𝑂
𝑇

(𝑡)

𝜕𝑊
Ψ
𝑇

(𝑡) 𝑒(𝑡)]

𝑇

× {2𝐼 − 𝜂
𝜕𝑂
𝑇

(𝑡)

𝜕𝑊
Ψ
𝑇

(𝑡) Ψ (𝑡)
𝜕𝑂 (𝑡)

𝜕𝑊
}

× [
𝜕𝑂
𝑇

(𝑡)

𝜕𝑊
Ψ
𝑇

(𝑡) 𝑒 (𝑡)] .

(24)

To guarantee Δ𝑉(𝑡) < 0, 𝜂 should satisfy the following
inequality

2𝐼 − 𝜂
𝜕𝑂
𝑇

(𝑡)

𝜕𝑊
Ψ
𝑇

(𝑡) Ψ (𝑡)
𝜕𝑂 (𝑡)

𝜕𝑊
> 0, (25)

𝜂 > 0. (26)

From inequalities (25) and (26), we obtain

0 < 𝜂 max
𝑡



Ψ (𝑡)
𝜕𝑂 (𝑡)

𝜕𝑊



2

< 2. (27)

Namely, 𝜂 satisfies

0 < 𝜂 <
2

max
𝑡
‖Ψ (𝑡) (𝜕𝑂(𝑡)/𝜕𝑊)‖

2
. (28)

This proves the theorem.

We can establish a state space model from the matrix
polynomials (7), (8), and (9) by defining a state vector given
by

𝑥 (𝑡) = [𝑥
𝑇

1,𝑡
𝑥
𝑇

2,𝑡
. . . 𝑥
𝑇

𝑛,𝑡
]
𝑇

,

𝑥
1,𝑡

= 𝑦 (𝑡) ,

𝑥
𝑘,𝑡

=

𝑛+1−𝑘

∑

𝑖=1

𝑎
𝑖+𝑘−1,𝑡−1

𝑦 (𝑡 − 𝑖) +

𝑛+1−𝑘

∑

𝑖=1

�̂�
𝑖+𝑘−1,𝑡−1

𝑢 (𝑡 − 𝑖) ,

𝑘 = 2, 3, . . . , 𝑛.

(29)

A state space model can then be given by

𝑥 (𝑡 + 1) = 𝐴
𝑡
𝑥 (𝑡) + 𝐵

𝑡
𝑢 (𝑡) + Ξ (𝑡 + 1) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(30)

where

𝐴
𝑡
=

[
[
[
[
[
[

[

𝑎
1,𝑡

1 0 ⋅ ⋅ ⋅ 0

𝑎
2,𝑡

0 1 ⋅ ⋅ ⋅ 0

...
...

... d
...

𝑎
𝑛−1,𝑡

0 0 ⋅ ⋅ ⋅ 1

𝑎
𝑛,𝑡

0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]

]

, 𝐵
𝑡
=

[
[
[
[

[

𝑏
1,𝑡

𝑏
2,𝑡

...
𝑏
𝑛,𝑡

]
]
]
]

]

,

Ξ (𝑡 + 1) =

[
[
[
[

[

𝑦
0
+ 𝜉 (𝑡 + 1)

0

...
0

]
]
]
]

]

, 𝐶 =

[
[
[
[

[

1

0

...
0

]
]
]
]

]

𝑇

.

(31)

Model (30) is a state space representation ofMIMORNN-
ARX model (4). The parameters in 𝐴

𝑡
and 𝐵

𝑡
are estimated

by the RNN, and the state 𝑥(𝑡) at time 𝑡 can be easily
obtained by (29) according to the present output𝑦(𝑡), the past
input/output data, and output of the RNN.

3. Controller Design

A predictive controller will be designed to predict the output
trajectory of the fuel cell power system and compute a series
of control actions, subject to constraints, that will minimize
the difference between the predicted trajectory and desired
trajectory. A prominent advantage of this controller over
other control schemes is its ability to deal with constraints in
a systematic and straightforward manner.

To design predictive controller for the system, an objec-
tive function is defined as [18]

min
𝑢(𝑡),⋅⋅⋅ ,𝑢(𝑡+𝑁−1)

𝐽 =

𝑁𝑢

∑

𝑘=1

((𝑦 (𝑡 + 𝑘) − 𝑦
𝑟
(𝑡 + 𝑘))

𝑇

× 𝑄 (𝑦 (𝑡 + 𝑘) − 𝑦
𝑟
(𝑡 + 𝑘))

+ 𝑢
𝑇

(𝑡 + 𝑘) 𝑅𝑢
𝑇

(𝑡 + 𝑘)) ,

(32)

where 𝑁
𝑢
is predictive horizon, 𝑦(𝑡 + 𝑘) is the estimated

output of the system at instant 𝑡 + 𝑘 through models based
on information available at instant𝑡. 𝑦

𝑟
(𝑡 + 𝑘) is the desired

output at instant 𝑡 + 𝑘, and 𝑄, 𝑅 are weighting matrices on
output errors and control, respectively.We choose the control
horizon to be equal to the prediction horizon and define 𝑄 =

diag(𝑄
𝑉fc
𝑄
𝐼fc
𝑄
𝐼𝑐
𝑄SOC𝑄𝑉𝑏) and 𝑅 = diag(𝑅

𝑑fc
𝑅
𝑑𝑑
𝑅
𝑑𝑐
),

where, 𝑄
𝑉fc
, 𝑄
𝐼fc
, 𝑄
𝐼𝑐
, 𝑄SOC, and 𝑄

𝑉𝑏
are penalties on errors

in 𝑉fc, 𝐼fc, 𝐼𝑐, SOC and 𝑉
𝑏
, respectively. 𝑅

𝑑fc
, 𝑅
𝑑𝑑
, and 𝑅

𝑑𝑐
are

penalties on 𝑑fc, 𝑑𝑑 and 𝑑𝑐, respectively.
Substituting state equations (30) into (32), the equation is

abbreviated as

min
𝑈

𝐽 =
1

2
‖𝑈‖
2

Ω
+ (𝑦
𝑇

(𝑡) 𝐿 + 𝐺)𝑈, (33)
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Figure 3:The simulated and measured V-I characteristics curves of
the fuel cell.
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Figure 4: Current of the ultracapacitor.

where 𝑦(𝑡) is system output at instant 𝑡, and Ω, 𝐿, 𝐺 are
constant matrices calculated through the system model and
matrices 𝑄, 𝑅.

Consider the following:

𝑈 = (𝑢
𝑇

(𝑡) , 𝑢
𝑇

(𝑡 + 1) , . . . , 𝑢
𝑇

(𝑡 + 𝑁
𝑢
− 1)) . (34)

In the hybrid system, there are several limits to deal with.
Rapid variation on current will reduce lifetime of fuel cell, so
it is required to constrain the fluctuation of fuel cell current;
that is,

−Δ𝐼max ≤ 𝐼fc (𝑡 + 1) − 𝐼fc (𝑡) ≤ Δ𝐼max, (35)

where Δ𝐼max is the acceptable maximum value. Moreover,
the state of charge of the ultracapacitor, the current of the
ultracapacitor, and the voltage of the fuel cell should be
limited to some expected range:

SOCmin ≤ SOC ≤ SOCmax, (36)

−𝐼
𝑐,max ≤ 𝐼

𝑐
≤ 𝐼
𝑐,max, (37)

𝑉fc,min ≤ 𝑉fc ≤ 𝑉fc,max, (38)

where SOCmin and 𝑉fc,min are the lower limitations, SOCmax,
𝐼
𝑐,max, and 𝑉fc,max are the upper limits, respectively. These
limitations are determined by the characteristics of the
ultracapacitor and fuel cell.
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Figure 5:The simulated andmeasured voltage of the ultracapacitor.
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A prominent advantage of MPC is its ability to deal with
constraints. Deduced from equations (30), (32) and inequali-
ties (35)–(38), the control optimization is transformed to the
following constrained quadratic programming problem:

min
𝑈

𝐽 =
1

2
‖𝑈‖
2

Ω
+ (𝑦
𝑇

(𝑡) 𝐿 + 𝐺)𝑈,

s.t. 𝑈min ≤ 𝐸𝑈 ≤ 𝑈max,
(39)

where 𝑈min, 𝑈max ∈ 𝑅
𝑚, and 𝐸 ∈ 𝑅

𝑚×𝑁𝑢 are constant
matrices obtained from (30) and inequalities (35)–(38). We
can solve this optimal problem using the neural network
method investigated in [25].

4. Experiment and Simulation

The hybrid fuel cell system, as shown in Figure 1, is designed
to power a robot. The rated power is 500W. The DC bus
voltage is controlled around 24V.The PEM fuel cells have 40
cells and an active area of 22 cm2. The ultracapacitor is 200 F
and the rated voltage is 24V. The value of capacitance can be
realized by a bank of 8 ultracapacitors, each with capacitance
of 1600 F and a rated voltage of 3V, connected in series. The
upper and lower limits of SOCare 1 and 0.45, respectively.The
maximum stored energy is 16Wh, although only 12.76Wh
is available between the maximum and minimum of SOC.
This 12.76Wh corresponds to an average power at 500W for
92 seconds and that is sufficient to buffer the fuel cell from
acceleration transients.
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Figure 7: Simulation results of constrained and unconstrainedMPC: (a) current of fuel cell; (b) voltage of fuel cell; (c) SOC of ultracapacitor.
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Figure 8: Curves for validating of constraints: (a) change rate of fuel cell current; (b) voltage of fuel cell; (c) current of ultracapacitor; (d)
SOC of ultracapacitor.

4.1. Modeling Experiment and Simulation. When real input
and output data of the PEM fuel cell was sampled, the
operating parameters are shown in Table 1.

The collected data are equally divided into two groups.
The first group is used for modeling and the second group is
used for validating. The simulated and measured V-I charac-
teristics curves of the fuel cell are shown in Figure 3. Current
of the ultracapacitor changes as Figure 4, and the simulated

and measured voltage curves are shown in Figure 5. It is
shown that the RNN-ARMAX model closely matches the
practical fuel cell power system.

4.2. Control Simulation. Control performances of con-
strained and unconstrainedMPCs are studied and compared
to validate the proposed constrainedMPC.The constraints of
the constrained MPC are listed in Table 2.
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Figure 9: Power distribution of the hybrid system.

Table 1: Parameters used in the experiment and simulation.

Sym. Meaning Value
𝑇st Temperature of fuel cell 343K
𝑇atm Atmospheric temperature 295K
𝑃H2 Partial pressure of hydrogen 1.5 atm
𝑛 Number of cells in each stack 40
𝐴 Active area of fuel cell 22 cm2

𝐶 Capacitance of ultracapacitor 200 F
𝑉
𝑐,max Rated voltage of ultracapacitor 24V

Table 2: Constraints for the constrained MPC.

Sym. Meaning Lower limit Upper limit

Δ𝐼max
Rate of change of fuel

cell current −0.4A/s 0.4 A/s

SOC State of charge of the
ultracapacitor 0.45 1

𝐼
𝑐

Current of the
ultracapacitor −30A 30A

𝑉st Voltage of the fuel cell 27.5 V 40V

A typical load cycle that is used in simulation and the
power profile, as shown in Figure 6, is considered as the power
demand.

The simulation results for both the unconstrained and the
constrained MPC are shown in Figure 7. It is shown that,
there exist significant perturbations in current of fuel cell for
unconstrained MPC. This phenomenon may cause oxygen
starvation because the dynamic response of oxygen supply is
slower, while in the case of the constrainedMPC, current and
voltage are much smoother.

In the case of constrained MPC, the oscillation of SOC
of the ultracapacitor is much larger than that of the uncon-
strained MPC. The reason is that constrained MPC draws
muchmore energy from the ultracapacitor to supply the peak
load and so limits perturbations of the current of the fuel cell.

Constraint results are shown in Figure 8. It’s exciting that
the maximum rate of change of the fuel cell is 0.4 A/s, the
minimum voltage of the fuel cell is 27.5 V, the charge and
discharge current of the ultracapacitor are nomore than 30A,
and the SOC of the ultracapacitor is between 0.45 and 1.
It is shown that these variables change in the desired and

constrained ranges. These phenomena demonstrate that the
constraints on the fuel cell power system are valid.

The power split under the constrained MPC is shown in
Figure 9.We set theminimum voltage of the fuel cell as 27.5 V
and the correspondingmaximum power of fuel cell as 500W.
It is noticed that the fuel cell power changes in low speed and
is no more than 500W. The high frequency power demands
are squeezed from the ultracapacitor. Furthermore, SOC, 𝐼

𝑐

and other constrained variables satisfy their constraints.
Consequently, the output power of the fuel cell is well
controlled and it is helpful to extend the operating life of the
fuel cell.

5. Conclusions

RNN-ARMAXmodel was established and linear constrained
MPCwas developed and verified for a fuel cell power system.
The proposed approach, different from other approaches,
models the nonlinear fuel cell power system as linear time
varying system. Accordingly, linear constrained MPC can
be used to globally optimize power distribution and deal
with limitations. The design and implementation of the
controller are significantly simplified and the method can
protect fuel cell from substantial fluctuation of current by
trading off transient current demand from the fuel cell to the
ultracapacitor.
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