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Although Particle SwarmOptimization (PSO) has demonstrated competitive performance in solving global optimization problems,
it exhibits some limitations when dealing with optimization problems with high dimensionality and complex landscape. In this
paper, we integrate some problem-oriented knowledge into the design of a certain PSO variant. The resulting novel PSO algorithm
with an inner variable learning strategy (PSO-IVL) is particularly efficient for optimizing functions with symmetric variables.
Symmetric variables of the optimized function have to satisfy a certain quantitative relation. Based on this knowledge, the inner
variable learning (IVL) strategy helps the particle to inspect the relation among its inner variables, determine the exemplar variable
for all other variables, and then make each variable learn from the exemplar variable in terms of their quantitative relations. In
addition, we design a new trap detection and jumping out strategy to help particles escape from local optima. The trap detection
operation is employed at the level of individual particles whereas the trap jumping out strategy is adaptive in its nature. Experimental
simulations completed for some representative optimization functions demonstrate the excellent performance of PSO-IVL. The
effectiveness of the PSO-IVL stresses a usefulness of augmenting evolutionary algorithms by problem-oriented domain knowledge.

1. Introduction

Optimization plays an important role in scientific research,
management, industry, and so forth, given the fact that many
problems in the real world are essentially optimization tasks.
However, with the increase of complexity of optimization
problems associated with multimodality, noise, and high
dimensionality of problems, “traditional” optimizationmeth-
ods (e.g., gradient-based methods) are no longer completely
effective when searching for optimal or satisfactory solutions
within the bounds of reasonable computation cost. In light
of these challenges, many bioinspired algorithms, such as
Genetic Algorithms (GAs) and Ant Colony Optimization
(ACO), have emerged. Particle Swarm Optimization (PSO),
developed by Kennedy and Eberhart [1, 2], is a competitive
population-based algorithm being particularly efficient when

dealing with continuous optimization problems. It is a swarm
intelligence [3] algorithm that emulates swarm behaviors
such as birds flocking and fish schooling [4]. Each particle in
PSO adjusts its flying speed and direction by learning from its
ownpast experience andneighbors’ experience, attempting to
search for better position gradually [5].

Due to its powerful capability and relatively low number
of parameters, PSO has drawn wide attention since its
inception. To enhance the efficiency of the generic version of
the PSO method, many variants have been presented. These
variants are realized through different augmentations of the
generic method, generally including parameter tuning [6–
11], topology structure adjustment [12–16], intelligent com-
bination of various search strategies [17–19], and hybridiza-
tion with other classical optimization techniques [20–23].
Although significant progress and achievements have been
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obtained, still a fundamental challenge on how to make PSO
successful in determining optimal or near optimal solutions
for optimization problems with complicated landscapes and
of high dimensionality still remains. In addition, even though
PSO has been praised for many merits, including simple
implementation, it has been criticized for suffering from
premature and the quick performance degradation in case of
increasing dimensionality of the optimization problem [24].

Noticeably, previous PSO variants generally focus on the
modification of particle’s behaviors, to strengthen simulta-
neously its exploration and exploitation capabilities. These
efforts indeed improve significantly the effectiveness of the
generic PSO. Another promising direction in improving
the PSO performance is to acquire and utilize the domain
knowledge associated with the optimization problems at
hand. Subsequently this domain knowledge can be integrated
into the search strategy in anticipation of delivering more
effective search guidance for the particles. As a matter of
fact, the combination of knowledge-based strategy with the
heuristics of swarm optimization has been demonstrated to
be effective in discrete optimization [25–27]. Note that the
problemdomain knowledge in discrete optimization (e.g., the
scheduling problem [26, 27] and the spatial geoinformation
services composition problem [28, 29]) is dependent on
concrete problems considered and the knowledge extraction
and discovery process is relatively subjective. In [30], the
authors proposed a variable reduction strategy by utiliz-
ing the knowledge of derivative equations of unconstraint
optimization problems, to reduce the complexity of original
optimization problems.

The notion of variable symmetry can be encountered in
optimization functions. Variable symmetry means that all
or some variables encountered in the function under opti-
mization are symmetric; namely, they can exchange positions
through linear transformation without affecting the original
function. We refer to such functions in which all variables
are symmetric as completely symmetric function. There are
functions in which only some variables are symmetric giving
rise to the concept of partially symmetric function. In gen-
eral, symmetric functions are developed by using operators
of summation and product (“∑” and “∏”). According to
this observation, we note that all symmetric variables in
the optimal solutions of such a function are supposed to
satisfy a certain quantitative relation.The domain knowledge
acquired about symmetric functions becomes useful in the
enhancement of the search performance. The underlying
motivation of this study is to utilize such domain knowledge
to strengthen the PSO’s capability in solving optimization
problems with symmetric variables.

The major contributions of the paper can be summarized
as follows.

(1) Based on the knowledge that symmetric variables
in the optimal solution of an optimization function
satisfy a certain quantitative relation, we present an
inner variable learning (IVL) strategy to provide
particles with exact and efficient search guidance.

(2) We design a trap detection strategy, by which one
can determine if the particle has been trapped in a

local optimum.We also employ an adaptive Gaussian
mutation-based trap jumping out strategy to help
particles to escape from local optima.

(3) We propose a new knowledge-driven PSO variant,
named PSO-IVL, which is integrated with the IVL
strategy, trap detection and jumping out strategy, and
the basic PSO.

(4) Extensive experimental simulations and analysis are
conducted to demonstrate the efficiency of PSO-
IVL in solving global optimization functions with
symmetric variables and offer a comparison with
some other state-of-the-art PSO variants.

The paper is structured as follows. Section 2 briefly
introduces the basic PSO and reviews related work existing
in the literature. Section 3 details the IVL strategy. Section 4
introduces the trap detection and jumping out strategy and
proposes the algorithm framework of PSO-IVL. Section 5
reports experimental simulations and offers a detailed per-
formance analysis. Section 6 concludes this paper identifying
future research directions.

2. Related Studies

PSOhas undergone significant progress since its introduction
in 1995. A large number of PSO variants have been proposed
to improve the performance of traditional PSO. Comprehen-
sive reviews of PSO can be found in [36–38]. In addition,
Valle et al. [39] surveyed PSO along with its basic concepts,
variants, and applications in power systems. Rana et al. [40]
reviewed PSO and its application to data clustering. In this
section, we first briefly introduce the basic PSO and then
survey the major PSO variants.

2.1. Basic PSO. Analogous to some other evolutionary algo-
rithms, such as Genetic Algorithm and Ant Colony Opti-
mization, PSO is a population-based stochastic optimization
algorithm. A swarm of particles in PSO attempt to search
for superior solutions through learning, communication, and
interaction. The position of each particle refers to a solution.
Then the positionmoving process of a particle in the solution
space relates to a solution search process.The state of particle 𝑖
is described by its current position xi = [𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝐷
] and

velocity ki = [V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝐷
], where𝐷 stands for the number

of variables encountered in the optimization problem. In the
generic PSOwith inertia weight [31], the position and velocity
of particle 𝑖 are updated during the evolutionary process:

V
𝑖𝑑

← 𝑤 × V
𝑖𝑑
+ 𝑐
1
× 𝑟
1𝑑

× (𝑝Best
𝑖𝑑
− 𝑥
𝑖𝑑
)

+ 𝑐
2
× 𝑟
2𝑑

× (𝑔Best
𝑑
− 𝑥
𝑖𝑑
) ,

(1)

𝑥
𝑖𝑑

← 𝑥
𝑖𝑑
+ V
𝑖𝑑
, (2)

where 𝑥
𝑖𝑑
and 𝑥

𝑖𝑑
represent the 𝑑th variable (or dimension)

of the next and current positions of particle 𝑖; V
𝑖𝑑

and V
𝑖𝑑

denote the 𝑑th variable of the next and current velocities of
particle 𝑖; 𝑝Best

𝑖𝑑
is the 𝑑th variable of the personal historical
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best position found by particle 𝑖 up to now, and 𝑔Best
𝑑
is the

𝑑th variable of the global best position found by the overall
particles so far; 𝑐

1
and 𝑐
2
are acceleration parameters which

are commonly set to 2.0; 𝑟
1𝑑
and 𝑟
2𝑑
are two randomnumbers

drawn from a uniform distribution over [0, 1]; and𝑤 denotes
the inertia weight, which is used to set up the balance between
the abilities of global and local search features of PSO. The
inertia weight parameter is widely adopted by major PSO
variants [31].

The behavior of the particle is specified by its velocity and
position update realized according to (1) and (2) [39, 41]. The
first inertia weight component of (1) models the tendency
of the particle to continue in the same direction as before.
The second component of (1) is referred to as the particle’s
“memory,” “self-knowledge,” “nostalgia,” or “remembrance”
[39, 41]. It reflects the self-learning behavior of the particle.
The third component in (1) is referred to as “cooperation,”
“social knowledge,” “group knowledge,” or “shared infor-
mation” [39, 41]. It reflects the social learning behavior of
the particle. Equation (2) indicates that the position of the
particle in the solution space will be changed in terms of its
current position and next velocity.

After each update, we check the position and velocity of
each particle to guarantee them being within a predefined
certain range. In our study, if the position and velocity exceed
the range, they are modified as follows:

V
𝑖𝑑

← min (Vmax
𝑑

,max (Vmin
𝑑

, V
𝑖𝑑
)) ,

𝑥
𝑖𝑑

← 𝑝Best
𝑖𝑑
,

(3)

where Vmax
𝑑

and Vmin
𝑑

are maximum and minimum value of
𝑑th variable of the velocities, respectively. 𝑝Best

𝑖𝑑
is themean

value of 𝑑th variable of the personal historical best positions
of all particles.

2.2. Major PSO Variants. “Standard” PSO exhibits some
deficiencies, including suffering from being premature and
inefficient in solving complexmultimodal optimization prob-
lems. One way to strengthen the capability of PSO is to
dynamically adapt its parameters when running the particles’
evolutionary process. The inertia weight parameter 𝑤 is set
to linearly decrease over iterations [31, 42]. In addition, a
fuzzy adaptive mechanism was used to tune the value of 𝑤
[9]. Kennedy and Eberhart recommended that the proper
value for the acceleration parameters 𝑐

1
and 𝑐
2
could be fixed

and set to 2.0. These values were adopted in many works. In
comparison, Suganthan [13] suggested that the usage of ad
hoc selected values for 𝑐

1
and 𝑐
2
rather than the fixed value

for different problems could result in better performance.
Ratnaweera et al. [8] presented a PSO variant with linearly
time-varying acceleration coefficients (HPSO-TVAC). Zhan
et al. [17] proposed an adaptive PSO, which enables the
automatic control of inertia weight, acceleration coefficients,
and other algorithmic parameters at run time according to
four evolutionary states, that is, exploration, exploitation,
convergence, and jumping out state. Ismail and Engelbrecht
[10] controlled the parameters of PSO by embedding them

in the position vector of particles, which enhanced the
performance of comprehensive learning PSO (CLPSO) [35].

Besides parameter adaptation, topological structures of
the particle swarm were also extensively studied. For exam-
ple, Kennedy [12, 16] suggested that a small neighborhood
might be more suitable to complicated multimodal prob-
lems while a larger neighborhood might be more effective
for relatively simple unimodal problems. In [16], Kennedy
and Mendes evaluated some typical topologies including
global best topology, ring topology, wheel topology, pyramid
topology, and Von Neumann topology. They suggested that
the Von Neumann topology configuration may perform
better compared to others. However, the selection of an
appropriate neighborhood structure is generally problem ori-
ented. Being aware of the noticeable effect of neighborhood
structures, the neighborhood structure dynamic adaptation
mechanisms were also investigated by some researchers [13,
43]. Mendes et al. [33] presented a fully informed particle
swarm (FIPS) in which each individual learns the experi-
ence of all its neighbors rather than just the best one and
itself.

Another natural evolution of the Particle Swarm Opti-
mization can be achieved by incorporating operators or
techniques that are effectively used in other evolutionary
algorithms [39]. Angeline [20] developed a hybrid PSO by
introducing the selection operator coming from Genetic
Algorithm.Ahybrid PSObased on genetic programmingwas
presented by Poli et al. [23]. In [44], Juang integratedGAwith
PSO for designing artificial neural network. Other operators
and techniques, such as crossover [45], mutation [46], local
search [15], and differential evolution [47, 48], were adopted
in PSO as well.

An intelligent integration of different learning strategy in
to the swarm evolutionary process is a promising direction
for designing efficient PSO variants. Usually one prepares
a collection of learning strategies, which possess different
capabilities, such as exploitation, exploration, and jumping
out from local optimum, and then, through a sophisticated
adaptationmechanism, enables each particle to automatically
choose learning strategies to determine the next move. Many
state-of-the-art PSO variants have been developed following
this development strategy. Liang et al. [35] proposed a
comprehensive learning particle swarm optimizer (CLPSO),
which uses a novel learning strategy whereby all other parti-
cles’ historical best information is used to update a particle’s
velocity. Wang et al. [24] proposed a self-adaptive learning
based PSO (SLPSO). SLPSO adopts four adaptive learning
mechanisms, which are automatically chosen by particles
based on each strategy’s past performance. In [4], Zhan et
al. proposed an orthogonal learning (OL) strategy for PSO
to discover more useful information that lies in two particles’
experiences via orthogonal experimental design. Experimen-
tal results demonstrated that OLPSO significantly improves
the performance of PSO, offering faster convergence, higher
solution quality, and stronger robustness. Hu et al. [18]
proposed a PSO variant by intelligently combining a nonuni-
form mutation-based method and an adaptive subgradient
method. A Cauchy mutation operator was further utilized to
prevent premature convergence. Wang et al. [49] presented
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an enhanced PSO variant called GOBL, which employed
generalized opposition-based learning (GOBL) and Cauchy
mutation to overcome the deficiency of premature. Li et al.
[19] presented a self-learning particle swarm optimizer, in
which each particle has four strategies to cope with different
situations in the search space. An adaptive cooperation
mechanism was implemented at the individual level, which
enables a particle to choose the rational strategy according to
its own local fitness landscape.

3. The Inner Variable Learning Strategy

In this section, we introduce the knowledge employed in the
inner variable learning (IVL) strategy and discuss the detailed
implementation of the IVL strategy.

3.1. Knowledge Employed in the Inner Variable Learning Strat-
egy. As mentioned before, adaptive learning is an important
concept in designing evolutionary algorithms. In the basic
PSO, each particle flies through the search space aiming to
obtain a satisfactory solution, with its velocity and position
being dynamically updated referring to its flying experience
and its companions’ experience. Two typical learning strate-
gies are included in basic PSO: the first one is the self-learning
strategy, which enables each particle to consider its past
velocity and personal local best position when determining
the next search direction and speed; the second one is
the companion learning strategy, by which each particle
takes into account the flying experience of its companions
(such as learning from the global best position or all its
neighbors’ positions) in its space search process. It can be
found from the review in Section 2 that current learning
strategies (or cooperation and interaction) of PSO mainly
happen at the swarm or particle level. However, the learning
strategy at the variable level is rarely studied. We think that
variable level based learning mechanisms would be more
effective, since different variables of a particle are evolved
independently. In addition, it is also meaningful to extract
useful knowledge from the optimization problem to provide
more exact and effective guidance for the search behavior of
particles.

We find that, in many optimization functions, different
variables come in the same form; that is, they are symmetric.
Such functions usually combine the variables by using the
operators of summation and product (“∑” and “∏”). For
example, with regard to the Rosenbrock function: 𝑓(x) =

∑
𝐷

𝑖=1
(100(𝑥2

𝑖
− 𝑥
𝑖+1

)2 + (𝑥
𝑖
− 1)2), this function is multimodal

and nonseparable and exhibits a very narrow valley moving
from local optimum to global optimum [50]. Note that
different variables in the Rosenbrock function are symmetric,
since we can exchange the positions of any two variables 𝑥

𝑖

and 𝑥
𝑗
without affecting the function. Then, in the optimal

solution, any two variables 𝑥
𝑖
and 𝑥

𝑗
are supposed to satisfy

the relationship 𝑥
𝑖
= 𝑥
𝑗
. More generally, let us consider an

optimization function 𝑓(ax − b), where a = [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝐷
],

x = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
], and b = [𝑏

1
, 𝑏
2
, . . . , 𝑏

𝐷
]. Let us formally

define the concept of variable symmetry.

Variable Symmetry. two variables are symmetric if they can
exchange their positions in the function through some linear
transformation without affecting this function.

For instance, with regard to the two variables 𝑥
𝑖
and 𝑥

𝑗
in

a given function, if we exchange these two variables by letting
𝑥
𝑖
= (𝑎
𝑗
𝑥
𝑗
+ 𝑏
𝑗
− 𝑏
𝑖
)/𝑎
𝑖
and 𝑥

𝑗
= (𝑎
𝑖
𝑥
𝑖
+ 𝑏
𝑖
− 𝑏
𝑗
)/𝑎
𝑗
without

changing the function, then we say variables 𝑥
𝑖
and 𝑥

𝑗
are

symmetric. If 𝑥
𝑖
and 𝑥

𝑗
are symmetric, then, in the optimal

solution, there should exist the relationship 𝑎
𝑖
𝑥
𝑖
+ 𝑏
𝑖
= 𝑎
𝑗
𝑥
𝑗
+

𝑏
𝑗
. As an example, let us take the Shift Rastrigin function. In

Rastrigin 𝑓
2
(x) = ∑

𝑛

𝑖=1
(𝑦2
𝑖
− 10 cos(2𝜋𝑦

𝑖
) + 10), 𝑦

𝑖
= 𝑥
𝑖
− 𝑜
𝑖
, o

is a shift vector. Consider the original Shift Rastrigin function
with two variables:

((𝑥
1
− 𝑜
1
)
2
− 10 cos (2𝜋 (𝑥

1
− 𝑜
1
)) + 10)

+ ((𝑥
2
− 𝑜
2
)
2
− 10 cos (2𝜋 (𝑥

2
− 𝑜
2
)) + 10) .

(4)

Then we let 𝑥
1
= 𝑥
2
− 𝑜
2
+ 𝑜
1
and 𝑥

2
= 𝑥
1
− 𝑜
1
+ 𝑜
2
and

substitute them into the above form:

((𝑥
2
− 𝑜
2
+ 𝑜
1
− 𝑜
1
)
2
− 10 cos (2𝜋 (𝑥

2
− 𝑜
2
+ 𝑜
1
− 𝑜
1
)) + 10)

+ ((𝑥
1
− 𝑜
1
+ 𝑜
2
− 𝑜
2
)
2

−10 cos (2𝜋 (𝑥
1
− 𝑜
1
+ 𝑜
2
− 𝑜
2
)) + 10)

(5)

which gives rise to the expression

((𝑥
2
− 𝑜
2
)
2
− 10 cos (2𝜋 (𝑥

2
− 𝑜
2
)) + 10)

+ ((𝑥
1
− 𝑜
1
)
2
− 10 cos (2𝜋 (𝑥

1
− 𝑜
1
)) + 10) .

(6)

It becomes clear that (6) and (4) are equal. The same
situation happens for any other two variables. Therefore, the
Shift Rastrigin function is completely symmetric. Different
variables in the optimal solution of the Shift Rastrigin
function have to satisfy 𝑥

𝑖
− 𝑜
𝑖
= 𝑥
𝑗
− 𝑜
𝑗
.

It should be noted that the relation of variable symmetry
is reflexive and transitive. We can determine the property of
variable symmetry of the optimized function by exchanging
positions of any two variables and checking the properties of
reflexivity and transitivity. Sometimes, intuitive hints are also
helpful.

Having noted the knowledge that symmetric variables
of the optimal solution of a function should satisfy a cer-
tain quantitative relation, we can develop an inner variable
learning (IVL) strategy in which different variables in the
same function can realize learning fromeach other during the
problem solving process. The idea of this learning strategy is
simple and straightforward.Namely, in the course of learning,
we check the variables of a particle and determine which
variable’s value is the best exemplar of other variables to
optimize the function to the highest extent.

3.2. Implementation of the Inner Variable Learning Strategy.
The previous learning strategies, such as the self-learning
strategy and companion learning strategy, enable particles to
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learn their past flying experience or their companions’ past
flying experience, which are at the swarm or particle level.
In comparison, the new learning strategy to be presented
here is realized at the variable level and thus referred to
as inner variable learning (IVL) strategy. The IVL strategy
enables a particle to inspect the relation among its vari-
ables of the position, determine the exemplar variable for
other variables, and then make each variable learn from
the exemplar variable by modifying the values of other
variables in terms of their quantitative relation with the
exemplar variable and the value of the exemplar variable.This
strategy will lead particles to fly to a better position quickly.
Note that this learning strategy has originated from the
knowledge of variable symmetry of optimized functions, such
that it can be applied to any function involving symmetric
variables.

If we execute the IVL strategy on each particle at every
generation of PSO, it could be a little time consuming since
every time we need to evaluate the effectiveness of each
variable and select out an exemplar variable. In addition,
performing the IVL strategy too frequentlymay cause PSO to
suffer from premature convergence and make it get trapped
in a local optimum at the early stage. That is because once
a particle executes the IVL strategy, all its variables will be
directly modified according to the value of the exemplar
variable. In this study, the particle executes the IVL strategy
immediately after it visits the personal best position or jumps
out from a local optimum. This is because under these
two occasions, the particle may have potential high-quality
exemplar variable.

At each evolutionary generation, once the particle 𝑖 deter-
mines its personal best position or executes the trap jumping
operation, it will execute the inner learning strategy accord-
ingly. Assume that the current personal best position and the
corresponding velocity of particle 𝑖 are xi = [𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝐷
]

and ki = [V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝐷
]. We test the effectiveness of every

variable 𝑥
𝑖𝑑
in the optimization function and take the best

variable as the exemplar variable. That is to say, the exemplar
variable is determined by first trying to let every variable be
the exemplar variable and then ascertaining the best one as
the ultimate exemplar variable. To obtain the effectiveness of
variable 𝑥

𝑖𝑑
, we just let 𝑥

𝑖𝑑
be the temporal exemplar variable,

modify the value of any other variable 𝑥
𝑖𝑘
according to 𝑥

𝑖𝑘
=

(𝑎
𝑑
𝑥
𝑖𝑑
+𝑏
𝑑
−𝑏
𝑘
)/𝑎
𝑘
, and then calculate the function fitness.The

temporary exemplar variable resulting in the best function
fitness will be the ultimate exemplar variable. Assume that the
ultimate exemplar variable is denoted by 𝑑. The procedure
of the IVL strategy of particle 𝑖 is described in Algorithm 1.
Note that when a particle executes the IVL strategy once, it
performs𝐷 evaluations of the fitness function.

4. The Trap Detection and
Jumping out Techniques

The PSO algorithm is easy to implement and has been
empirically shown to perform well on numerous optimiza-
tion problems. However, it may easily get trapped in a local
optimum when solving complex multimodal problems [35],

such that effective mechanisms for particle detecting and
jumping out of trap state become necessary.

Many researchers noted that it is helpful to improve
the performance of PSO by intelligently tuning the parti-
cle’s behaviors according to the current evolutionary states,
which is usually evaluated by the statistic information of the
swarm’s distribution. For instance, Zhan et al. [17] deter-
mined the evolutionary states (i.e., exploration, exploitation,
convergence, and jumping out) with the statistic of the
position distribution information of the population, which
was used for guiding the automatic parameter adjustment.
The distribution information was obtained by calculating
the mean distance of each particle to all the other particles.
Chen et al. [51] also used the distance between particles to
evaluate the diversity of PSO in the evolutionary process.
They incorporated diversity into the objective function to
optimize the optimization problem as well as guarantee
the diversity of the overall swarm. It can be seen that the
above methods are established at the swarm level, which
means that the authors checked the diversity (or distribution
information) of the overall swarm each time and adjusted
the behaviors of particles accordingly. This may be not good
for the adaptation and flexibility of a single particle, though.
Although sometimes the diversity of the whole swarm is
satisfactory according to certain criteria, some of the particles
may actually have been trapped in optima.

To enable a particle to react to its solution space search
situation more efficiently, we will check the diversity of
particle 𝑖 when 𝑔Best

𝑖
has not been improved continuously

for 𝑀 generations. In addition, let 𝑚
𝑖
denote the number

of stagnation generation of particle 𝑖. At each generation, if
the 𝑔Best

𝑖
has not improved, 𝑚

𝑖
is increased by 1; otherwise,

𝑚
𝑖
will be set to 1. Two criteria are considered to determine

whether the particle is trapped in a local optimum.
Now let us take particle 𝑖 as an example.The first criterion

concerns the difference between the function fitness of the
previous position x

𝑖
and that of the current position xi of

particle 𝑖. Let 𝛿 denote a threshold value of the difference
of function fitness. In our study, we set 𝛿 = 𝛼 ⋅ 𝑡/maxEF,
where maxEF denotes the maximum number of function
fitness evaluations, 𝑡 denotes the current consumed number
of function fitness evaluations, and 𝛼 is scale coefficient.
𝛿 changes adaptively with the evolution of particles. If the
function fitness difference is lower than 𝛿, the particle may
be considered to be trapped in a local optimum:

𝑓 (x
𝑖
) − 𝑓 (x

𝑖
)
 < 𝛿. (7)

The second criterion is as follows: if the distance between
two consecutive positions of particle 𝑖 is smaller than a
predefined threshold value 𝜉, particle 𝑖 may have been
trapped:

x


𝑖
− x
𝑖

 =
√∑
𝐷

𝑑
(𝑥
𝑖𝑑
− 𝑥
𝑖𝑑
)
2

𝐷 < 𝜉
. (8)

We set 𝜉 = √𝐷 ⋅ 𝛽2, where 𝐷 is the number of variables
and 𝛽 is the scale coefficient.
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/∗particle 𝑖 has reached its personal best position∗/
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓(ax

𝑖
+ b);

𝑑 = 1;
For 𝑗 = 1: 𝐷
/∗every 𝑗th variable as the temporal exemplar variable∗/

For 𝑘 = 1: 𝐷

𝑥
𝑖𝑘
=

(𝑎
𝑗
𝑥
𝑖𝑗
+ 𝑏
𝑗
− 𝑏
𝑘
)

𝑎
𝑘

;

End for
If 𝑓(ax̂

𝑖
+ b) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓(ax̂i + b);
𝑑 = 𝑗; /∗𝑑 records the best exemplar variable up to now∗/

End if
End for
/∗all other variables are modified in terms of the exemplar variable marked by 𝑑∗/
For 𝑗 = 1: 𝐷

𝑥
𝑖𝑗
=

(𝑎
𝑑
𝑥
𝑖𝑑
+ 𝑏
𝑑
− 𝑏
𝑗
)

𝑎
𝑗

;

End for
If 𝑓(ax

𝑖
+ b) < 𝑓(𝑝Best

𝑖
)

𝑝Best
𝑖
= xi;

End if
If𝑓(ax

𝑖
+ b) < 𝑓(𝑔Best)

𝑔Best = x
𝑖
;

End if

Algorithm 1: InnerVariableLearning(𝑖).

However, none of above two criterions can judge the trap
state independently. That is because, on the one hand, as for
the first criterion, a particle may have very close function
fitness at two distant positions (meaning the particle is not
trapped). On the other hand, the optimization function may
be very sensitive to the landscape, so small deviation of the
position of a particle may result in significant difference
(similarly,meaning the particle is not trapped) of the function
fitness. Therefore, the two criterions should be taken into
account simultaneously. And if both of the above criterions
are met, particle 𝑖 is safely considered to be trapped in a local
optimum.

Once we detect that a particle is trapped, a mutation
operator will be employed to help particles to escape from
the local optimum. Mutation is an indispensable operator
in Genetic Algorithm. Due to the effectiveness of mutation
operator in enhancing the diversity of population-based
algorithms, it is also popularly adopted inmany PSO variants.
Generally, Cauchy mutation [18, 51] and Gaussian mutation
[17, 49] methods are mostly used. Andrews [46] utilized a
PSO algorithm incorporating different mutation operators to
cope with both mathematical and constrained optimization
problems. His results showed that the addition of a mutation
operator to PSO could enhance optimization performance
and insight was gained into how to designmutation operators
dependent on the nature of the problem being optimized.The
Gaussian mutation operator is utilized in the discussed PSO
variant:

𝑥
𝑖𝑑

= 𝑥
𝑖𝑑
+ 𝜔 ⋅ (𝑥max,𝑑 − 𝑥min,𝑑) ⋅ 𝜆 ⋅ Gaussian (0, 1) , (9)

where 𝑥max,𝑑 and 𝑥min,𝑑 stand for the upper and low bound of
the 𝑑th variable of the optimization problem and 𝜔 and 𝜆 are
coefficients controlling the mutation scale:

𝜆 = 1 −
𝜎 ⋅ 𝑡

maxEF
. (10)

Like the inertia weight parameter, mutation scale param-
eter 𝜆 linearly decreases with the evolutionary process, that
is, starts declining from 1.0 to (1 − 𝜎) gradually. 𝜎 (0 < 𝜎 <
1) reflects the decreased speed. The linear decrease of the
mutation scale parameter enables the PSO to exhibit higher
exploration capability at the early stage of the evolution and
strong exploitation ability at the later evolutionary stage.

In addition, if 𝑔Best
𝑖
has not been improved for each 𝑁

successive generation, particle 𝑖 will perform the mutation
operator. The PSO variant integrated with the IVL strategy,
trap detection and jumping out strategy, and the basic PSO is
shown as Algorithm 2.

5. Experimental Tests

5.1. Experimental Setting. In order to evaluate the perfor-
mance of PSO-IVL, we compare it with some other state-of-
the-art PSO alternatives. The parameters of the algorithms
selected for comparison are summarized in Table 1. For
comparison, the experimental settings of benchmark PSO
variants are similar to that of [24]; that is, the population size
of particles is 50 and the number of variables (dimensions)
of each test function is set to 30, which is a typical setting
encountered in the literature. Choosing proper parameters
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Initialize the position x
𝑖
and velocity k

𝑖
for each particle 𝑖;

Let 𝑔Best
𝑖
← xi and calculate the 𝑔Best;

Set 𝑡 = 0;
Initialize parameters 𝑝𝑠, 𝛿, 𝜉, maxEF,𝑀 and𝑁
While (𝑡 < maxEF)

For 𝑖 =1:𝑝𝑠
If 𝑚
𝑖
%𝑀 == 0 /∗determine whether particle 𝑖 gets trapped∗/

If𝑓(ax


i + b) − 𝑓(ax
𝑖
+ b) < 𝛿 && ||xi − xi|| = √∑

𝐷

𝑑
(𝑥
𝑖𝑑
− 𝑥
𝑖𝑑
)2/𝑝𝑠 < 𝜉

𝜆 = 1 − 0.9 ⋅ 𝑡/maxEF
𝑥
𝑖𝑑

= 𝑥
𝑖𝑑
+ 𝜔 ⋅ (𝑥max,𝑑 − 𝑥min,𝑑) ⋅ 𝜆 ⋅ Gaussian(0, 1)

Execute the strategy of InnerVariableLearning(𝑖);
𝑡 = 𝑡 + 𝐷; /∗increase the number of fitness evaluations∗/

End if
End if

If𝑚
𝑖
%𝑁 == 0

𝑥
𝑖𝑑

= 𝑥
𝑖𝑑
+ 𝜔 ⋅ (𝑥max,𝑑 − 𝑥min,𝑑) ⋅ 𝜆 ⋅ Gaussian(0, 1)

Execute the strategy of InnerVariableLearning(𝑖);
𝑡 = 𝑡 + 𝐷;

End if
/∗Update the position and velocity of the 𝑖th particle∗/
V
𝑖𝑑

= 𝑤 × V
𝑖𝑑
+ 𝑐
1
× 𝑟
1𝑑

× (𝑝𝐵𝑒𝑠𝑡
𝑖𝑑
− 𝑥
𝑖𝑑
) + 𝑐
2
× 𝑟
2𝑑

× (𝑔𝐵𝑒𝑠𝑡
𝑑
− 𝑥
𝑖𝑑
);

𝑥
𝑖𝑑

= 𝑥
𝑖𝑑
+ V
𝑖𝑑

𝑡 = 𝑡 + 1;
If𝑓(ax

𝑖
+ b) < 𝑓(𝑝Best

𝑖
)

𝑝Best
𝑖
← x
𝑖
;

Execute the strategy of InnerVariableLearning(𝑖);
𝑡 = 𝑡 + 𝐷;
𝑚
𝑖
= 1

Else
𝑚
𝑖
= 𝑚
𝑖
+ 1;

End if
If 𝑓(ax

𝑖
+ b) < 𝑓(𝑔Best)

𝑔Best = x
𝑖
;

End if
End for
If 𝑔Best is the optimal solution

Break;
End if
𝑤 = 0.9 − 0.5 ⋅ 𝑡/maxEva;

End while

Algorithm 2: Procedure of PSO-IVL.

Table 1: PSO variants used in comparative studies.

PSO variants Parameters setting

PSO-w: PSO with inertia weight [31] 𝑤 = 0.9 −
0.5 ⋅ 𝑔

maxGen
, 𝑓
1
= 𝑓
2
= 1.49

PSO-cf: PSO with constriction factor [32] 𝑤 = 0.729, 𝑐
1
= 𝑐
2
= 1.49445

PSO-cf-local: local version of PSO with constriction
factor [16] 𝑤 = 0.729, 𝑐

1
= 𝑐
2
= 1.49445

FIPS-PSO: fully informed PSO [33] 𝑤 = 0.729, 𝑐
1
= 𝑐
2
= 2.0

CPSO-H: cooperative based PSO [34] 𝑤 = 0.9 −
0.5 ⋅ 𝑔

maxGen
, 𝑐
1
= 𝑐
2
= 2.0

CLPSO: comprehensive learning PSO [35] 𝑤 = 0.9 −
0.5 ⋅ 𝑔

maxGen
, 𝑐
1
= 𝑐
2
= 1.49445

SLPSO: self-adaptive learning based Particle Swarm
Optimization [24] 𝑝𝑟𝑜𝑆𝑇𝑅

𝑖
= 0.25, 𝐺𝑠 = 10, 𝑤

𝑖
= log(𝑝𝑠 − 𝑖 + 1)/(log(1) + ⋅ ⋅ ⋅ + log(𝑝𝑠))
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for an evolutionary algorithm is always time consuming
since parameters are always related. According to analysis
of extensive experimental work, the parameters of the PSO-
IVL algorithm are specified as follows: 𝑝𝑠 = 20, maxEF =
300, 000, 𝑐

1
= 𝑐
2
= 2.0, 𝛼 = 0.1, 𝛿 = 0.1 ⋅ 𝑡/maxEF, 𝛽 = 0.1,

𝜉 = √0.01𝐷, 𝜔 = 0.05, 𝜎 = 0.9, 𝜆 = 1 − (0.9 ⋅ 𝑡/maxEF),
𝑀 = 50, and𝑁 = 200.

To realize a comprehensive analysis of the PSO-IVL
and other PSO variants listed above, we conducted a series
of experiments by employing 18 classical numerical opti-
mization problems with different characteristics, including
unimodality,multimodality, rotation, ill-conditionality,miss-
cale, and noise. The optimization functions used in the
experiments are listed below;M is the orthogonal matrix and
o is the shifted vector:

Sphere: 𝑓
1
(𝑥) = ∑

𝑛

𝑖=1
𝑦2
𝑖
, y = x − o,

Rastrigin: 𝑓
2
(x) = ∑

𝑛

𝑖=1
(𝑦2
𝑖
− 10 cos(2𝜋𝑦

𝑖
) + 10), y =

x − o,
Rosenbrock: 𝑓

3
(x) = ∑

𝑛

𝑖=1
(100(𝑦2

𝑖
−𝑦
𝑖+1

)2 + (𝑦
𝑖
−1)2),

y = x − o,
Griewank:𝑓

4
(z) = (1/4000)∑

𝑛

𝑖=1
𝑦2
𝑖
+1−∏

𝑛

𝑖=1
cos(𝑦
𝑖
/

√𝑖), y = x − o,

Ackley: 𝑓
5
(𝑥) = −20 ⋅ exp(−0.2√(1/𝑛)∑

𝑛

𝑖=1
𝑦2
𝑖
) + 20 −

exp((1/𝑛)∑𝑛
𝑖=1

cos(2𝜋𝑦
𝑖
)) + 𝑒, y = x − o,

Schwefel 1.2: 𝑓
6
(𝑥) = ∑

𝑛

𝑖=1
(∑
𝑖

𝑗=1
𝑦2
𝑗
), y = x − o,

Scaled Rosenbrock 100: 𝑓
7
(𝑥) = ∑

𝑛

𝑖=1
(100((𝑎

𝑖
𝑦
𝑖
)2 −

(𝑎
𝑖+1

𝑦
𝑖+1

))2 + (𝑎
𝑖
𝑦
𝑖
− 1)2), 𝑎

𝑖
= 100(𝑖−1)/(𝑛−1), y = x − o,

Scaled Rastrigin 10: 𝑓
8
(x) = ∑

𝑛

𝑖=1
((𝑎
𝑖
𝑦
𝑖
)2 − 10 cos(2𝜋

(𝑎
𝑖
𝑦
𝑖
)) + 10), 𝑎

𝑖
= 10(𝑖−1)/(𝑛−1), y = x − o,

Noise Schwefel 1.2: 𝑓
9
(𝑥) = ∑

𝑛

𝑖=1
(∑
𝑖

𝑗=1
𝑦2
𝑗
) ⋅ (1 +

0.4|𝑁(0, 1)|), y = x − o,
Rotated Sphere: 𝑓

10
(𝑥) = ∑

𝑛

𝑖=1
𝑧2
𝑖
, z = M ⋅ (x − o),

Rotated Schwefel 2.21: 𝑓
11
(𝑥) = max |𝑧

𝑖
|, z = M ⋅ (x −

o),
Rotated Ellipse:𝑓

12
(𝑥) = ∑

𝑛

𝑖=1
(20(𝑖−1)/(𝑛−1)𝑧

𝑖
)2, z = M⋅

x,
Rotated Rosenbrock: 𝑓

13
(x) = ∑

𝑛

𝑖=1
(100(𝑧2

𝑖
− 𝑥
𝑖+1

)2 +

(𝑧
𝑖
− 1)2), z = M ⋅ (x − o),

Rotated Ackley: 𝑓
14
(𝑥) = −20 ⋅ exp(−0.2

√(1/𝑛)∑
𝑛

𝑖=1
𝑧2
𝑖
) + 20 − exp((1/𝑛)∑𝑛

𝑖=1
cos(2𝜋𝑧

𝑖
)) + 𝑒,

z = M ⋅ (x − o),
Rotated Griewank: 𝑓

15
(z) = (1/4000)∑

𝑛

𝑖=1
𝑧2
𝑖
+ 1 −

∏
𝑛

𝑖=1
cos(𝑧
𝑖
/√𝑖), z = M ⋅ (x − o),

Rotated Rastrigin: 𝑓
16
(x) = ∑

𝑛

𝑖=1
(𝑧2
𝑖
− 10 cos(2𝜋𝑧

𝑖
) +

10), z = M ⋅ (x − o),
Noise Rotated Schwefel 1.2: 𝑓

17
(𝑥) = ∑

𝑛

𝑖=1
(∑
𝑖

𝑗=1
𝑧2
𝑗
) ⋅

(1 + 0.4|𝑁(0, 1)|), z = M ⋅ (x − o),
Noise Rotated Quadric: 𝑓

18
(𝑥) = ∑

𝑛

𝑖=1
𝑖𝑧4
𝑖
+ random

[0, 1), z = M ⋅ (x − o).

5.2. Comparative Analysis. The simulation results for each
optimized function produced by PSO-w, PSO-cf, PSO-cf-
local, FIPS-PSO, CPSO-H, CLPSO, and SLPSO are reported
from [24]. Each optimization function is run by each PSO
variant 30 times. The computational results are listed in
Table 2 including the average value of the results along
with their standard deviation. Suc denotes the number of
successful runs. According to [24], a run is considered to
be successful (i.e., has obtained a satisfactory solution) if a
solution is obtained whose fitness value is not worse than
(𝑓𝑖𝑡(𝑥∗) + (1.0E − 5)), where 𝑥∗ is the theoretical global
optimal solution. FEs denotes the average number of function
evaluations required to find the satisfactory solution when all
30 runs are successful.

From the computational results given in Table 2, we
can conclude that PSO-IVL produced the best result for
every test function. However, for Sphere function 𝑓

1
(𝑥),

Ackley function 𝑓
5
(𝑥), Rotated Sphere function 𝑓

10
(𝑥), and

Rotated Ackley function 𝑓
14
(𝑥), although PSO-IVL can

find the optimal solution, its efficiency is not the highest.
Moreover, PSO-IVL can find the optimal solution for all
optimization functions only except Scaled Rosenbrock 100
𝑓
7
(𝑥), Rotated Rosenbrock 𝑓

13
(x), and Noise Quadric𝑓

18
(𝑥).

Especially for some noisy and rotated functions, such as
Noise Schwefel 1.2 𝑓

9
(𝑥), Rotated Ellipse 𝑓

12
(𝑥), Rotated

Rastrigin𝑓
16
(x), andNoisy Rotated Schwefel 1.2𝑓

17
(𝑥), other

peer PSO variants cannot effectively acquire satisfactory
solutions; however, PSO-IVL is successful in these cases.
As a result, based on the reported results, Table 2, we
conclude that the performance of PSO-IVL reported on the
test functions is fairly competitive compared to other PSO
variants.

5.3. ConvergenceAnalysis of PSO-IVL. Toprovide an intuitive
illustration of the optimization behavior of PSO-IVL, in
Figure 1, we display the evolutionary process of a particle
and the global-best-so-far solution when PSO-IVL is utilized
to solve each optimization function. It should be noted
that in the basic PSO and many typical PSO variants, for
a particle, the number of generations and the number of
fitness evaluations are usually equal. However, the situa-
tion is different in our study. At any generation, if the
particle does not perform the IVL strategy, a single fitness
evaluation is required; thus in this case one generation is
corresponding to one fitness evaluation. In comparison, if
the particle executes the IVL strategy at a given generation,
then there are 𝐷 (𝐷 is the number of variables associated
with the functions considered) numbers of fitness evalua-
tion operation to complete. As a result, in this situation,
one generation is related to 𝐷 of fitness evaluations. The
evolutionary process of other PSO alternatives can be found
in [24].

The larger figure shows how the fitness of the position
visited by a particle in PSO-IVL changes with the increase
of the number of function fitness evaluations while the
smaller figure visualizes how the fitness of the global-best-
so-far solution evolves. Since the global-best-so-far solution
converges to a good value very fast, it would be unclear to see
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Figure 1: Continued.
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Figure 1: Continued.
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Figure 1: Evolutionary process of a particle and the global best solution with regard to each test function.

its overall evolution. We enlarge and display the evolutionary
process of global-best-so-far solution at some stages.

Two observations are worthmaking here. First, the fitness
of the particle fluctuates quite substantially at the early stage
of PSO-IVL but gradually diminishes and finally converges
to the optimal solution. This is because of the trap detection
and jumping out strategy adopted in PSO-IVL. During the
evolutionary process, if the particle is detected to be trapped
in a local optimum, the particle performs Gaussianmutation,
which adaptively enables the particle to randomly move to
a new position. The adaptive Gaussian mutation operator
makes the particle fluctuate to a large extent in the early stage
of optimization. In addition, the learning and interaction
strategies realized within the swarm enable the particle to
always converge to a good solution.

Second, the particle exhibits a certain probability to
determine high-quality solutions at the early stage. The
reason is that PSO-IVL employs the IVL strategy, which
enables the particle to learn among different variables. As a
result, just a good value of a variable can quickly lead the
particle to reach a position with good fitness.

The smaller figures indicate that PSO-IVL can converge to
a high-quality solution fast on each test function and finally
find the optimal solutions for most functions. This can be
explained by the fact that the IVL strategy indeed enables
the particle to find high-quality position at high speed and
high probability; meanwhile, the trap detection and jumping
out strategy can help particles escape from local optima. As
a conclusion, the combination of the IVL strategy, the trap
detection and jumping out strategy, and the basic PSO forms
an efficient optimization environment.

5.4. Analysis of the Impact of the Inner Variable Learning
Strategy. As we know, some optimization functions may be
partial symmetric. In this case, when we use PSO-IVL to
carry out optimization, only a portion of their variables can be
utilized to realize the IVL strategy. Therefore, it is important
to investigate the impact of the number of variables being
involved in the IVL strategy. For convenient comparison,
we selected six complex optimization functions (where it is
hard to obtain an optimal or near optimal solution for these

functions without using the IVL strategy) and solved them by
using PSO-IVL with a different number of variables involved
in the IVL strategy. This means that, even though in these
functions all variables are symmetric, each time we only set
a certain number of variables to run the IVL strategy. The
obtained results are listed in Table 3, where 𝑛 stands for the
number of variables executed by the IVL strategy. We set 𝑛 to
0, 5, 10, 15, 25, and 30, respectively. When 𝑛 is equal to 0, this
means that in fact the IVL strategy is not invoked. When 𝑛
equals 30, all variables are viewed as symmetric and adopted
to execute the IVL strategy.

From the results displayed in Table 3, we can find that, for
every selected optimization function, the solution obtained
by PSO-IVL is getting better with the increase of the values
of 𝑛. Therefore, we can come to some conclusions. (1) The
effectiveness of the IVL strategy is significant. (2) More
variables in an optimization function being utilized the IVL
strategy (i.e., more variables are symmetric) will lead tomuch
better solutions. (3) Even if there are only less symmetric
variables in an optimization function, the employment of the
IVL strategy on these variables has potential to improve the
optimization process.

6. Conclusions

In this work, we have introduced a new knowledge-driven
PSO variant (PSO-IVL), which integrates the generic PSO, a
novel inner variable learning (IVL) strategy, and a novel trap
detection and jumping out strategy.The IVL strategy is based
on the knowledge that the values of symmetric variables
in an optimization function will satisfy certain relations in
the optimal solution. The trap detection and jumping out
strategy is established at the level of individual particles
rather than the swarm level, which improves the flexibility
and adaptability of particles and helps particles escape from
local optima. Experimental simulations completed for some
classical optimization functions demonstrate the competitive
performance of PSO-IVL, which is superior to all the selected
state-of-the-art peer PSO variants.

Although we choose completely symmetric functions in
which all variables are symmetric to test our algorithm’s
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Table 3: Results of different numbers of variables being executed with the IVL strategy.

Functions 𝑛 = 0 𝑛 = 5 𝑛 = 10 𝑛 = 15 𝑛 = 20 𝑛 = 25 𝑛 = 30

Scaled Rosenbrock 100: 𝑓
7

8.45𝐸 + 04 2.34𝐸 + 04 5.82𝐸 + 03 3.65𝐸 + 03 1.48𝐸 + 02 7.55𝐸 + 01 2.32𝐸 + 01

Noise Schwefel 1.2: 𝑓
9

9.82𝐸 + 02 6.37𝐸 + 01 1.46𝐸 + 00 8.17𝐸 − 04 3.25𝐸 − 08 9.72𝐸 − 13 0.00𝐸 + 00

Rotated Schwefel 2.21: 𝑓
11

6.63𝐸 − 01 1.16𝐸 − 01 3.61𝐸 − 02 8.28𝐸 − 04 2.52𝐸 − 08 1.07𝐸 − 14 0.00𝐸 + 00

Rotated Ellipse: 𝑓
12

2.91𝐸 + 02 3.97𝐸 + 00 1.76𝐸 − 03 5.11𝐸 − 06 5.34𝐸 − 11 6.28𝐸 − 19 0.00𝐸 + 00

Rotated Rosenbrock: 𝑓
13

1.82𝐸 + 04 8.82𝐸 + 03 2.57𝐸 + 03 9.07𝐸 + 02 2.93𝐸 + 02 5.64𝐸 + 01 2.87𝐸 + 01

Noise Rotated Schwefe1.2: 𝑓
17

2.77𝐸 + 03 5.75𝐸 + 02 6.03𝐸 + 00 4.23𝐸 − 04 2.45𝐸 − 09 1.87𝐸 − 15 0.00𝐸 + 00

performance, the proposed algorithm can also be applied to
partial symmetric functions (inwhich only some variables are
symmetric). In this case, we just need to let the IVL strategy
be performed on the symmetric variables. Moreover, the IVL
strategy can be integrated into existing PSO alternatives.

PSO-IVL will be effective in optimization functions
possessing symmetric variables. However, it ismeaningful for
three reasons. Firstly, it can obtain good solutions (usually the
optimal solutions) for many benchmark functions. Secondly
and more importantly, the efficiency of PSO-IVL indicates
that the combination of the problem-oriented knowledge and
PSO would be a promising direction for applying PSO to
optimization problems. Thirdly, since symmetry is a general
phenomenon existing in nature and engineering, it could be
beneficial to check the variable symmetry when we try to use
PSO or other evolutionary algorithms to solve a new complex
optimization problem.

The future research can be carried out in three directions.
One can look at discovering and formalizing domain knowl-
edge (e.g., generic quantitative relations among different
variables) existing in optimization problems and integrate
it into the design of more advanced PSO schemes. The
second one is to attempt to apply PSO-IVL to some real-
life optimization problems. The third direction could be
to formulate a general framework for guiding knowledge
discovery in optimization problems and its integration into
evolutionary algorithms.
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