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Set-valued information system is an important formal framework for the development of decision support systems.We focus on the
decision rules acquisition for the inconsistent disjunctive set-valued ordered decision information system in this paper. In order to
derive optimal decision rules for an inconsistent disjunctive set-valued ordered decision information system, we define the concept
of reduct of an object. By constructing the dominance discernibility function for an object, we compute reducts of the object via
utilizing Boolean reasoning techniques, and then the corresponding optimal decision rules are induced. Finally, we discuss the
certain reduct of the inconsistent disjunctive set-valued ordered decision information system, which can be used to simplify all
certain decision rules as much as possible.

1. Introduction

Rough set theory, proposed by Pawlak [1–3], has been
regarded as a useful tool to conceptualize and analyze various
types of data. It is applied to many fields such as machine
learning, knowledge discovery, and pattern recognition.With
replacement of the equivalence relation by other relations
such as the tolerance relation [4–9] and the dominance
relation [10–13], Pawlak rough set model has been extended
to numerous generalized rough set models.

Pawlak rough set model is based on an assumption
that every object in the universe of discourse is associated
with some information, and objects characterized by the
same information are indiscernible. It is successfully used
in decision rules acquisition and attribute reduction for
nominal information systems. However, Pawlak rough set
model is not able to discover inconsistency for attributes in
preference-ordered domains. Ordered information systems
are firstly proposed and studied by Iwinski [14]. Yao and
Sai [15, 16] transformed an ordered information table into a
binary information table and then applied classical machine
learning and datamining algorithms to derive ordering rules.
Greco et al. [10–12] proposed the dominance-based rough set
approach (DRSA), which is mainly based on substitution of

the indiscernibility relation by a dominance relation, to deal
with such kind of inconsistency.

The DRSA proposed by Greco et al. [10–12] mainly
focuses on discussing sorting problem and extracting the
dominance decision rules for a complete ordered decision
information system (ODIS), in which all attribute values are
exactly known. Many researchers have investigated various
types of ODISs by the dominance-based rough set approach
and its extended models [17–29].

Set-valued information systems are generalizedmodels of
single-valued information systems. There are many ways to
give a semantic interpretation of the set-valued information
systems. Guan and Wang [5] summarized them in two
types: disjunctive and conjunctive systems. For set-valued
ordered information systems (OISs), Qian et al. [27] defined
two dominance relations in a conjunctive set-valued ODIS
and a disjunctive set-valued ODIS, respectively, and used
them to define lower and upper approximations. From
the lower and upper approximations, certain decision rules
and possible decision rules can be derived from these two
types of set-valued ODISs. Furthermore, Qian et al. [28]
introduced four types of dominance relations and discussed
criterion reductions of disjunctive set-valued ordered infor-
mation systems. However, for the reduction of the system,
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their discussions are restricted on set-valuedOISs and consis-
tent set-valued ODISs. Nevertheless, inconsistent set-valued
ODISs are common in practice, so, in this paper, we will
investigate the reduction of the inconsistent set-valuedODISs
based on the discussion of decision rules optimization. Our
discussion mainly focuses on disjunctive set-valued ODISs,
and this approach is also applicable to the conjunctive set-
valued ODISs.

The rest of this paper is organized as follows. In Section 2,
some notations and basic concepts for the ODIS and the
DRSA are introduced. In Section 3, dominance-based rough
set model in disjunctive set-valued ODISs is reviewed. In
Section 4, the optimization problem of decision rules in
inconsistent disjunctive set-valued ODIS is discussed. The
concept of reduct of an object is proposed. By construct-
ing the dominance discernibility function for an object,
reducts of an object are computed via utilizing Boolean
reasoning techniques, and then the corresponding optimal
decision rules are induced. In Section 5, the certain reduct
of the inconsistent disjunctive set-valued ODIS, which can
be used to simplify all certain decision rules as much as
possible, is also discussed. Finally, we conclude our work in
Section 6.

2. The Dominance-Based Rough Set Approach

2.1. The Ordered Decision Information System (ODIS). An
information system is represented by a quadruple 𝑆 = (𝑈,

AT, 𝑉, 𝑓), where𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
} is a finite nonempty set

of objects, called the universe of discourse; AT is a finite set of
attributes; 𝑉 = ⋃

𝑎∈AT 𝑉
𝑎
, where 𝑉

𝑎
is the domain of attribute

𝑎; 𝑓 : 𝑈 × AT → 𝑉 is an information function satisfying
𝑓(𝑥, 𝑎) ∈ 𝑉

𝑎
, ∀𝑥 ∈ 𝑈, ∀𝑎 ∈ AT. We denote 𝑓(𝑥, 𝑎) = 𝑎(𝑥) for

simplicity. In general, if attributes in an information system
are classified into condition attributes and decision attributes,
then 𝑆 = (𝑈,AT, 𝑉, 𝑓) is called a decision information system
(DIS) or called a decision table (DT). In this case, the set of
condition attributes is denoted by 𝐶 = {𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
}, and the

set of decision attributes is denoted by𝐷; that is, AT = 𝐶∪𝐷

with 𝐶 ∩ 𝐷 = Ø. Without loss of generality, we assume that
𝐷 = {𝑑} and𝑉

𝑑
= {1, 2, . . . , 𝑟}. The partition of𝑈 determined

by 𝑅
𝑑

= {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝑈 × 𝑈, 𝑑(𝑥) = 𝑑(𝑦)} is usually
denoted as 𝑈/𝑅

𝑑
= {𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑟
}, where 𝐷

𝑘
, 1 ≤ 𝑘 ≤ 𝑟, is

called a decision class.
Further, we denote 𝑑(𝑋) = {𝑑(𝑦) | 𝑦 ∈ 𝑋} for any𝑋 ⊆ 𝑈.

Then one can conclude that 𝑑(𝐷
𝑘
) = {𝑘}.

If the domain of a condition attribute is ordered according
to a decreasing or increasing preference, then the attribute is
called a criterion [10–13]. Next we will introduce the concept
of the ordered decision information system.

Definition 1 (see [10, 12]). For a DIS 𝑆 = (𝑈,AT, 𝑉, 𝑓), if
the condition attributes are criteria and the value of decision
attribute 𝑑 represents an overall preference of objects, that is,
for any 𝑠 and 𝑡with 𝑠 > 𝑡, the objects in𝐷

𝑠
are more preferred

than the objects in 𝐷
𝑡
, then one calls the information system

an ordered decision information system (ODIS) or ordered
decision table (ODT).

In an ODIS, the domain of a criterion 𝑎 ∈ 𝐶 is
completely preordered by an outranking relation ≻

𝑎
, where

𝑓(𝑥, 𝑎) ≻
𝑎
𝑓(𝑦, 𝑎) implies that 𝑥 is at least as good as 𝑦 with

respect to the criterion 𝑎. We denote such 𝑥 and 𝑦 as 𝑥≻
𝑎
𝑦

or 𝑦≺
𝑎
𝑥.

For 𝐵 ⊆ 𝐶, if 𝐵 = 𝐵
1

∪ 𝐵
2
and the domain of

every attribute in 𝐵
1
is ordered according to a descending

preference while the domain of the attribute in 𝐵
2
is ordered

according to an ascending preference, then the dominance
relation determined by 𝐵 can be defined as

𝑅
≻

𝐵
= {(𝑥, 𝑦) | 𝑥 ≻

𝑎
𝑦 ∀𝑎 ∈ 𝐵

1
, 𝑥 ≺
𝑏
𝑦 ∀𝑏 ∈ 𝐵

2
} ,

𝑅
≺

𝐵
= {(𝑥, 𝑦) | 𝑥 ≺

𝑎
𝑦 ∀𝑎 ∈ 𝐵

1
, 𝑥 ≻
𝑏
𝑦 ∀𝑏 ∈ 𝐵

2
} .

(1)

From mathematical point of view, the ascending and
descending order relations are dual, and so they can be
handled similarly. Therefore, without loss of generality, we
make an assumption for simplicity that values in the domain
of every condition attribute are only descendingly ordered.
With this assumption, we obtain

𝑅
≻

𝐵
= {(𝑥, 𝑦) | 𝑥 ≻

𝑎
𝑦, ∀𝑎 ∈ 𝐵} ,

𝑅
≺

𝐵
= {(𝑥, 𝑦) | 𝑥 ≺

𝑎
𝑦, ∀𝑎 ∈ 𝐵} .

(2)

Since (𝑥, 𝑦) ∈ 𝑅
≻

𝐵
is equivalent to (𝑦, 𝑥) ∈ 𝑅

≺

𝐵
, (𝑥, 𝑦) ∈ 𝑅

≻

𝐵

is also denoted as 𝑥≻
𝐵
𝑦 or 𝑦≺

𝐵
𝑥. From (2), we obtain that

𝑅
≻

𝐶
⊆ 𝑅
≻

𝐵
and 𝑅

≺

𝐶
⊆ 𝑅
≺

𝐵
for 𝐵 ⊆ 𝐶.

For 𝐵 ⊆ 𝐶, one can see that 𝑅≻
𝐵
is transitive, and it is also

reflexive under the assumption that 𝑥≻
𝑎
𝑥, ∀𝑥 ∈ 𝑈, and ∀𝑎 ∈

𝐶. Furthermore, for𝑥, 𝑦 ∈ 𝑈, we denote𝑥=
𝐵
𝑦 if 𝑏(𝑥) = 𝑏(𝑦),

∀𝑏 ∈ 𝐵, and 𝑥 ̸=
𝐵
𝑦 if ∃𝑏 ∈ 𝐵 such that 𝑏(𝑥) ̸= 𝑏(𝑦). Then,

(𝑥, 𝑦) ∈ 𝑅
≻

𝐵
and (𝑦, 𝑥) ∈ 𝑅

≻

𝐵
can imply 𝑥=

𝐵
𝑦. Therefore, 𝑅≻

𝐵

is antisymmetric. Hence, (𝑈, 𝑅
≻

𝐵
) is a partial ordered set [30]

and so is (𝑈, 𝑅
≺

𝐵
).

2.2. The Dominance-Based Rough Set Model. In an ODIS, for
𝑥, 𝑦 ∈ 𝑈, if (𝑥, 𝑦) ∈ 𝑅

≻

𝐵
, one says that 𝑥 dominates 𝑦 or 𝑦 is

dominated by 𝑥 with respect to 𝐵. Let us denote

[𝑥]
≻

𝐵
= {𝑦 | 𝑦 ∈ 𝑈, 𝑦 ≻

𝐵
𝑥} ,

[𝑥]
≺

𝐵
= {𝑦 | 𝑦 ∈ 𝑈, 𝑦 ≺

𝐵
𝑥} .

(3)

Then [𝑥]
≻

𝐵
is called a dominating set and [𝑥]

≺

𝐵
a dominated set

of 𝑥 with respect to 𝐵.
Further, we denote

𝑈/𝑅
≻

𝐵
= {[𝑥]

≻

𝐵
| 𝑥 ∈ 𝑈} , 𝑈/𝑅

≺

𝐵
= {[𝑥]

≺

𝐵
| 𝑥 ∈ 𝑈} . (4)

Then, both 𝑈/𝑅
≻

𝐵
and 𝑈/𝑅

≺

𝐵
are coverings of 𝑈.

In the DRSA [10, 12, 17], [𝑥]
≻

𝐵
and [𝑥]

≺

𝐵
(𝑥 ∈ 𝑈) are

regarded as basic knowledge granules and they are used to
define the lower and upper approximations as shown below.

Definition 2 (see [10, 12, 17]). In an ODIS 𝑆 = (𝑈, 𝐶∪𝑑, 𝑉, 𝑓),
for 𝑋 ⊆ 𝑈 and 𝐵 ⊆ 𝐶, let

𝑅
≻

𝐵
(𝑋) = {𝑥 | 𝑥 ∈ 𝑈, [𝑥]

≻

𝐵
⊆ 𝑋} ,

𝑅
≻

𝐵
(𝑋) = {𝑥 | 𝑥 ∈ 𝑈, [𝑥]

≺

𝐵
∩ 𝑋 ̸= Ø} .

(5)
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Then𝑅
≻

𝐵
(𝑋) is called lower approximation and𝑅

≻

𝐵
(𝑋) is called

upper approximation of 𝑋 with respect to 𝐵.

Analogously, one can define lower approximation 𝑅
≺

𝐵
(𝑋)

and upper approximation 𝑅
≺

𝐵
(𝑋), respectively, as

𝑅
≺

𝐵
(𝑋) = {𝑥 | 𝑥 ∈ 𝑈, [𝑥]

≺

𝐵
⊆ 𝑋} , (6)

𝑅
≺

𝐵
(𝑋) = {𝑥 | 𝑥 ∈ 𝑈, [𝑥]

≻

𝐵
∩ 𝑋 ̸= Ø} . (7)

In the DRSA, the set to be approximated is an upward
union or a downward union of decision classes; that is,𝐶𝐿

≻

𝑠
=

⋃
𝑘≥𝑠

𝐷
𝑘
or 𝐶𝐿

≺

𝑡
= ⋃
𝑘≤𝑡

𝐷
𝑘
with 𝑠, 𝑡 ∈ 𝑉

𝑑
, where 𝑥 ∈ 𝐶𝐿

≻

𝑠

implies that 𝑥 belongs to at least decision class 𝐷
𝑠
and 𝑥 ∈

𝐶𝐿
≺

𝑡
indicates that 𝑥 belongs to at most decision class 𝐷

𝑡
. By

the lower and upper approximations of 𝐶𝐿
≻

𝑠
and 𝐶𝐿

≺

𝑡
, Greco

et al. [12] proposed five types of dominance decision rules.
For example, from 𝑥 ∈ 𝑅

≻

𝐵
(𝐶𝐿
≻

𝑠
), one can get an “at least”

decision rule with the form “if 𝑧 ≻
𝐵
𝑥, then 𝑑(𝑧) ≥ 𝑑(𝑥)”;

from 𝑅
≺

𝐵
(𝐶𝐿
≺

𝑠
), one can get an “at most” decision rule with

the form “if 𝑧 ≺
𝐵
𝑥, then 𝑑(𝑧) ≤ 𝑑(𝑥).”

3. Dominance-Based Rough Set Model in the
Disjunctive Set-Valued ODIS

3.1. Disjunctive Set-Valued Ordered Decision Information Sys-
tems. A set-valued ordered decision table (ODT) is a set-
valued decision information system 𝑆 = {𝑈, 𝐶 ∪ {𝑑}, 𝑉, 𝑓},
where 𝑈 is a nonempty finite set of objects; 𝐶 is a finite set of
condition attributes;𝑑 is a decision attribute with𝐶∩{𝑑} = Ø;
𝑉 = 𝑉

𝐶
∪𝑉
𝑑
, where𝑉

𝐶
is the set of conditional attribute values

and𝑉
𝑑
is the set of decisional attribute values; 𝑓 is a mapping

from𝑈×𝐶∪{𝑑} to𝑉 such that𝑓 : 𝑈×𝐶 → 2
𝑉𝐶 is a set-valued

mapping and 𝑓 : 𝑈 × {𝑑} → 𝑉
𝑑
is a single-valued mapping,

where 2
𝑉𝐶 is the power set of 𝑉

𝐶
.

Table 1 shows a set-valued ordered decision table.
For any 𝑥 ∈ 𝑈 and 𝑐 ∈ 𝐶, 𝑓(𝑥, 𝑐) is interpreted

disjunctively. For example, if 𝑐 is the attribute “speaking a lan-
guage” and 𝑓(𝑥, 𝑐) = {English, French,German}, then 𝑓(𝑥, 𝑐)

can be interpreted as follows: 𝑥 speaks English, French, or
German and 𝑥 can speak only one of them [5]. Incomplete
information systems with some unknown attribute values or
partial known attribute values [7–9] are such type of set-
valued information system. With such consideration, we call
𝑆 = {𝑈, 𝐶 ∪ {𝑑}, 𝑉, 𝑓} a disjunctive set-valued ODIS.

Example 3. A disjunctive set-valued ODIS is presented in
Table 1, where 𝑈 = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
, 𝑥
9
, 𝑥
10
}, 𝐶 =

{𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
}, 𝑉
𝐶

= {0, 1, 2}, and 𝑉
𝑑
= {1, 2, 3}.

Qian et al. [28] gave four possible dominance relations in
disjunctive set-valued ODISs as follows.

Definition 4 (see [28]). Let 𝑆 = (𝑈, 𝐶 ∪ {𝑑}, 𝑉, 𝑓) be a
disjunctive set-valued ODIS, and 𝐵 ⊆ 𝐶. The following four
possible dominance relations between objects are considered.

Table 1: A disjunctive set-valued ODIS 𝑆 = (𝑈, 𝐶 ∪ {𝑑}, 𝑉, 𝑓).

𝑈 𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑑

𝑥
1

{0, 1} {1, 2} {2} {1, 2} 1
𝑥
2

{0} {0, 1} {1} {1} 2
𝑥
3

{2} {2} {0, 1} {1} 2
𝑥
4

{0, 1} {0} {0} {1} 1
𝑥
5

{2} {1} {0, 1} {0, 1} 2
𝑥
6

{1, 2} {0} {0} {0, 1} 2
𝑥
7

{1} {1, 2} {1, 2} {2} 3
𝑥
8

{1, 2} {2} {1} {1, 2} 3
𝑥
9

{0, 1} {0} {1, 2} {0} 2
𝑥
10

{2} {1, 2} {1} {1, 2} 3

(I) Up dominance relation:

𝑅
𝑈≥

𝐵

= {(𝑦, 𝑥) ∈ 𝑈 × 𝑈 | ∀𝑎 ∈ 𝐵, max𝑓 (𝑦, 𝑎) ≥ max𝑓 (𝑥, 𝑎)} .

(8)

If (𝑦, 𝑥) ∈ 𝑅
𝑈≥

𝐵
, we say that 𝑦 is at least up-good as 𝑥 with

respect to 𝐵.

(II) Down dominance relation:

𝑅
𝐷≥

𝐵

= {(𝑦, 𝑥) ∈ 𝑈 × 𝑈 | ∀𝑎 ∈ 𝐵, min𝑓 (𝑦, 𝑎) ≥ min𝑓 (𝑥, 𝑎)} .

(9)

If (𝑦, 𝑥) ∈ 𝑅
𝐷≥

𝐵
, we say that 𝑦 is at least down-good as 𝑥 with

respect to 𝐵.

(III) Up-down dominance relation:

𝑅
𝑈𝐷≥

𝐵

= {(𝑦, 𝑥) ∈ 𝑈 × 𝑈 | ∀𝑎 ∈ 𝐵, max𝑓 (𝑦, 𝑎) ≥ min𝑓 (𝑥, 𝑎)} .

(10)

If (𝑦, 𝑥) ∈ 𝑅
𝑈𝐷≥

𝐵
, we say that 𝑦 is at least possible-good as 𝑥

with respect to 𝐵.

(IV) Down-up dominance relation:

𝑅
𝐷𝑈≥

𝐵

= {(𝑦, 𝑥) ∈ 𝑈 × 𝑈 | ∀𝑎 ∈ 𝐵, min𝑓 (𝑦, 𝑎) ≥ max𝑓 (𝑥, 𝑎)} .

(11)

If (𝑦, 𝑥) ∈ 𝑅
𝐷𝑈≥

𝐵
, we say that 𝑦 is at least definite-good as 𝑥

with respect to 𝐵.

Let 𝑆 = (𝑈, 𝐶∪{𝑑}, 𝑉, 𝑓) be a disjunctive set-valuedODIS,
and 𝑅

≥

{𝑑}
= {(𝑥, 𝑦) | 𝑑(𝑥) ≥ 𝑑(𝑦)}. If 𝑅

Δ≥

𝐶
⊆ 𝑅
≥

{𝑑}
, then 𝑆

is called Δ-consistent; otherwise it is called Δ-inconsistent,
where Δ stands for 𝑈, 𝐷, 𝑈𝐷, or 𝐷𝑈, respectively.
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For example, Table 1 is a𝑈-inconsistent disjunctive set-valued
ordered decision information system, because 𝑅

𝑈≥

𝐶
⊆ 𝑅
≥

{𝑑}

does not hold.
Furthermore, Qian et al. [28] also gave four definitions

of dominating set and dominated set of the four possible
dominance relations between objects in disjunctive set-
valued ODIS, respectively.

Let [𝑥]Δ≥
𝐴

= {𝑦 ∈ 𝑈 | (𝑦, 𝑥) ∈ 𝑅
Δ≥

𝐴
} and [𝑥]

Δ≤

𝐴
= {𝑦 ∈ 𝑈 |

(𝑥, 𝑦) ∈ 𝑅
Δ≥

𝐴
}, where Δ equals 𝑈, 𝐷, 𝑈𝐷, or 𝐷𝑈, respectively.

Then, [𝑥]Δ≥
𝐴

consists of objects that Δ-dominate 𝑥 and [𝑥]
Δ≤

𝐴

consists of objects Δ-dominated by 𝑥.

Example 5. Compute the dominating sets induced by up
dominance relation in Table 1. We have 𝑈/𝑅

𝑈≥

𝐶
= {[𝑥

1
]
𝑈≥

𝐶
,

[𝑥
2
]
𝑈≥

𝐶
, . . . , [𝑥

10
]
𝑈≥

𝐶
}, where

[𝑥
1
]
𝑈≥

𝐶
= {𝑥
1
, 𝑥
7
} ,

[𝑥
2
]
𝑈≥

𝐶
= {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
5
, 𝑥
7
, 𝑥
8
, 𝑥
10
} ,

[𝑥
3
]
𝑈≥

𝐶
= {𝑥
3
, 𝑥
8
, 𝑥
10
} ,

[𝑥
4
]
𝑈≥

𝐶
= {𝑥
1
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
, 𝑥
10
} ,

[𝑥
5
]
𝑈≥

𝐶
= {𝑥
3
, 𝑥
5
, 𝑥
8
, 𝑥
10
} ,

[𝑥
6
]
𝑈≥

𝐶
= {𝑥
3
, 𝑥
5
, 𝑥
6
, 𝑥
8
, 𝑥
10
} ,

[𝑥
7
]
𝑈≥

𝐶
= {𝑥
1
, 𝑥
7
} ,

[𝑥
8
]
𝑈≥

𝐶
= {𝑥
8
, 𝑥
10
} ,

[𝑥
9
]
𝑈≥

𝐶
= {𝑥
1
, 𝑥
7
, 𝑥
9
} ,

[𝑥
10
]
𝑈≥

𝐶
= {𝑥
8
, 𝑥
10
} .

(12)

3.2. Lower and Upper Approximations in the Disjunctive Set-
Valued ODIS. The decision attribute 𝑑makes a partition of𝑈
into a finite number of classes. Let 𝐷 = {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑟
} be a

set of these classes which are ordered; that is, for any 𝑖, 𝑗 ≤ 𝑟,
if 𝑖 ≥ 𝑗, then the objects in 𝐷

𝑖
are preferred to the objects in

𝐷
𝑗
.
The sets to be approximated are an upward union and a

downward union of classes, which are denoted by ⋃
𝑘≥𝑠

𝐷
𝑘

(1 ≤ 𝑠 ≤ 𝑟) and ⋃
𝑘≤𝑡

𝐷
𝑘
(1 ≤ 𝑡 ≤ 𝑟), respectively. The

statement 𝑥 ∈ ⋃
𝑘≥𝑠

𝐷
𝑘
means that “𝑥 belongs to at least class

𝐷
𝑠
,” whereas 𝑥 ∈ ⋃

𝑘≤𝑡
𝐷
𝑘
means that “𝑥 belongs to at most

class 𝐷
𝑡
.”

Analogous to the idea of decision approximation [12, 25],
Qian et al. [28] also gave the definitions of the lower and
upper approximations of ⋃

𝑘≥𝑠
𝐷
𝑘
(1 ≤ 𝑠 ≤ 𝑟) with respect to

the dominance relation 𝑅
Δ≥

𝐵
(Δ stands for 𝑈, 𝐷, 𝑈𝐷, or 𝐷𝑈,

resp.) in a disjunctive set-valued ODIS.

Definition 6 (see [28]). Let 𝑆 = (𝑈, 𝐶∪{𝑑}, 𝑉, 𝑓) be a disjunc-
tive set-valued ODIS, 𝐵 ⊆ 𝐶, and 𝐷 = {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑟
} is

the set of decision classes induced by 𝑑; the lower and upper

approximations of ⋃
𝑘≥𝑠

𝐷
𝑘
(1 ≤ 𝑠 ≤ 𝑟) with respect to the

dominance relation 𝑅
Δ≥

𝐵
are defined as

𝑅
Δ≥

𝐵
(⋃

𝑘≥𝑠

𝐷
𝑘
) = {𝑥 ∈ 𝑈 | [𝑥]

Δ≥

𝐵
⊆ ⋃

𝑘≥𝑠

𝐷
𝑘
} , (13)

𝑅
Δ≥

𝐵
(⋃

𝑘≥𝑠

𝐷
𝑘
) = ⋃

𝑥∈⋃
𝑘≥𝑠
𝐷𝑘

[𝑥]
Δ≥

𝐵
. (14)

The 𝐵-boundaries of ⋃
𝑘≥𝑠

𝐷
𝑘
(1 ≤ 𝑠 ≤ 𝑟) can be defined as

𝐵𝑛
𝐵
(⋃

𝑘≥𝑠

𝐷
𝑘
) = 𝑅

Δ≥

𝐵
(⋃

𝑘≥𝑠

𝐷
𝑘
) − 𝑅

Δ≥

𝐵
(⋃

𝑘≥𝑠

𝐷
𝑘
) . (15)

Similarly, the lower and upper approximations and
boundaries of ⋃

𝑘≤𝑡
𝐷
𝑘
(1 ≤ 𝑡 ≤ 𝑟) with respect to the

corresponding dominance relation in a disjunctive set-valued
ODIS can also be defined.

Without loss of generality, next we will focus on the
up dominance relation 𝑅

𝑈≥

𝐵
in inconsistent disjunctive set-

valued ODIS.

3.3. Decision Rules Derived from Inconsistent Disjunctive Set-
Valued ODIS. It is noteworthy that, in the DRSA for inducing
“at least” decision rules or “at most” decision rules, we need
to compute the lower and upper approximations. Similarly,
from the lower approximation of ⋃

𝑘≥𝑠
𝐷
𝑘
(or ⋃

𝑘≤𝑡
𝐷
𝑘
), we

can induce the “at least” (or “at most”) decision rules from
inconsistent disjunctive set-valued ODISs. In detail, we can
derive the certain “at least” decisions from the lower approx-
imation of ⋃

𝑘≥𝑠
𝐷
𝑘
and the possible “at least” decisions from

the boundary of ⋃
𝑘≥𝑠

𝐷
𝑘
as shown below.

(1) For 𝐵 ⊆ 𝐶, from 𝑥
𝑖
∈ 𝑅
𝑈≥

𝐵
(⋃
𝑘≥𝑠

𝐷
𝑘
), we can obtain a

certain 𝐷
𝑈≥

𝐵
-decision rule:

if 𝑥 ∈ [𝑥
𝑖
]
𝑈≥

𝐵
, then 𝑥 ∈ ⋃

𝑘≥𝑠
𝐷
𝑘
certainly holds.

It can also be equivalently stated as

if 𝑥≻
𝐵
𝑥
𝑖
, then 𝑑(𝑥) ≥ 𝑠 certainly holds, or

if max𝑓(𝑥, 𝑏
1
) ≥ max 𝑞

𝑖1
and max𝑓(𝑥, 𝑏

2
) ≥ max 𝑞

𝑖2

and . . . and max𝑓(𝑥, 𝑏
𝑙
) ≥ max 𝑞

𝑖𝑙
, then 𝑑(𝑥) ≥ 𝑠

certainly holds, where 𝐵 = {𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑙
}, 𝑓(𝑥

𝑖
, 𝐵) =

(𝑞
𝑖1
, 𝑞
𝑖2
, . . . , 𝑞

𝑖𝑙
).

Particularly, from 𝑥
𝑖

∈ 𝑅
𝑈≥

𝐵
(𝐷
𝑘
) with 𝑘 ∈ 𝑉

𝑑
, we can

obtain a definite decision rule:

if 𝑥≻
𝐵
𝑥
𝑖
, then 𝑑(𝑥) = 𝑘 certainly holds.

(2) For 𝐵 ⊆ 𝐶, from 𝑥
𝑖
∈ 𝐵𝑛
𝐵
(⋃
𝑘≥𝑠

𝐷
𝑘
), we can obtain a

possible 𝐷
𝑈≥

𝐵
-decision rule:

if 𝑥 ∈ [𝑥
𝑖
]
𝑈≥

𝐵
, then 𝑥 ∈ ⋃

𝑘≥𝑠
𝐷
𝑘
possibly holds, or

equivalently
if 𝑥≻
𝐵
𝑥
𝑖
, then 𝑑(𝑥) ≥ 𝑠 possibly holds, or equiva-

lently
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if max𝑓(𝑥, 𝑏
1
) ≥ max 𝑞

𝑖1
and max𝑓(𝑥, 𝑏

2
) ≥ max 𝑞

𝑖2

and . . . and max𝑓(𝑥, 𝑏
𝑙
) ≥ 𝑞
𝑖𝑙
, then 𝑑(𝑥) ≥ 𝑠 possibly

holds.

Analogously, we can derive the certain “at most” decision
rules from the lower approximation of ⋃

𝑘≤𝑡
𝐷
𝑘
and the

possible “at most” decision rules from the boundary of
⋃
𝑘≤𝑡

𝐷
𝑘
in inconsistent disjunctive set-valued ODISs.

In order to conveniently discuss the optimization prob-
lem for the decision rules in inconsistent disjunctive set-
valued ODIS, we will give another definition for the decision
rules in the following.

Definition 7. In an inconsistent disjunctive set-valued ODIS
𝑆 = (𝑆, 𝐶 ∪ {𝑑}, 𝑉, 𝑓), for 𝐵 ⊆ 𝐶 and 𝑥

𝑖
∈ 𝑅
𝑈≥

𝐵
(⋃
𝑘≥𝑠

𝐷
𝑘
) with

𝑠, 𝑡 ∈ 𝑉
𝑑
, 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑟, let

𝑡
𝑈≥

𝐵
([𝑥]
𝑈≥

𝐵
) = ⋀

𝑏∈𝐵

(max 𝑏, ≥,max 𝑏 (𝑥)) , (16)

where ⋀ is the conjunctive operator. We call the Boolean
expression 𝑡

𝑈≥

𝐵
([𝑥]
𝑈≥

𝐵
) a condition attribute descriptor or

simply 𝐵
𝑈≥-descriptor determined by [𝑥]

𝑈≥

𝐵
. Then, the 𝐷

𝑈≥

𝐵
-

decision rule generated by 𝑥
𝑖

∈ 𝑅
𝑈≥

𝐵
(⋃
𝑘≥𝑠

𝐷
𝑘
) can be pre-

sented as in the following form:⋀
𝑏∈𝐵

(max 𝑏, ≥,max 𝑏(𝑥)) →

𝑑 ≥ 𝑠, where max 𝑏(𝑥) is the maximum element in 𝑏(𝑥).
For example, in the inconsistent disjunctive set-vlaued

ODIS presented in Table 1, 𝐶
𝑈≥-descriptor determined by

[𝑥
3
]
𝑈≥

𝐶
is

𝑡
𝑈≥

𝐵
([𝑥
3
]
𝑈≥

𝐵
) = ⋀

𝑏∈𝐶

(max 𝑏, ≥,max 𝑏 (𝑥
3
))

= (max 𝑐
1
, ≥, 2) ∧ (max 𝑐

2
, ≥, 2)

∧ (max 𝑐
3
, ≥, 1) ∧ (max 𝑐

4
, ≥, 1) .

(17)

And the decision rule generated by 𝑥
3

∈ 𝑅
𝑈≥

𝐶
(⋃
𝑘≥2

𝐷
𝑘
)

can be represented as

(max 𝑐
1
, ≥, 2) ∧ (max 𝑐

2
, ≥, 2) ∧ (max 𝑐

3
, ≥, 1)

∧ (max 𝑐
4
, ≥, 1) 󳨀→ 𝑑 ≥ 2.

(18)

Without loss of generality, next we will focus on drawing
the optimal “at least” decision rules in inconsistent disjunctive
set-valued decision information system.

4. The Optimization of the
Decision Rules in an Inconsistent
Disjunctive Set-Valued ODIS

4.1. The Reducts of an Object and the Optimal Decision Rules.
In a disjunctive set-valued ODIS 𝑆 = (𝑈, 𝐶 ∪ {𝑑}, 𝑉, 𝑓),
to optimize the decision rule ⋀

𝑏∈𝐶
(max 𝑏, ≥,max 𝑏(𝑥)) →

𝑑 ≥ 𝑠 generated by 𝑥 ∈ 𝑅
𝑈≥

𝐶
(⋃
𝑘≥𝑠

𝐷
𝑘
), one should simplify

as much as possible its condition part by deleting some
conjunctive terms and meanwhile keep its decision part
unchanged.

After deleting some terms from ⋀
𝑏∈𝐶

(max 𝑏, ≥,

max 𝑏(𝑥)), we could obtain a descriptor ⋀
𝑏∈𝐵

(max 𝑏, ≥,

max 𝑏(𝑥)) with 𝐵 ⊆ 𝐶. Generally speaking, [𝑥]𝑈≥
𝐵

⊇ [𝑥]
𝑈≥

𝐶

holds for any 𝐵 ⊆ 𝐶. If 𝐵 satisfies [𝑥]
𝑈≥

𝐵
⊃ [𝑥]

𝑈≥

𝐶
, then

𝑑([𝑥]
𝑈≥

𝐵
) ⊃ 𝑑([𝑥]

𝑈≥

𝐶
) may hold, and this may lead to

𝑥 ∉ 𝑅
𝑈≥

𝐵
(⋃
𝑘≥𝑠

𝐷
𝑘
); that is, the decision value of at

least one object 𝑥 ∈ [𝑥
𝑖
]
𝑈≥

𝐵
may not satisfy 𝑑(𝑥) ≥ 𝑠.

Therefore, to optimize the decision rule generated by
𝑥 ∈ 𝑅

𝑈≥

𝐵
(⋃
𝑘≥𝑠

𝐷
𝑘
), one should delete some conjunctive

terms from ⋀
𝑏∈𝐶

(max 𝑏, ≥,max 𝑏(𝑥)) as much as possible
with the constraint condition that the set consisting of
condition attributes in remainder ⋀

𝑏∈𝐶
(max 𝑏, ≥,max 𝑏(𝑥))

should satisfy min{𝑑([𝑥]𝑈≥
𝐵

)} ≥ 𝑠.
Based on the above discussions, we can see that the

optimization of the decision rule generated by 𝑥 ∈

𝑅
𝑈≥

𝐶
(⋃
𝑘≥𝑠

𝐷
𝑘
) depends on seeking 𝐵, 𝐵 ⊆ 𝐶, which satisfies

min{𝑑([𝑥]𝑈≥
𝐵

)} ≥ 𝑠. So, we give the following definition for
reduct of an object.

Definition 8. Let 𝑥 ∈ 𝑅
𝑈≥

𝐶
(⋃
𝑘≥𝑠

𝐷
𝑘
) and 𝐵 ⊆ 𝐶. If 𝐵

satisfies min{𝑑([𝑥]𝑈≥
𝐵

)} ≥ 𝑠, then one calls 𝐵 a dominance
consistent set of 𝑥; if 𝐵 is a minimal subset of 𝐶 satisfying
min{𝑑([𝑥]𝑈≥

𝐵
)} ≥ 𝑠, then one calls 𝐵 a reduct of 𝑥. The set of

all reducts of 𝑥 is denoted as red(𝑥).

Definition 9. Let 𝑥 ∈ 𝑅
𝑈≥

𝐶
(⋃
𝑘≥𝑠

𝐷
𝑘
). If 𝐵 is a domi-

nance consistent set of 𝑥, then one calls ⋀
𝑏∈𝐵

(max 𝑏, ≥,

max 𝑏(𝑥)) → 𝑑 ≥ 𝑠 a simplified decision rule of
⋀
𝑏∈𝐶

(max 𝑏, ≥,max 𝑏(𝑥)) → 𝑑 ≥ 𝑠. If 𝐵 is a reduct of 𝑥,
then one calls⋀

𝑏∈𝐵
(max 𝑏, ≥,max 𝑏(𝑥)) → 𝑑 ≥ 𝑠 an optimal

decision rule of ⋀
𝑏∈𝐶

(max 𝑏, ≥,max 𝑏(𝑥)) → 𝑑 ≥ 𝑠.

It is obvious that, with all reducts of an object, one can
induce all the optimal decision rules associated with this
object. Next we will discuss how to compute the reducts of
an object.

4.2. The Computation of the Reducts of an Object. For 𝑥, 𝑦 ∈

𝑈, let 𝛼𝑈≻(𝑥, 𝑦) = {𝑏 | 𝑏 ∈ 𝐶, max 𝑏(𝑥) < max 𝑏(𝑦)}.
Obviously, 𝛼𝑈≻(𝑥, 𝑦) is a set of condition attributes which

discern𝑥 from the dominating set of𝑦or equivalently discern
𝑦 from the dominated set of 𝑥.

One can observe that 𝑥 ∈ [𝑦]
𝑈≥

𝐶
⇔ 𝑦 ∈ [𝑥]

𝑈≤

𝐶
⇔

𝛼
𝑈≻

(𝑥, 𝑦) = Ø or equivalently 𝑥 ∉ [𝑦]
𝑈≥

𝐶
⇔ 𝑦 ∉ [𝑥]

𝑈≤

𝐶
⇔

𝛼
𝑈≻

(𝑥, 𝑦) ̸= Ø.
In order to compute the reducts of an object, we will

construct the discernibility function for an object. For this
purpose, we give the followingTheorem.

Theorem 10. For 𝑥 ∈ 𝑅
𝐶
(⋃
𝑘≥𝑠

𝐷
𝑘
) and 𝐵 ⊆ 𝐶, one has

min{𝑑([𝑥]𝑈≥
𝐵

)} ≥ 𝑠 ⇔ 𝛼
𝑈≻

(𝑦, 𝑥) ∩ 𝐵 ̸= Ø for any 𝑦 with
𝑑(𝑦) < 𝑠.

Proof. “⇒” Assume that there exists 𝑦 ∈ 𝑈 such that 𝑑(𝑦) <

𝑠, and it satisfies 𝛼
𝑈≻

(𝑦, 𝑥) ∩ 𝐵 ̸= Ø. Then, ∀𝑏 ∈ 𝐵,
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𝑏 ∉ 𝛼
𝑈≻

(𝑦, 𝑥). From the definition of 𝛼
𝑈≻

(𝑦, 𝑥), we have
max 𝑏(𝑦) ≥ max 𝑏(𝑥), ∀𝑏 ∈ 𝐵; that is, 𝑦 ∈ [𝑥]

𝑈≥

𝐵
. So,

by the assumption that min{𝑑([𝑥]𝑈≥
𝐵

)} ≥ 𝑠, we can derive
𝑑(𝑦) ≥ 𝑠, which is contradictive to 𝑑(𝑦) < 𝑠. This indicates
that 𝛼𝑈≻(𝑦, 𝑥) ∩ 𝐵 ̸= Ø must be satisfied by any 𝑦 such that
𝑑(𝑦) < 𝑠.

“⇐” Assume that min{𝑑([𝑥]𝑈≥
𝐵

)} ≥ 𝑠 does not hold, and
then ∃𝑦 ∈ [𝑥]

𝑈≥

𝐵
such that 𝑑(𝑦) < 𝑠. From the condition

assumption, we can derive that 𝛼
𝑈≻

(𝑦, 𝑥) ∩ 𝐵 ̸= Ø. Hence,
there exists at least one attribute 𝑏 ∈ 𝐵 satisfying 𝑏 ∈

𝛼
𝑈≻

(𝑦, 𝑥); equivalently 𝑦 ∉ [𝑥]
𝑈≥

𝐵
. This is contradictive to

𝑦 ∈ [𝑥]
𝑈≥

𝐵
.

This completes the proof.

Based on Theorem 10, we can construct the dominance
discernibility function defined below, which can help us to
compute the reducts of an object.

Definition 11. For 𝑥 ∈ 𝑅
𝑈≥

𝐶
(⋃
𝑠≤𝑘

𝐷
𝑘
), let

Δ
𝑈≥

(𝑥) = ⋀

𝑑(𝑦)<𝑠

(⋁𝛼
𝑈≻

(𝑦, 𝑥)) , (19)

where ⋀ is the conjunctive operator, ⋁ is the disjunctive
operator, and ⋁𝛼

𝑈≻
(𝑥, 𝑦) is the disjunction of all members

of 𝛼
𝑈≻

(𝑥, 𝑦). One calls Δ
𝑈≥

(𝑥) a dominance discernibility
function of 𝑥.

Based on Definition 11 andTheorem 10, we can obtain the
following by the Boolean reasoning techniques [3, 17, 31].

Proposition 12. For 𝑥 ∈ 𝑅
𝑈≥

𝐶
(⋃
𝑘≥𝑠

𝐷
𝑘
) and 𝐵 ⊆ 𝐶, one has

that𝐵 is a reduct of [𝑥]𝑈≥
𝐶

if and only if⋀𝐵 is a prime implicant
of Δ𝑈≥(𝑥), where ⋀𝐵 = ⋀

𝑏∈𝐵
𝑏.

Proposition 12 gives a computational method for the
reducts of an object using the dominance discernibility
function. Next we will give an illustrative example.

Example 13. Continuation of Example 3: we will compute all
reducts of 𝑥

3
∈ 𝑅
𝑈≥

𝐶
(⋃
𝑘≥2

𝐷
𝑘
) and 𝑥

8
∈ 𝑅
𝑈≥

𝐶
(⋃
𝑘≥3

𝐷
𝑘
) and

obtain those corresponding optimal decision rules.
From [𝑥

3
]
𝑈≥

𝐶
= {𝑥
3
, 𝑥
8
, 𝑥
10
} and {𝑦 | 𝑑(𝑦) < 2} = {𝑥

1
, 𝑥
4
},

we have

Δ
𝑈≥

(𝑥
3
) = (⋁𝛼

𝑈≻
(𝑥
1
, 𝑥
3
)) ∧ (⋁𝛼

𝑈≻
(𝑥
4
, 𝑥
3
))

= 𝑐
1
∧ (𝑐
1
∨ 𝑐
2
∨ 𝑐
3
) = 𝑐
1
.

(20)

From Proposition 12, {𝑐
1
} is a unique reduct of the object

𝑥
3
, and it will generate the optimal decision rule of decision

rule (18) induced by 𝑥
3
as follows:

(max 𝑐
1
, ≥, 2) 󳨀→ 𝑑 ≥ 2. (21)

Taking 𝑥
8
∈ 𝑅
𝑈≥

𝐶
(⋃
𝑘≥3

𝐷
𝑘
) as another example, we can derive

the following decision rule:

(max 𝑐
1
, ≥, 2) ∧ (max 𝑐

2
, ≥, 2) ∧ (max 𝑐

3
, ≥, 1)

∧ (max 𝑐
4
, ≥, 2) 󳨀→ 𝑑 ≥ 3.

(22)

From [𝑥
8
]
𝑈≥

𝐶
= {𝑥
8
, 𝑥
10
} and {𝑦 | 𝑑(𝑦) < 3} = {𝑥

1
, 𝑥
2
, 𝑥
3
,

𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
9
}, we have

Δ
𝑈≥

(𝑥
8
) = (⋁𝛼

𝑈≻
(𝑥
1
, 𝑥
8
)) ∧ (⋁𝛼

𝑈≻
(𝑥
2
, 𝑥
8
))

∧ (⋁𝛼
𝑈≻

(𝑥
3
, 𝑥
8
)) ∧ (⋁𝛼

𝑈≻
(𝑥
4
, 𝑥
8
))

∧ (⋁𝛼
𝑈≻

(𝑥
5
, 𝑥
8
)) ∧ (⋁𝛼

𝑈≻
(𝑥
6
, 𝑥
8
))

∧ (⋁𝛼
𝑈≻

(𝑥
9
, 𝑥
8
))

= 𝑐
1
∧ (𝑐
1
∨ 𝑐
2
∨ 𝑐
4
) ∧ 𝑐
4
∧ (𝑐
1
∨ 𝑐
2
∨ 𝑐
3
∨ 𝑐
4
)

∧ (𝑐
2
∨ 𝑐
4
) ∧ (𝑐
2
∨ 𝑐
3
∨ 𝑐
4
) ∧ (𝑐
1
∨ 𝑐
2
∨ 𝑐
4
)

= 𝑐
1
∧ 𝑐
4
.

(23)

Then one can see that 𝑥
8
has one reduct {𝑐

1
, 𝑐
4
}, which

generates the optimal rule of rule (22) as follows:

(max 𝑐
1
, ≥, 2) ∧ (max 𝑐

2
, ≥, 2) 󳨀→ 𝑑 ≥ 3. (24)

In the same way, we can compute the dominance dis-
cernibility functions of all other objects and induce their
corresponding optimal decision rules.

5. The Certain Reduct of an Inconsistent
Disjunctive Set-Valued ODIS

Based on the above discussion of reduction of the objects,
in this section, we will discuss the reduct of the inconsistent
disjunctive set-valued ODIS.

Definition 14. In an inconsistent disjunctive set-valued ODIS
𝑆 = (𝑈, 𝐶 ∪ {𝑑}, 𝑉, 𝑓), 𝑈/𝑅{𝑑} = {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑟
}. If

𝐵 is a minimal subset of 𝐶 satisfying 𝑅
𝑈≥

𝐵
(⋃
𝑘≥𝑠

𝐷
𝑘
) =

𝑅
𝑈≥

𝐶
(⋃
𝑘≥𝑠

𝐷
𝑘
), 1 ≤ 𝑠 ≤ 𝑟, one calls 𝐵 a certain reduct of the

inconsistent disjunctive set-valued ODIS. The intersection of
all certain reducts is called certain core of the information
system.

By Definitions 8, 9, and 14, it can be seen that a certain
reduct of the inconsistent disjunctive set-valued ODIS is a
minimal subset of condition attributes which can be used to
simplify all certain decision rules as much as possible.

By Definitions 11 and 14, we can construct the dominance
discernibility function of certain reduct of the inconsistent
disjunctive set-valued ODIS as follows.

Definition 15. Let

Δ
𝑈≥

= ⋀

1≤𝑠≤𝑟

⋀

𝑥∈𝑅
𝑈≥

𝐶
(⋃
𝑘≥𝑠
𝐷𝑘)

⋀

𝑑(𝑦)<𝑠

⋁(𝛼
𝑈≻

(𝑦, 𝑥)) , (25)
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and one calls Δ
𝑈≥ dominance discernibility function of cer-

tain reduct in the inconsistent disjunctive set-valued ODIS.

Based on Definitions 11, 14, and 15 and Theorem 10, we
obtain the folowing by the Boolean reasoning techniques.

Proposition 16. 𝐵 is a certain reduct of the inconsistent
disjunctive set-valued ODIS if and only if ⋀𝐵 is a prime
implicant of Δ𝑈≥, where ⋀𝐵 = ⋀

𝑏∈𝐵
𝑏.

Proposition 16 gives a computational method for the
certain reducts of the disjunctive set-valued ODIS. And we
can get all corresponding simplified certain decision rules.

Example 17. Continuation of Example 3: by Definition 6, we
have

𝑅
𝑈≥

𝐶
(⋃

𝑘≥1

𝐷
𝑘
) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
, 𝑥
9
, 𝑥
10
} ;

𝑅
𝑈≥

𝐶
(⋃

𝑘≥2

𝐷
𝑘
) = {𝑥

3
, 𝑥
5
, 𝑥
6
, 𝑥
8
, 𝑥
10
} ;

𝑅
𝑈≥

𝐶
(⋃

𝑘≥3

𝐷
𝑘
) = {𝑥

8
, 𝑥
10
} ,

Δ
𝑈≥

= ⋀

1≤𝑠≤3

⋀

𝑥∈𝑅
𝑈≥

𝐶
(⋃
𝑘≥𝑠
𝐷𝑘)

⋀

𝑑(𝑦)<𝑠

(⋁𝛼
𝑈≻

(𝑦, 𝑥))

= ( ⋀

𝑥∈𝑅
𝑈≥

𝐶
(⋃
𝑘≥1
𝐷𝑘)

⋀

𝑑(𝑦)<1

(⋁𝛼
𝑈≻

(𝑦, 𝑥)))

∧ ( ⋀

𝑥∈𝑅
𝑈≥

𝐶
(⋃
𝑘≥2
𝐷𝑘)

⋀

𝑑(𝑦)<2

(⋁𝛼
𝑈≻

(𝑦, 𝑥)))

∧ ( ⋀

𝑥∈𝑅
𝑈≥

𝐶
(⋃
𝑘≥3
𝐷𝑘)

⋀

𝑑(𝑦)<3

(⋁𝛼
𝑈≻

(𝑦, 𝑥)))

= ( ⋀

𝑥∈𝑅
𝑈≥

𝐶
(⋃
𝑘≥2
𝐷𝑘)

⋀

𝑑(𝑦)<2

(⋁𝛼
𝑈≻

(𝑦, 𝑥)))

∧ ( ⋀

𝑥∈𝑅
𝑈≥

𝐶
(⋃
𝑘≥3
𝐷𝑘)

⋀

𝑑(𝑦)<3

(⋁𝛼
𝑈≻

(𝑦, 𝑥)))

= 𝑐
1
∧ (𝑐
1
∧ 𝑐
4
)

= 𝑐
1
∧ 𝑐
4
.

(26)

We can see that the considered inconsistent disjunctive
set-valued ODIS presented in Table 1 has one certain reduct
{𝑐
1
, 𝑐
4
}.

From the lower approximations of three upward unions of
decision classes, we can draw the following certain decision
rules from the disjunctive set-valued ODIS presented in
Table 1:

(max 𝑐
1
, ≥, 2) ∧ (max 𝑐

2
, ≥, 0) ∧ (max 𝑐

3
, ≥, 0)

∧ (max 𝑐
4
, ≥, 1) 󳨀→ 𝑑 ≥ 2;

(max 𝑐
1
, ≥, 2) ∧ (max 𝑐

2
, ≥, 2) ∧ (max 𝑐

3
, ≥, 1)

∧ (max 𝑐
4
, ≥, 2) 󳨀→ 𝑑 ≥ 3.

(27)

The certain reduct of the system, {𝑐
1
, 𝑐
4
}, can be used to

simplify the above two certain rules (27) as follows:

(max 𝑐
1
, ≥, 2) ∧ (max 𝑐

4
, ≥, 1) 󳨀→ 𝑑 ≥ 2;

(max 𝑐
1
, ≥, 2) ∧ (max 𝑐

4
, ≥, 2) 󳨀→ 𝑑 ≥ 3.

(28)

Generally speaking, a certain reduct of an inconsistent
disjunctive set-valued ODIS must be a dominance consistent
set of all objects from the lower approximations of the
upward unions of decision classes. And a certain reduct of
an inconsistent disjunctive set-valued ODIS may be a reduct
of some objects from the lower approximations of the upward
unions of decision classes. In Example 17, the certain reduct
{𝑐
1
, 𝑐
4
} is a reduct of the object 𝑥

8
, while the certain reduct

{𝑐
1
, 𝑐
4
} is only a dominance consistent set of the object 𝑥

3
.

6. Conclusions

In this paper, optimization problem of decision rules in
inconsistent disjunctive set-valued ordered decision infor-
mation system has been investigated. By constructing the
dominance discernibility function for an object, reducts of
the object are computed via utilizing Boolean reasoning
techniques, and the corresponding optimal decision rules
are induced. In addition, we have also discussed the certain
reduct of the inconsistent disjunctive set-valued ordered
decision information system and give the computational
approaches using Boolean reasoning techniques.

It is well known that consistent disjunctive set-valued
ordered decision information system can be seen as a special
case of inconsistent disjunctive set-valued ordered decision
information system. So, the approaches proposed in this
paper can be used to induce optimal decision rules in the
consistent disjunctive set-valued ordered decision informa-
tion system.
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