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By combining the interval-valued hesitant fuzzy set and soft set models, the purpose of this paper is to introduce the concept of
interval-valued hesitant fuzzy soft sets. Further, some operations on the interval-valued hesitant fuzzy soft sets are investigated, such
as complement, “AND,” “OR,” ring sum, and ring product operations. Then, by means of reduct interval-valued fuzzy soft sets and
level hesitant fuzzy soft sets, we present an adjustable approach to interval-valued hesitant fuzzy soft sets based on decision making
and some numerical examples are provided to illustrate the developed approach. Finally, the weighted interval-valued hesitant fuzzy
soft set is also introduced and its application in decision making problem is shown.

1. Introduction

Soft sets, initiated by Molodtsov [1], are a new mathematical
tool for dealing with uncertainties which are free from
many difficulties that have troubled the usual theoretical
approaches. It has been found that fuzzy sets, rough sets, and
soft sets are closely related concepts [2]. Soft set theory has
potential applications in many different fields including the
smoothness of functions, game theory, operational research,
Perron integration, probability theory, and measurement
theory [1, 3].

Research works on soft sets develop very rapidly and
now are one of hotspots in the uncertainty research. For
example, Maji et al. [4] defined several operations on soft
sets and made a theoretical study on the theory of soft sets.
Jun [5] introduced the concept of soft BCK/BCI-algebras.
Subsequently, they also discussed the applications of soft
sets in ideal theory of BCK/BCI-algebras [6]. Feng et al. [7]
applied soft set theory to the study of semirings and initiated
the notion of soft semirings. Furthermore, based on [4], Ali
et al. [8] introduced some new operations on soft sets and
improved the notion of complement of soft set. They proved
that certain De-Morgan’s laws hold in soft set theory. Qin
and Hong [9] introduced the concept of soft equality and
established lattice structures and soft quotient algebras of soft
sets. Meanwhile, the study of hybrid models combining soft
sets with other mathematical structures is also emerging as

an active research topic of soft set theory. Yang et al. [10]
introduced the interval-valued fuzzy soft sets by combining
interval-valued fuzzy set with soft set models and analyzed a
decision problem by the model. By using the multifuzzy set
and soft set models, Yang et al. [11] presented the concept
of the multifuzzy soft sets and provided its application in
decision making under an imprecise environment. Maji et al.
[12] initiated the study on hybrid structures involving fuzzy
sets and soft sets. They introduced the notion of fuzzy
soft sets, which can be seen as a fuzzy generalization of
soft sets. Furthermore, based on [12], Roy and Maji [13]
presented a novel method concerning object recognition
from an imprecise multiobserver data so as to cope with
decisionmaking based on fuzzy soft sets.ThenKong et al. [14]
revised the Roy-Maji method by considering “fuzzy choice
values.” Subsequently, Feng et al. [15, 16] further discussed
the application of fuzzy soft sets and interval-valued fuzzy
soft sets to decision making in an imprecise environment.
They proposed an adjustable approach to fuzzy soft sets
and interval-valued fuzzy soft sets based decision making
in [15, 16]. By introducing the interval-valued intuitionistic
fuzzy sets into soft sets, Jiang et al. [17] defined the concept
of interval-valued intuitionistic fuzzy soft set. Moreover,
they also defined some operations on the interval-valued
intuitionistic fuzzy soft sets and investigated some basic
properties. On the basis of [17], Zhang et al. [18] developed
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an adjustable approach to decision making problems based
on interval-valued intuitionistic fuzzy soft sets. Very recently,
integrating trapezoidal fuzzy sets with soft sets, Xiao et al.
[19] initiated the trapezoidal fuzzy soft sets to deal with
certain linguistic assessments. Further, in order to capture
the vagueness of the attribute with linguistic assessments
information, Zhang et al. [20] generalized trapezoidal fuzzy
soft sets introduced by Xiao et al. [19] and defined the concept
of generalized trapezoidal fuzzy soft sets.

As a mathematical method to deal with vagueness in
everyday life, fuzzy set was introduced by Zadeh in [21]. Up
to present, several extensions have been developed, such as
intuitionistic fuzzy set [22], interval valued fuzzy sets [23–
25], type-2 fuzzy set [26, 27], and type-𝑛 fuzzy set [26].
Recently, Torra and Narukawa [28, 29] extended fuzzy sets
to hesitant fuzzy environment and initiated the notion of
hesitant fuzzy sets (HFSs), because they found that because
of the doubts between a few different values, it is very difficult
to determine the membership of an element to a set under a
group setting [29]. For example, two decision makers discuss
the membership degree of 𝑥 into 𝐴. One wants to assign 0.7,
but the other wants to assign 0.9. They cannot persuade each
other. To avoid an argument, the membership degrees of 𝑥
into 𝐴 can be described as {0.7, 0.9}. After it was introduced
by Torra, the hesitant fuzzy set has attracted more and more
scholars’ attention [30–32].

As mentioned above, there are close relationships among
the uncertainty theories, such as fuzzy sets, rough sets, and
soft sets. So many hybrid models among them are proposed
by the researchers, such as fuzzy rough sets [33], rough fuzzy
sets [33], and fuzzy soft sets [12]. Since the appearance of
hesitant fuzzy set, the study on it has never been stopped.
The combination of hesitant fuzzy set with other uncertainty
theories is a hot spot of the current research recently. There
are several hybrid models in present, such as hesitant fuzzy
rough sets [34] and hesitant fuzzy soft sets [35, 36]. In
fact, Babitha and John [35] defined a hybrid model called
hesitant fuzzy soft sets and investigated some of their basic
properties. Meanwhile, Wang et al. [36] also initiated the
concept of hesitant fuzzy soft sets by integrating hesitant
fuzzy set with soft set model and presented an algorithm to
solve decision making problems based on hesitant fuzzy soft
sets. By combining hesitant fuzzy set and rough set models,
Yang et al. [34] introduced the concept of the hesitant fuzzy
rough sets and proposed an axiomatic approach to themodel.

However, Chen et al. [37, 38] pointed out that it is very
difficult for decision makers to exactly quantify their ideas by
using several crisp numbers because of the lack of available
information in many decision making events. Therefore,
Chen et al. [37, 38] extended hesitant fuzzy sets into interval-
valued hesitant fuzzy environment and introduced the con-
cept of interval-valued hesitant fuzzy sets (IVHFSs), which
permits the membership degrees of an element to a given
set to have a few different interval values. It should be
noted that when the upper and lower limits of the interval
values are identical, IVHFS degenerates into HFS, indicating
that the latter is a special case of the former. Recently,
similarity, distance, and entropy measures for IVHFSs have
been investigated by Farhadinia [39].Wei et al. [40] discussed

some interval-valued hesitant fuzzy aggregation operators
and gave their applications to multiple attribute decision
making based on interval-valued hesitant fuzzy sets.

As a novel mathematical method to handle imprecise
information, the study of hybrid models combining IVHFSs
with other uncertainty theories is emerging as an active
research topic of IVHFS theory. Meanwhile, we know that
there are close relationships among the uncertainty theories,
such as interval-valued hesitant fuzzy sets, rough sets, and
soft sets. Therefore, many scholars have been starting to
research on the area. For example, Zhang et al. [41] general-
ized the hesitant fuzzy rough sets to interval-valued hesitant
fuzzy environment and presented an interval-valued hesitant
fuzzy rough set model by integrating interval-valued hesitant
fuzzy set with rough set theory. On the one hand, it is unrea-
sonable to use hesitant fuzzy soft sets to handle some deci-
sion making problems because of insufficiency in available
information. Instead, adopting several interval numbers may
overcome the difficulty. In that case, it is necessary to extend
hesitant fuzzy soft sets [36] into interval-valued hesitant fuzzy
environment. On the other hand, by referring to a great deal
of literature and expertise, we find that the discussions about
fusions of interval-valued hesitant fuzzy set and soft sets do
not also exist in the related literatures. Considering the above
facts, it is necessary for us to investigate the combination
of IVHFS and soft set. The purpose of this paper is to
initiate the concept of interval-valued hesitant fuzzy soft set
by combining interval-valued hesitant fuzzy set and soft set
theory. In order to illustrate the efficiency of the model, an
adjustable approach to interval-valued hesitant fuzzy soft sets
based on decision making is also presented. Finally, some
numerical examples are provided to illustrate the adjustable
approach.

To facilitate our discussion, we first review some back-
grounds on soft sets, fuzzy soft sets, hesitant fuzzy sets, and
interval numbers in Section 2. In Section 3, the concept of
interval-valued hesitant fuzzy soft set with its operation rules
is presented. In Section 4, an adjustable approach to interval-
valued hesitant fuzzy soft sets based on decision making
is proposed. In Section 5, the concept of weighted interval-
valued hesitant fuzzy soft sets is defined and applied to
decision making problems in which all the decision criteria
may not be of equal importance. Finally, we conclude the
paper with a summary and outlook for further research in
Section 6.

2. Preliminaries

In this section, we briefly review the concepts of soft sets,
fuzzy soft sets, hesitant fuzzy sets, and interval numbers. The
pair (𝑈, 𝐸) will be called a soft universe. Throughout this
paper, unless otherwise stated, 𝑈 refers to an initial universe,
𝐸 is a set of parameters,𝑃(𝑈) is the power set of 𝑈, and𝐴 ⊆ 𝐸.

2.1. Soft Sets, Fuzzy Soft Sets, and Hesitant Fuzzy Sets.
According to [1], the concept of soft sets is defined as follows.

Definition 1 (see [1]). A pair (𝐹, 𝐴) is called a soft set over 𝑈,
where 𝐹 is a mapping given by 𝐹 : 𝐴 → 𝑃(𝑈).
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Combining fuzzy sets and soft sets, Maji et al. [12]
initiated the following hybrid model called fuzzy soft sets,
which can be seen as an extension of both fuzzy sets and crisp
soft sets.

Definition 2 (see [12]). A pair (𝐹, 𝐴) is called a fuzzy soft set
over 𝑈 if 𝐴 ⊆ 𝐸 and 𝐹 : 𝐴 → 𝐹(𝑈), where 𝐹(𝑈) is the set of
all fuzzy subsets of 𝑈.

In the following, we review some basic concepts related
to hesitant fuzzy sets introduced by Torra [28, 29].

Definition 3 (see [28, 29]). Let𝑋be a fixed set; a hesitant fuzzy
set (HFS, for short)𝐴 on𝑋 is in terms of a function ℎ

̂

𝐴

(𝑥) that
when applied to𝑋 returns a subset of [0, 1]; that is,

𝐴 = {⟨𝑥, ℎ
̂

𝐴

(𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)

where ℎ
̂

𝐴

(𝑥) is a set of some different values in [0, 1],
representing the possible membership degrees of the element
𝑥 ∈ 𝑋 to 𝐴.

For convenience, we call ℎ
̂

𝐴

(𝑥) a hesitant fuzzy element
(HFE, for short).

Example 4. Let 𝑋 = {𝑥
1

, 𝑥
2

, 𝑥
3

} be a reference set and let
ℎ
̂

𝐴

(𝑥
1

) = {0.7, 0.4, 0.5}, ℎ
̂

𝐴

(𝑥
2

) = {0.2, 0.4}, and ℎ
̂

𝐴

(𝑥
3

) =

{0.3, 0.1, 0.7, 0.6} be the HFEs of 𝑥
𝑖

(𝑖 = 1, 2, 3) to a set 𝐴,
respectively. Then 𝐴 can be considered as a HFS; that is,

𝐴 = {⟨𝑥
1

, {0.7, 0.4, 0.5}⟩ , ⟨𝑥
2

, {0.2, 0.4}⟩ ,

⟨𝑥
3

, {0.3, 0.1, 0.7, 0.6}⟩} .

(2)

2.2. Interval Numbers. In [42], Xu and Da gave the concept
of interval numbers and further investigated some of their
properties.

Definition 5 (see [42]). Let 𝑎 = [𝑎
𝐿

, 𝑎
𝑈

] = {𝑥 | 𝑎
𝐿

≤ 𝑥 ≤ 𝑎
𝑈

};
then 𝑎 is called an interval number. In particular, 𝑎 is a real
number, if 𝑎𝐿 = 𝑎

𝑈.

Definition 6 (see [42]). Let 𝑎 = [𝑎
𝐿

, 𝑎
𝑈

], 𝑏 = [𝑏
𝐿

, 𝑏
𝑈

], and
𝜆 ≥ 0; then one has the following:

(1) 𝑎 = 𝑏, if 𝑎𝐿 = 𝑏
𝐿 and 𝑎

𝑈

= 𝑏
𝑈,

(2) 𝑎 + 𝑏 = [𝑎
𝐿

+ 𝑏
𝐿

, 𝑎
𝑈

+ 𝑏
𝑈

],
(3) 𝜆𝑎 = [𝜆𝑎

𝐿

, 𝜆𝑎
𝑈

]. In particular, 𝜆𝑎 = 0, if 𝜆 = 0.

Definition 7 (see [42]). Let 𝑎 = [𝑎
𝐿

, 𝑎
𝑈

], and 𝑏 = [𝑏
𝐿

, 𝑏
𝑈

], and
let 𝑙
𝑎

= 𝑎
𝑈

−𝑎
𝐿 and 𝑙

𝑏

= 𝑏
𝑈

−𝑏
𝐿; then the degree of possibility

of 𝑎 ≥ 𝑏 is defined as

𝑝 (𝑎 ≥ 𝑏) = max{1 −max(𝑏
𝑈

− 𝑎
𝐿

𝑙
𝑎

+ 𝑙
𝑏

, 0) , 0} . (3)

Similarly, the degree of possibility of 𝑏 ≥ 𝑎 is defined as

𝑝 (𝑏 ≥ 𝑎) = max{1 −max(𝑎
𝑈

− 𝑏
𝐿

𝑙
𝑎

+ 𝑙
𝑏

, 0) , 0} . (4)

Equations (3) and (4) are proposed in order to compare
two interval numbers and to rank all the input arguments.
Further details could be found in [42].

3. Interval-Valued Hesitant Fuzzy Soft Sets

3.1. Concept of Interval-Valued Hesitant Fuzzy Sets. In the
subsection, we review some basic concepts related to interval-
valued hesitant fuzzy sets introduced by Chen et al. [37].

Definition 8 (see [37]). Let𝑋 be a fixed set, and let Int[0, 1] be
the set of all closed subintervals of [0, 1]. An interval-valued
hesitant fuzzy set (IVHFS, for short) 𝐴 on𝑋 is defined as

𝐴 = {⟨𝑥, ℎ
̃

𝐴

(𝑥)⟩ | 𝑥 ∈ 𝑋} , (5)

where ℎ
̃

𝐴

(𝑥) : 𝑋 → Int[0, 1] denotes all possible interval-
valued membership degrees of the element 𝑥 ∈ 𝑋 to 𝐴.

For convenience, we call ℎ
̃

𝐴

(𝑥) an interval-valued hesi-
tant fuzzy element (IVHFE, for short). The set of all interval-
valued hesitant fuzzy sets on𝑈 is denoted by IVHF(𝑈). From
Definition 8, we can note that an IVHFS 𝐴 can be seen as an
interval-valued fuzzy set if there is only one element in ℎ

̃

𝐴

(𝑥),
which indicates that interval-valued fuzzy sets are a special
type of IVHFSs.

Example 9. Let 𝑋 = {𝑥
1

, 𝑥
2

} be a reference set, and let
ℎ
̃

𝐴

(𝑥
1

) = {[0.2, 0.3], [0.4, 0.6], [0.5, 0.6]} and ℎ
̃

𝐴

(𝑥
2

) = {[0.3,

0.5], [0.4, 0.7]} be the IVHFEs of 𝑥
𝑖

(𝑖 = 1, 2, 3) to a set 𝐴,
respectively. Then 𝐴 can be considered as an IVHFS; that is,

𝐴 = {⟨𝑥
1

, {[0.2, 0.3] , [0.4, 0.6] , [0.5, 0.6]}⟩ ,

⟨𝑥
2

, {[0.3, 0.5] , [0.4, 0.7]}⟩} .

(6)

It is noted that the number of interval values in different
IVHFEs may be different and the interval values are usually
out of order. Suppose that 𝑙(ℎ) stands for the number of
interval values in the IVHFE ℎ. To operate correctly, Chen
et al. [37] gave the following assumptions.

(A1) All the elements in each IVHFE ℎ are arranged in
increasing order by (3). Let ℎ𝜎(𝑘) stand for the 𝑘th largest
interval numbers in the IVHFE ℎ, where

ℎ
𝜎(𝑘)

= [ℎ
𝜎(𝑘)𝐿

, ℎ
𝜎(𝑘)𝑈

] (7)

is an interval number, and ℎ
𝜎(𝑘)𝐿

= inf ℎ𝜎(𝑘), ℎ𝜎(𝑘)𝑈 =

sup ℎ𝜎(𝑘) represent the lower and upper limits of ℎ
𝜎(𝑘),

respectively.
(A2) If two IVHFEs ℎ

1

, ℎ
2

, 𝑙(ℎ
1

) ̸= 𝑙(ℎ
2

), then 𝑙 =

max{𝑙(ℎ
1

), 𝑙(ℎ
2

)}. To have a correct comparison, the two
IVHFEs ℎ

1

and ℎ
2

should have the same length 𝑙. If there are
fewer elements in ℎ

1

than in ℎ
2

, an extension of ℎ
1

should be
considered optimistically by repeating its maximum element
until it has the same length with ℎ

2

.
Given three IVHFEs represented by ℎ, ℎ

1

, and ℎ
2

, Chen
et al. [37] defined some operations on them as follows.

Definition 10. Let ℎ, ℎ
1

, and ℎ
2

be three IVHFEs; then one has
the following:
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(1) ℎ𝑐 = {[1 − 𝛾
+

, 1 − 𝛾
−

] | 𝛾 ∈ ℎ},

(2) ℎ
1

∪ ℎ
2

= {[𝛾
−

1

∨ 𝛾
−

2

, 𝛾
+

1

∨ 𝛾
+

2

] | 𝛾
1

∈ ℎ
1

, 𝛾
2

∈ ℎ
2

},

(3) ℎ
1

∩ ℎ
2

= {[𝛾
−

1

∧ 𝛾
−

2

, 𝛾
+

1

∧ 𝛾
+

2

] | 𝛾
1

∈ ℎ
1

, 𝛾
2

∈ ℎ
2

},

(4) ℎ𝜆 = {[(𝛾
−

1

)
𝜆

, (𝛾
+

1

)
𝜆

] | 𝛾 ∈ ℎ}, 𝜆 > 0,

(5) 𝜆ℎ = {[1 − (1 − 𝛾
−

)
𝜆

, 1 − (1 − 𝛾
+

)
𝜆

] | 𝛾 ∈ ℎ}, 𝜆 > 0,

(6) ℎ
1

⊕ ℎ
2

= {[𝛾
−

1

+ 𝛾
−

2

− 𝛾
−

1

𝛾
−

2

, 𝛾
+

1

+ 𝛾
+

2

− 𝛾
+

1

𝛾
+

2

] | 𝛾
1

∈

ℎ
1

, 𝛾
2

∈ ℎ
2

},

(7) ℎ
1

⊗ ℎ
2

= {[𝛾
−

1

𝛾
−

2

, 𝛾
+

1

𝛾
+

2

] | 𝛾
1

∈ ℎ
1

, 𝛾
2

∈ ℎ
2

}.

Further, Chen et al. [37] established some relationships for the
above operations on IVHFEs.

Theorem 11. Let ℎ, ℎ
1

, and ℎ
2

be three IVHFEs; one has the
following:

(1) ℎ
1

⊕ ℎ
2

= ℎ
2

⊕ ℎ
1

,

(2) ℎ
1

⊗ ℎ
2

= ℎ
2

⊗ ℎ
1

,

(3) (ℎ
1

∪ ℎ
2

)
𝑐

= ℎ
𝑐

1

∩ ℎ
𝑐

2

,

(4) (ℎ
1

∩ ℎ
2

)
𝑐

= ℎ
𝑐

1

∪ ℎ
𝑐

2

,

(5) (𝜆ℎ)𝑐 = (ℎ
𝑐

)
𝜆,

(6) (ℎ𝜆)𝑐 = 𝜆(ℎ
𝑐

),

(7) (ℎ
1

⊕ ℎ
2

)
𝑐

= ℎ
𝑐

1

⊗ ℎ
𝑐

2

,

(8) (ℎ
1

⊗ ℎ
2

)
𝑐

= ℎ
𝑐

1

⊕ ℎ
𝑐

2

.

Example 12. Let ℎ
1

= {[0.5, 0.6], [0.3, 0.8], [0.3, 0.6]} and ℎ
2

=

{[0.4, 0.5], [0.4, 0.7]} be two IVHFEs; then, by the operational
laws of IVHFEs given in Definition 10, we have

ℎ
1

∪ ℎ
2

= {[𝛾
−

1

∨ 𝛾
−

2

, 𝛾
+

1

∨ 𝛾
+

2

] | 𝛾
1

∈ ℎ
1

, 𝛾
2

∈ ℎ
2

}

= {[0.5 ∨ 0.4, 0.6 ∨ 0.5] , [0.5 ∨ 0.4, 0.6 ∨ 0.7] ,

[0.3 ∨ 0.4, 0.8 ∨ 0.5] , [0.3 ∨ 0.4, 0.8 ∨ 0.7] ,

[0.3 ∨ 0.4, 0.6 ∨ 0.5] , [0.3 ∨ 0.4, 0.6 ∨ 0.7]}

= {[0.5, 0.6] , [0.5, 0.7] , [0.4, 0.8] , [0.4, 0.8] ,

[0.4, 0.6] , [0.4, 0.7]} ,

ℎ
1

∩ ℎ
2

= {[𝛾
−

1

∧ 𝛾
−

2

, 𝛾
+

1

∧ 𝛾
+

2

] | 𝛾
1

∈ ℎ
1

, 𝛾
2

∈ ℎ
2

}

= {[0.5 ∧ 0.4, 0.6 ∧ 0.5] , [0.5 ∧ 0.4, 0.6 ∧ 0.7] ,

[0.3 ∧ 0.4, 0.8 ∧ 0.5] , [0.3 ∧ 0.4, 0.8 ∧ 0.7] ,

[0.3 ∧ 0.4, 0.6 ∧ 0.5] , [0.3 ∧ 0.4, 0.6 ∧ 0.7]}

= {[0.4, 0.5] , [0.4, 0.6] , [0.3, 0.5] , [0.3, 0.7] ,

[0.3, 0.5] , [0.3, 0.6]} ,

ℎ
1

⊕ ℎ
2

= {[𝛾
−

1

+ 𝛾
−

2

− 𝛾
−

1

𝛾
−

2

, 𝛾
+

1

+ 𝛾
+

2

− 𝛾
+

1

𝛾
+

2

] |

𝛾
1

∈ ℎ
1

, 𝛾
2

∈ ℎ
2

}

= {[0.5 + 0.4 − 0.5 ⋅ 0.4, 0.6 + 0.5 − 0.6 ⋅ 0.5] ,

[0.5 + 0.4 − 0.5 ⋅ 0.4, 0.6 + 0.7 − 0.6 ⋅ 0.7] ,

[0.3 + 0.4 − 0.3 ⋅ 0.4, 0.8 + 0.5 − 0.8 ⋅ 0.5] ,

[0.3 + 0.4 − 0.3 ⋅ 0.4, 0.8 + 0.7 − 0.8 ⋅ 0.7] ,

[0.3 + 0.4 − 0.3 ⋅ 0.4, 0.6 + 0.5 − 0.6 ⋅ 0.5] ,

[0.3 + 0.4 − 0.3 ⋅ 0.4, 0.6 + 0.7 − 0.6 ⋅ 0.7]}

= {[0.7, 0.8] , [0.7, 0.88] , [0.58, 0.9] , [0.58, 0.94] ,

[0.58, 0.8] , [0.58, 0.88]} ,

ℎ
1

⊗ ℎ
2

= {[𝛾
−

1

𝛾
−

2

, 𝛾
+

1

𝛾
+

2

] | 𝛾
1

∈ ℎ
1

, 𝛾
2

∈ ℎ
2

}

= {[0.5 ⋅ 0.4, 0.6 ⋅ 0.5] , [0.5 ⋅ 0.4, 0.6 ⋅ 0.7] ,

[0.3 ⋅ 0.4, 0.8 ⋅ 0.5] , [0.3 ⋅ 0.4, 0.8 ⋅ 0.7] ,

[0.3 ⋅ 0.4, 0.6 ⋅ 0.5] , [0.3 ⋅ 0.4, 0.6 ⋅ 0.7]}

= {[0.2, 0.3] , [0.2, 0.42] , [0.12, 0.4] , [0.12, 0.56] ,

[0.12, 0.3] , [0.12, 0.42]} .

(8)

From Example 12, we can see that the dimension of the
derived IVHFEmay increase as the addition ormultiplicative
operations are done, which may increase the complexity
of the calculations. To overcome the difficulty, we develop
some new methods to decrease the dimension of the derived
IVHFE when operating the IVHFEs on the premise of
the assumptions given by Chen et al. [37]. The adjusted
operational laws are defined as follows.

Definition 13. Let ℎ, ℎ
1

, and ℎ
2

be three IVHFEs, and let 𝜆 be
a positive real number; then one has the following:

(1) ℎ𝑐 = {[1 − ℎ
𝜎(𝑘)𝑈

, 1 − ℎ
𝜎(𝑘)𝐿

] | 𝑘 = 1, 2, . . . , 𝑙},

(2) ℎ
1

∪ ℎ
2

= {[ℎ
𝜎(𝑘)𝐿

1

∨ ℎ
𝜎(𝑘)𝐿

2

, ℎ
𝜎(𝑘)𝑈

1

∨ ℎ
𝜎(𝑘)𝑈

2

] | 𝑘 =

1, 2, . . . , 𝑙},

(3) ℎ
1

∩ ℎ
2

= {[ℎ
𝜎(𝑘)𝐿

1

∧ ℎ
𝜎(𝑘)𝐿

2

, ℎ
𝜎(𝑘)𝑈

1

∧ ℎ
𝜎(𝑘)𝑈

2

] | 𝑘 =

1, 2, . . . , 𝑙},

(4) ℎ𝜆 = {[(ℎ
𝜎(𝑘)𝐿

)
𝜆

, (ℎ
𝜎(𝑘)𝑈

)
𝜆

] | 𝑘 = 1, 2, . . . , 𝑙},

(5) 𝜆ℎ = {[1 − (1 − ℎ
𝜎(𝑘)𝐿

)
𝜆

, 1 − (1 − ℎ
𝜎(𝑘)𝑈

)
𝜆

] | 𝑘 =

1, 2, . . . , 𝑙},

(6) ℎ
1

⊕ℎ
2

= {[ℎ
𝜎(𝑘)𝐿

1

+ℎ
𝜎(𝑘)𝐿

2

−ℎ
𝜎(𝑘)𝐿

1

ℎ
𝜎(𝑘)𝐿

2

, ℎ
𝜎(𝑘)𝑈

1

+ℎ
𝜎(𝑘)𝑈

2

−

ℎ
𝜎(𝑘)𝑈

1

ℎ
𝜎(𝑘)𝑈

2

] | 𝑘 = 1, 2, . . . , 𝑙},

(7) ℎ
1

⊗ ℎ
2

= {[ℎ
𝜎(𝑘)𝐿

1

ℎ
𝜎(𝑘)𝐿

2

, ℎ
𝜎(𝑘)𝑈

1

ℎ
𝜎(𝑘)𝑈

2

] | 𝑘 = 1, 2, . . . , 𝑙},

where ℎ
𝜎(𝑘)

𝑗

= [ℎ
𝜎(𝑘)𝐿

𝑗

, ℎ
𝜎(𝑘)𝑈

𝑗

] is the 𝑘th largest interval
number in ℎ

𝑗

.
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Theorem 14. Let ℎ, ℎ
1

, and ℎ
2

be three IVHFEs. For the new
operations in Definition 13, one has the following:

(1) ℎ
1

⊕ ℎ
2

= ℎ
2

⊕ ℎ
1

,
(2) ℎ
1

⊗ ℎ
2

= ℎ
2

⊗ ℎ
1

,
(3) (ℎ

1

∪ ℎ
2

)
𝑐

= ℎ
𝑐

1

∩ ℎ
𝑐

2

,
(4) (ℎ

1

∩ ℎ
2

)
𝑐

= ℎ
𝑐

1

∪ ℎ
𝑐

2

,

(5) (𝜆ℎ)𝑐 = (ℎ
𝑐

)
𝜆,

(6) (ℎ𝜆)𝑐 = 𝜆(ℎ
𝑐

),
(7) (ℎ

1

⊕ ℎ
2

)
𝑐

= ℎ
𝑐

1

⊗ ℎ
𝑐

2

,
(8) (ℎ

1

⊗ ℎ
2

)
𝑐

= ℎ
𝑐

1

⊕ ℎ
𝑐

2

.

Proof. Theproofs are similar toTheorems 1 and 2 in [37].

Theorem 14 shows that Theorem 11 is still valid for the
new operations in Definition 13.

Example 15. Reconsider Example 12. By (3) and assumptions
given by Chen et al. [37]; then ℎ

1

= {[0.3, 0.6], [0.3, 0.8],

[0.5, 0.6]} and ℎ
2

= {[0.4, 0.5], [0.4, 0.7], [0.4, 0.7]}. By virtue
of Definition 13, we have

ℎ
1

∪ ℎ
2

= {[ℎ
𝜎(𝑘)𝐿

1

∨ ℎ
𝜎(𝑘)𝐿

2

, ℎ
𝜎(𝑘)𝑈

1

∨ ℎ
𝜎(𝑘)𝑈

2

] | 𝑘 = 1, 2, 3}

= {[0.3 ∨ 0.4, 0.6 ∨ 0.5] , [0.3 ∨ 0.4, 0.8 ∨ 0.7] ,

[0.5 ∨ 0.4, 0.6 ∨ 0.7]}

= {[0.4, 0.6] , [0.4, 0.8] , [0.5, 0.7]} ,

ℎ
1

∩ ℎ
2

= {[ℎ
𝜎(𝑘)𝐿

1

∧ ℎ
𝜎(𝑘)𝐿

2

, ℎ
𝜎(𝑘)𝑈

1

∧ ℎ
𝜎(𝑘)𝑈

2

] | 𝑘 = 1, 2, 3}

= {[0.3 ∧ 0.4, 0.6 ∧ 0.5] , [0.3 ∧ 0.4, 0.8 ∧ 0.7] ,

[0.5 ∧ 0.4, 0.6 ∧ 0.7]}

= {[0.3, 0.5] , [0.3, 0.7] , [0.4, 0.6]} ,

ℎ
1

⊕ ℎ
2

= {[ℎ
𝜎(𝑘)𝐿

1

+ ℎ
𝜎(𝑘)𝐿

2

− ℎ
𝜎(𝑘)𝐿

1

ℎ
𝜎(𝑘)𝐿

2

,

ℎ
𝜎(𝑘)𝑈

1

+ ℎ
𝜎(𝑘)𝑈

2

− ℎ
𝜎(𝑘)𝑈

1

ℎ
𝜎(𝑘)𝑈

2

] | 𝑘 = 1, 2, 3}

= {[0.3 + 0.4 − 0.3 ⋅ 0.4, 0.6 + 0.5 − 0.6 ⋅ 0.5] ,

[0.3 + 0.4 − 0.3 ⋅ 0.4, 0.8 + 0.7 − 0.8 ⋅ 0.7] ,

[0.5 + 0.4 − 0.5 ⋅ 0.4, 0.6 + 0.7 − 0.6 ⋅ 0.7]}

= {[0.58, 0.8] , [0.58, 0.94] , [0.7, 0.88]} ,

ℎ
1

⊗ ℎ
2

= {[ℎ
𝜎(𝑘)𝐿

1

ℎ
𝜎(𝑘)𝐿

2

, ℎ
𝜎(𝑘)𝑈

1

ℎ
𝜎(𝑘)𝑈

2

] | 𝑘 = 1, 2, 3}

= {[0.3 ⋅ 0.4, 0.6 ⋅ 0.5] , [0.3 ⋅ 0.4, 0.8 ⋅ 0.7] ,

[0.5 ⋅ 0.4, 0.6 ⋅ 0.7]}

= {[0.12, 0.3] , [0.12, 0.56] , [0.2, 0.42]} .

(9)

Comparing Example 12 with Example 15, we note that
the adjusted operational laws given in Definition 13 indeed

decrease the dimension of the derived IVHFE when oper-
ating the IVHFEs, which brings grievous advantage for the
practicing application.

3.2. Concept of Interval-Valued Hesitant Fuzzy Soft Sets. In
[35, 36, 43], researchers have introduced the concept of
hesitant fuzzy soft sets and developed some approaches to
hesitant fuzzy soft sets based on decision making. However,
incompleteness and inaccuracy of information in the process
of making decision are very important problems we have
to resolve. Due to insufficiency in available information, it
is unreasonable for us to adopt hesitant fuzzy soft sets to
deal with some decision making problems in which deci-
sion makers only quantify their opinions with several crisp
numbers. Instead, the basic characteristics of the decision-
making problems described by several interval numbers may
overcome the difficulty. Based on the above fact, we extend
hesitant fuzzy soft sets into the interval-valued hesitant fuzzy
environment and introduce the concept of interval-valued
hesitant fuzzy sets.

In this subsection, we first introduce the notion of
interval-valued hesitant fuzzy soft sets, which is a hybrid
model combining interval-valued hesitant fuzzy sets and soft
sets.

Definition 16. Let (𝑈, 𝐸) be a soft universe and 𝐴 ⊆ 𝐸. A pair
S = (𝐹, 𝐴) is called an interval-valued hesitant fuzzy soft set
over 𝑈, where 𝐹 is a mapping given by 𝐹 : 𝐴 → IVHF(𝑈).

An interval-valued hesitant fuzzy soft set is a parameter-
ized family of interval-valuedhesitant fuzzy subsets of𝑈.That
is to say, 𝐹(𝑒) is an interval-valued hesitant fuzzy subset in𝑈,
∀𝑒 ∈ 𝐴. Following the standard notations,𝐹(𝑒) can be written
as

𝐹 (𝑒) = {⟨𝑥, 𝐹 (𝑒) (𝑥)⟩ : 𝑥 ∈ 𝑈} . (10)

Sometimeswewrite𝐹 as (𝐹, 𝐸). If𝐴 ⊆ 𝐸, we can also have
an interval-valued hesitant fuzzy soft set (𝐹, 𝐴).

Example 17. Let 𝑈 be a set of four participants performing
dance programme, which is denoted by 𝑈 = {𝑥

1

, 𝑥
2

, 𝑥
3

, 𝑥
4

}.
Let 𝐸 be a parameter set, where 𝐸 = {𝑒

1

, 𝑒
2

, 𝑒
3

} = {confident;
creative; graceful}. Suppose that three judges think the precise
membership degrees of a candidate 𝑥

𝑗

to a parameter 𝑒
𝑖

are
hard to be specified. To overcome this barrier, they represent
the membership degrees of a candidate 𝑥

𝑗

to a parameter
𝑒
𝑖

with several possible interval values. Then interval-valued
hesitant fuzzy soft setS = (𝐹, 𝐴) defined as follows gives the
evaluation of the performance of candidates by three judges:

𝐹 (𝑒
1

) = {⟨𝑥
1

, {[0.6, 0.8] , [0.6, 0.7] , [0.8, 0.9]}⟩ ,

⟨𝑥
2

, {[0.4, 0.5] , [0.7, 0.8] , [0.6, 0.8]}⟩ ,

⟨𝑥
3

, {[0.7, 0.8] , [0.6, 0.8] , [0.7, 0.8]}⟩ ,

⟨𝑥
4

, {[0.8, 0.9] , [0.7, 0.9] , [0.8, 1.0]}⟩} ,



6 Mathematical Problems in Engineering

Table 1: Interval-valued hesitant fuzzy soft setS = (𝐹, 𝐴).

𝑈 𝑒
1

𝑒
2

𝑒
3

𝑥
1

{[0.6, 0.8], [0.6, 0.7], [0.8, 0.9]} {[0.5, 0.6], [0.4, 0.6], [0.5, 0.7]} {[0.3, 0.5], [0.4, 0.7], [0.5, 0.7]}

𝑥
2

{[0.4, 0.5], [0.7, 0.8], [0.6, 0.8]} {[0.7, 0.8], [0.8, 0.9], [0.7, 0.8]} {[0.6, 0.7], [0.5, 0.8], [0.6, 0.8]}

𝑥
3

{[0.7, 0.8], [0.6, 0.8], [0.7, 0.8]} {[0.6, 0.9], [0.7, 0.8], [0.7, 0.9]} {[0.5, 0.7], [0.6, 0.8], [0.4, 0.6]}

𝑥
4

{[0.8, 0.9], [0.7, 0.9], [0.8, 1.0]} {[0.6, 0.7], [0.5, 0.8], [0.6, 0.8]} {[0.7, 0.8], [0.8, 0.9], [0.6, 0.8]}

𝐹 (𝑒
2

) = {⟨𝑥
1

, {[0.5, 0.6] , [0.4, 0.6] , [0.5, 0.7]}⟩ ,

⟨𝑥
2

, {[0.7, 0.8] , [0.8, 0.9] , [0.7, 0.8]}⟩ ,

⟨𝑥
3

, {[0.6, 0.9] , [0.7, 0.8] , [0.7, 0.9]}⟩ ,

⟨𝑥
4

, {[0.6, 0.7] , [0.5, 0.8] , [0.6, 0.8]}⟩} ,

𝐹 (𝑒
3

) = {⟨𝑥
1

, {[0.3, 0.5] , [0.4, 0.7] , [0.5, 0.7]}⟩ ,

⟨𝑥
2

, {[0.6, 0.7] , [0.5, 0.8] , [0.6, 0.8]}⟩ ,

⟨𝑥
3

, {[0.5, 0.7] , [0.6, 0.8] , [0.4, 0.6]}⟩ ,

⟨𝑥
4

, {[0.7, 0.8] , [0.8, 0.9] , [0.6, 0.8]}⟩} .

(11)

The tabular representation ofS = (𝐹, 𝐴) is shown in Table 1.

All the available information on these participants per-
forming dance programme can be characterized by an
interval-valued hesitant fuzzy soft setS = (𝐹, 𝐴). In Table 1,
we can see that the precise evaluation for an alternative to
satisfy a criterion is unknown while possible interval values
of such an evaluation are given. For example, we cannot
present the precise degree of how confident the candidate
𝑥
1

performing dance programme is; however, the degree
to which the candidate 𝑥

1

performing dance programme is
confident can be represented by three possible interval values
[0.6, 0.8], [0.6, 0.7], and [0.8, 0.9].

In what follows we will compare some existing soft sets
model with the newly proposed interval-valued hesitant
fuzzy soft sets by using several examples. Finally, we illustrate
the rationality of the newly proposed interval-valued hesitant
fuzzy soft sets.

Remark 18. InDefinition 16, if there is only one element in the
IVHFE 𝐹(𝑒)(𝑥), we can note that an interval-valued hesitant
fuzzy soft set degenerates into an interval-valued fuzzy soft
set [10]. That is to say, interval-valued hesitant fuzzy soft sets
in Definition 16 are an extension of interval-valued fuzzy soft
sets proposed by Yang et al. [10].

Example 19. Let 𝑈 be a set of four participants performing
dance programme, which is denoted by 𝑈 = {𝑥

1

, 𝑥
2

, 𝑥
3

, 𝑥
4

}.
Let 𝐸 be a parameter set, where 𝐸 = {𝑒

1

, 𝑒
2

, 𝑒
3

} = {confident;
creative; graceful}. Now, assume that there is only a judge
who is invited to evaluate the possible membership degrees
of a candidate 𝑥

𝑗

to a parameter 𝑒
𝑖

with an interval value
within [0, 1]. In that case, the evaluation of the performance

of candidates can be presented by an interval-valued fuzzy
soft set which is defined as follows:

𝐹 (𝑒
1

) = {⟨𝑥
1

, [0.6, 0.7]⟩ , ⟨𝑥
2

, [0.6, 0.8]⟩ ,

⟨𝑥
3

, [0.7, 0.8]⟩ , ⟨𝑥
4

, [0.7, 0.9]⟩} ,

𝐹 (𝑒
2

) = {⟨𝑥
1

, [0.5, 0.6]⟩ , ⟨𝑥
2

, [0.7, 0.8]⟩ ,

⟨𝑥
3

, [0.6, 0.9]⟩ , ⟨𝑥
4

, [0.5, 0.8]⟩} ,

𝐹 (𝑒
3

) = {⟨𝑥
1

, [0.3, 0.5]⟩ , ⟨𝑥
2

, [0.6, 0.7]⟩ ,

⟨𝑥
3

, [0.4, 0.6]⟩ , ⟨𝑥
4

, [0.6, 0.8]⟩} .

(12)

However, we point out that it is unreasonable to invite
only an expert to develop the policy with an interval number
because of the consideration of comprehension and ratio-
nality in the process of decision making. Therefore, in many
decisionmaking problems, it is necessary for decisionmakers
to need several experts participating in developing the policy.
Thus the decision results may be more comprehensive and
reasonable. In this case, the evaluation of the performance
of candidates can be described as an interval-valued hesitant
fuzzy soft set which is defined in Example 17.

Comparing with the results of two models, we observe
that interval-valued hesitant fuzzy soft sets contain more
information than interval-valued fuzzy soft sets. Hence, we
say that the available information in interval-valued hesitant
fuzzy soft sets is more comprehensive and reasonable than
interval-valued fuzzy soft sets, and interval-valued hesitant
fuzzy soft sets are indeed an extension of interval-valued
fuzzy soft sets proposed by Yang et al. [10].

Remark 20. When the upper and lower limits of all the
interval values in the IVHFE 𝐹(𝑒)(𝑥) are identical, it should
be noted that an interval-valued hesitant fuzzy soft set
degenerates into a hesitant fuzzy soft set in [35, 36], which
indicates that hesitant fuzzy soft sets are a special type of
interval-valued hesitant fuzzy soft sets.

Example 21. Let 𝑈 be a set of four participants performing
dance programme, which is denoted by 𝑈 = {𝑥

1

, 𝑥
2

, 𝑥
3

, 𝑥
4

}.
Let 𝐸 be a parameter set, where 𝐸 = {𝑒

1

, 𝑒
2

, 𝑒
3

} = {confident;
creative; graceful}. Now we suppose that there are three
judges who are invited to evaluate the possible membership
degrees of a candidate 𝑥

𝑗

to a parameter 𝑒
𝑖

with crisp
numbers. In that case, the evaluation of the performance of
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candidates can be described as a hesitant fuzzy soft set defined
as follows:

𝐹 (𝑒
1

) = {⟨𝑥
1

, {0.6, 0.7, 0.8}⟩ , ⟨𝑥
2

, {0.5, 0.7, 0.8}⟩ ,

⟨𝑥
3

, {0.7, 0.8, 0.8}⟩ , ⟨𝑥
4

, {0.8, 0.9, 0.9}⟩} ,

𝐹 (𝑒
2

) = {⟨𝑥
1

, {0.5, 0.6, 0.7}⟩ , ⟨𝑥
2

, {0.7, 0.8, 0.8}⟩ ,

⟨𝑥
3

, {0.6, 0.7, 0.9}⟩ , ⟨𝑥
4

, {0.6, 0.8, 0.8}⟩} ,

𝐹 (𝑒
3

) = {⟨𝑥
1

, {0.4, 0.5, 0.7}⟩ , ⟨𝑥
2

, {0.6, 0.7, 0.7}⟩ ,

⟨𝑥
3

, {0.4, 0.6, 0.7}⟩ , ⟨𝑥
4

, {0.7, 0.8, 0.8}⟩} .

(13)

In this example, if the available information and the expe-
rience of experts are both short, it is unreasonable to exactly
quantify their opinions by using several crisp numbers. Thus
the decision makers are apt to lose information and may
supply incorrect policies through using hesitant fuzzy soft
set theory. But decision makers can overcome the difficulty
by adopting several interval numbers. Thus the evaluation of
the performance of candidates can be presented by interval-
valued hesitant fuzzy soft sets defined in Example 17.

Comparing with the results of twomodels, we see that the
available information in interval-valued hesitant fuzzy soft
sets is more comprehensive and scientific than hesitant fuzzy
soft sets, and hesitant fuzzy soft sets are indeed a special case
of interval-valued hesitant fuzzy soft sets.

Remark 22. If there is only one interval value in the IVHFE
𝐹(𝑒)(𝑥) whose upper and lower limits are identical, interval-
valued hesitant fuzzy soft sets inDefinition 16 degenerate into
the fuzzy soft set presented by Maji et al. in [12]. That is, the
fuzzy soft sets presented byMaji et al. in [12] are a special case
of interval-valued hesitant fuzzy soft sets defined by us.

Example 23. Let 𝑈 be a set of four participants performing
dance programme, which is denoted by 𝑈 = {𝑥

1

, 𝑥
2

, 𝑥
3

, 𝑥
4

}.
Let 𝐸 be a parameter set, where 𝐸 = {𝑒

1

, 𝑒
2

, 𝑒
3

} = {confident;
creative; graceful}. Assume that there is a judge who is invited
to evaluate the possible membership degrees of a candidate
𝑥
𝑗

to a parameter 𝑒
𝑖

with a crisp number. In that case, the
evaluation of the performance of candidates can be described
as fuzzy soft sets defined as follows:

𝐹 (𝑒
1

) =

0.6

𝑥
1

+

0.5

𝑥
2

+

0.8

𝑥
3

+

0.9

𝑥
4

,

𝐹 (𝑒
2

) =

0.5

𝑥
1

+

0.7

𝑥
2

+

0.7

𝑥
3

+

0.8

𝑥
4

,

𝐹 (𝑒
3

) =

0.4

𝑥
1

+

0.6

𝑥
2

+

0.7

𝑥
3

+

0.8

𝑥
4

.

(14)

Now, we reconsider the example. On the one hand, in
many decision making events, it is unreasonable to invite
only an expert to develop the policy with a crisp number.
Several experts participating in developing the policy can
make the decision results more comprehensive and objective.
On the other hand, if the experts’ experience is short, it is

very difficult for the experts to exactly quantify their opinions
by using several crisp numbers. Instead, adopting interval
numbers may overcome the difficulty. Considering the above
two facts, the evaluation of the performance of candidates can
be described as interval-valuedhesitant fuzzy soft sets defined
in Example 17.

Based on the above discussions, we can note that the
available information in interval-valued hesitant fuzzy soft
sets is more comprehensive and objective than fuzzy soft sets,
and fuzzy soft sets are indeed a special type of interval-valued
hesitant fuzzy soft sets.

From Remark 18, we can note that an interval-valued
fuzzy soft set can be induced by an interval-valued hesitant
fuzzy soft set. So we introduce reduct interval-valued fuzzy
soft sets of interval-valued hesitant fuzzy soft sets.

Definition 24. The optimistic reduct interval-valued fuzzy
soft set (ORIVFS) of an interval-valued hesitant fuzzy soft set
(𝐹, 𝐴) is defined as an interval-valued fuzzy soft set (𝐹

+

, 𝐴)

over 𝑈 such that, for all 𝛾𝜎(𝑘) ∈ 𝐹(𝑒)(𝑥),

𝐹
+

(𝑒) = {(𝑥, 𝐹
+

(𝑒) (𝑥)) : 𝑥 ∈ 𝑈}

= {(𝑥,

𝑙

⋁

𝑘=1

𝛾
𝜎(𝑘)

) : 𝑥 ∈ 𝑈} , ∀𝑒 ∈ 𝐴,

(15)

where 𝛾
𝜎(𝑘)

= [𝛾
𝜎(𝑘)𝐿

, 𝛾
𝜎(𝑘)𝑈

] is the 𝑘th largest interval
number in the IVHFE 𝐹(𝑒)(𝑥) and 𝑙 stands for the number
of interval numbers in the IVHFE 𝐹(𝑒)(𝑥).

Definition 25. The neutral reduct interval-valued fuzzy soft
set (NRIVFS) of an interval-valued hesitant fuzzy soft set
(𝐹, 𝐴) is defined as an interval-valued fuzzy soft set (𝐹

𝑁

, 𝐴)

over 𝑈 such that, for all 𝛾𝜎(𝑘) ∈ 𝐹(𝑒)(𝑥),

𝐹
𝑁

(𝑒) = {(𝑥, 𝐹
𝑁

(𝑒) (𝑥)) : 𝑥 ∈ 𝑈}

= {(𝑥,

1

𝑙

𝑙

∑

𝑘=1

𝛾
𝜎(𝑘)

) : 𝑥 ∈ 𝑈} , ∀𝑒 ∈ 𝐴,

(16)

where 𝛾
𝜎(𝑘)

= [𝛾
𝜎(𝑘)𝐿

, 𝛾
𝜎(𝑘)𝑈

] is the 𝑘th largest interval
number in the IVHFE 𝐹(𝑒)(𝑥) and 𝑙 stands for the number
of interval numbers in the IVHFE 𝐹(𝑒)(𝑥).

To illustrate the notions presented above, we introduce
the following example.

Example 26. Reconsider Example 17. By (3) and Definitions
24 and 25, we can compute the ORIVFS (𝐹

+

, 𝐴) and NRIVFS
(𝐹
𝑁

, 𝐴) of the interval-valued hesitant fuzzy soft set (𝐹, 𝐴)
shown in Tables 2 and 3, respectively.

3.3. Operations on Interval-ValuedHesitant Fuzzy Soft Sets. In
the above subsection, we have extended soft sets model into
interval-valued hesitant fuzzy environment and presented
interval-valued hesitant fuzzy soft sets. As the above sub-
section mentioned, interval-valued hesitant fuzzy soft sets
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Table 2: ORIVFS ofS = (𝐹, 𝐴).

𝑈 𝑒
1

𝑒
2

𝑒
3

𝑥
1

[0.8, 0.9] [0.5, 0.7] [0.5, 0.7]

𝑥
2

[0.7, 0.8] [0.8, 0.9] [0.6, 0.8]

𝑥
3

[0.7, 0.8] [0.7, 0.9] [0.6, 0.8]

𝑥
4

[0.8, 1.0] [0.6, 0.8] [0.8, 0.9]

Table 3: NRIVFS ofS = (𝐹, 𝐴).

𝑈 𝑒
1

𝑒
2

𝑒
3

𝑥
1

[0.67, 0.70] [0.47, 0.63] [0.40, 0.63]

𝑥
2

[0.57, 0.70] [0.73, 0.83] [0.57, 0.77]

𝑥
3

[0.67, 0.80] [0.67, 0.87] [0.50, 0.70]

𝑥
4

[0.77, 0.93] [0.57, 0.77] [0.70, 0.83]

are an extension of several soft sets model, such as interval-
valued fuzzy soft sets, hesitant fuzzy soft sets, and fuzzy soft
sets. In these existing soft sets models, authors defined some
operations on their own model, respectively. For example,
Wang et al. [36] defined the complement, “AND,” and “OR”
operations on hesitant fuzzy soft sets. In [43], some new oper-
ations, such as ring sum and ring product, are also defined
on hesitant fuzzy soft sets. Meanwhile, they also discussed
some of the interesting properties. Along the lines of these
works, we will further generalize those operations defined in
these existing soft setsmodel to interval-valued hesitant fuzzy
environment and present some new operations on interval-
valued hesitant fuzzy soft sets. Then some properties will
be further established for such operations on interval-valued
hesitant fuzzy soft sets.

In the subsection, unless otherwise stated, the operations
on IVHFEs are carried out by the assumptions given by Chen
et al. [37] and Definition 13 developed by us.

First, we give the definition of interval-valued hesitant
fuzzy soft subsets.

Definition 27. Let 𝑈 be an initial universe and let 𝐸 be a set
of parameters. Supposing that 𝐴, 𝐵 ⊆ 𝐸, (𝐹, 𝐴) and (𝐺, 𝐵)

are two interval-valued hesitant fuzzy soft sets, one says that
(𝐹, 𝐴) is an interval-valued hesitant fuzzy soft subset of (𝐺, 𝐵)
if and only if

(1) 𝐴 ⊆ 𝐵,

(2) 𝛾𝜎(𝑘)
1

≤ 𝛾
𝜎(𝑘)

2

,

where, for all 𝑒 ∈ 𝐴, 𝑥 ∈ 𝑈, 𝛾𝜎(𝑘)
1

, and 𝛾
𝜎(𝑘)

2

stand for the 𝑘th
largest interval number in the IVHFEs 𝐹(𝑒)(𝑥) and 𝐺(𝑒)(𝑥),
respectively.

In this case, wewrite (𝐹, 𝐴) ⊑ (𝐺, 𝐵). (𝐹, 𝐴) is said to be an
interval-valued hesitant fuzzy soft super set of (𝐺, 𝐵) if (𝐺, 𝐵)
is an interval-valued hesitant fuzzy soft subset of (𝐹, 𝐴). We
denote it by (𝐹, 𝐴) ⊒ (𝐺, 𝐵).

Example 28. Suppose that 𝑈 = {𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥
4

} is an ini-
tial universe and 𝐸 = {𝑒

1

, 𝑒
2

, 𝑒
3

} is a set of parameters.

Let 𝐴 = {𝑒
1

, 𝑒
2

}, 𝐵 = 𝐸 = {𝑒
1

, 𝑒
2

, 𝑒
3

}. Two interval-valued
hesitant fuzzy soft sets (𝐹, 𝐴) and (𝐺, 𝐴) are given as follows.

𝐹 (𝑒
1

) = {⟨𝑥
1

, {[0.2, 0.5] , [0.3, 0.6]}⟩ ,

⟨𝑥
2

, {[0.3, 0.5] , [0.4, 0.7] , [0.6, 0.8]}⟩ ,

⟨𝑥
3

, {[0.3, 0.9] , [0.5, 0.8]}⟩ ,

⟨𝑥
4

, {[0.2, 0.4] , [0.5, 0.7]}⟩} ,

𝐹 (𝑒
2

) = {⟨𝑥
1

, {[0.1, 0.4] , [0.3, 0.7] , [0.3, 0.8]}⟩ ,

⟨𝑥
2

, {[0.4, 0.5] , [0.5, 0.6]}⟩ ,

⟨𝑥
3

, {[0.2, 0.4] , [0.4, 0.5]}⟩ ,

⟨𝑥
4

, {[0.2, 0.3] , [0.4, 0.6]}⟩} ,

𝐺 (𝑒
1

) = {⟨𝑥
1

, {[0.4, 0.6] , [0.2, 0.9]}⟩ ,

⟨𝑥
2

, {[0.2, 0.7] , [0.3, 0.9] , [0.7, 0.9]}⟩ ,

⟨𝑥
3

, {[0.6, 0.8]}⟩ ,

⟨𝑥
4

, {[0.3, 0.5] , [0.6, 0.8] , [0.7, 0.8]}⟩} ,

𝐺 (𝑒
2

) = {⟨𝑥
1

, {[0.3, 0.5] , [0.4, 0.8]}⟩ ,

⟨𝑥
2

, {[0.3, 0.7] , [0.4, 0.8]}⟩ ,

⟨𝑥
3

, {[0.3, 0.5] , [0.3, 0.7] , [0.5, 0.8]}⟩ ,

⟨𝑥
4

, {[0.3, 0.5] , [0.5, 0.6]}⟩} ,

𝐺 (𝑒
3

) = {⟨𝑥
1

, {[0.3, 0.5] , [0.5, 0.6] , [0.8, 1.0]}⟩ ,

⟨𝑥
2

, {[0.55, 0.6] , [0.7, 0.9]}⟩ ,

⟨𝑥
3

, {[0.3, 0.7] , [0.8, 0.85] , [0.9, 1.0]}⟩ ,

𝑥
4

, ⟨{[0.7, 0.9] , [0.8, 1.0]}⟩} .

(17)

By (3) and Definition 27, we have (𝐹, 𝐴) ⊑ (𝐺, 𝐵).

Definition 29. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two interval-valued
hesitant fuzzy soft sets. Now (𝐹, 𝐴) and (𝐺, 𝐵) are said to be
interval-valued hesitant fuzzy soft equal if and only if

(1) (𝐹, 𝐴) ⊑ (𝐺, 𝐵),

(2) (𝐺, 𝐵) ⊑ (𝐹, 𝐴),

which can be denoted by (𝐹, 𝐴) = (𝐺, 𝐵).

Definition 30. The complement of (𝐹, 𝐴), denoted by (𝐹, 𝐴)𝑐,
is defined by (𝐹, 𝐴)𝑐 = (𝐹

𝑐

, 𝐴), where 𝐹𝑐 : 𝐴 → IVHF(𝑈) is
a mapping given by 𝐹𝑐(𝑒), for all 𝑒 ∈ 𝐴, such that 𝐹𝑐(𝑒) is the
complement of interval-valued hesitant fuzzy set 𝐹(𝑒) on 𝑈.

Clearly, we have ((𝐹, 𝐴)𝑐)𝑐 = (𝐹, 𝐴).
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Example 31. Consider the interval-valued hesitant fuzzy
soft set (𝐺, 𝐵) over 𝑈 defined in Example 28. Thus, by
Definition 30, we have

𝐺
𝑐

(𝑒
1

) = {⟨𝑥
1

, {[0.1, 0.8] , [0.4, 0.6]}⟩ ,

⟨𝑥
2

, {[0.1, 0.3] , [0.1, 0.7] , [0.3, 0.8]}⟩ ,

⟨𝑥
3

, {[0.2, 0.4]}⟩ ,

⟨𝑥
4

, {[0.2, 0.3] , [0.2, 0.4] , [0.5, 0.7]}⟩} ,

𝐺
𝑐

(𝑒
2

) = {⟨𝑥
1

, {[0.2, 0.6] , [0.5, 0.7]}⟩ ,

⟨𝑥
2

, {[0.2, 0.6] , [0.3, 0.7]}⟩ ,

⟨𝑥
3

, {[0.2, 0.5] , [0.3, 0.7] , [0.5, 0.7]}⟩ ,

⟨𝑥
4

, {[0.4, 0.5] , [0.5, 0.7]}⟩} ,

𝐺
𝑐

(𝑒
3

) = {⟨𝑥
1

, {[0.0, 0.2] , [0.4, 0.5] , [0.5, 0.7]}⟩ ,

⟨𝑥
2

, {[0.1, 0.3] , [0.4, 0.45]}⟩ ,

⟨𝑥
3

, {[0.0, 0.1] , [0.15, 0.2] , [0.3, 0.7]}⟩ ,

⟨𝑥
4

, {[0.0, 0.2] , [0.1, 0.3]}⟩} .

(18)

By the suggestions given by Molodtsov in [1], we present
the notion of ANDandORoperations on two interval-valued
hesitant fuzzy soft sets as follows.

Definition 32. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two interval-valued
hesitant fuzzy soft sets over 𝑈. The “(𝐹, 𝐴) AND (𝐺, 𝐵),”
denoted by (𝐹, 𝐴) ∧ (𝐺, 𝐵), is defined by

(𝐹, 𝐴) ∧ (𝐺, 𝐵) = (𝐻̃, 𝐴 × 𝐵) , (19)

where, for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵,

𝐻̃ (𝛼, 𝛽) = {⟨𝑥, 𝐻̃ (𝛼, 𝛽) (𝑥)⟩ : 𝑥 ∈ 𝑈}

= {⟨𝑥, 𝐹 (𝛼) (𝑥) ∩ 𝐺 (𝛽) (𝑥)⟩ : 𝑥 ∈ 𝑈} .

(20)

Definition 33. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two interval-valued
hesitant fuzzy soft sets over 𝑈. The “(𝐹, 𝐴) OR (𝐺, 𝐵),”
denoted by (𝐹, 𝐴) ∨ (𝐺, 𝐵), is defined by

(𝐹, 𝐴) ∨ (𝐺, 𝐵) = (𝐼, 𝐴 × 𝐵) , (21)

where, for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵,

𝐼 (𝛼, 𝛽) = {⟨𝑥, 𝐼 (𝛼, 𝛽) (𝑥)⟩ : 𝑥 ∈ 𝑈}

= {⟨𝑥, 𝐹 (𝛼) (𝑥) ∪ 𝐺 (𝛽) (𝑥)⟩ : 𝑥 ∈ 𝑈} .

(22)

Example 34. Reconsider Example 28. Then we have (𝐹, 𝐴) ∧
(𝐺, 𝐵) = (𝐻̃, 𝐴×𝐵) and (𝐹, 𝐴)∨(𝐺, 𝐵) = (𝐼, 𝐴×𝐵) as follows:

𝐻̃ (𝑒
1

, 𝑒
1

) = {⟨𝑥
1

, {[0.2, 0.5] , [0.2, 0.6]}⟩ ,

⟨𝑥
2

, {[0.2, 0.5] , [0.3, 0.7] , [0.6, 0.8]}⟩ ,

⟨𝑥
3

, {[0.3, 0.8] , [0.5, 0.8]}⟩ ,

⟨𝑥
4

, {[0.2, 0.4] , [0.5, 0.7] , [0.5, 0.7]}⟩} ,

𝐻̃ (𝑒
1

, 𝑒
2

) = {⟨𝑥
1

, {[0.2, 0.5] , [0.3, 0.6]}⟩ ,

⟨𝑥
2

, {[0.3, 0.5] , [0.4, 0.7] , [0.4, 0.8]}⟩ ,

⟨𝑥
3

, {[0.3, 0.5] , [0.3, 0.7] , [0.5, 0.8]}⟩ ,

⟨𝑥
4

, {[0.2, 0.4] , [0.5, 0.6]}⟩} ,

𝐻̃ (𝑒
1

, 𝑒
3

) = {⟨𝑥
1

, {[0.2, 0.5] , [0.3, 0.6] , [0.3, 0.6]}⟩ ,

⟨𝑥
2

, {[0.3, 0.5] , [0.4, 0.7] , [0.6, 0.8]}⟩ ,

⟨𝑥
3

, {[0.3, 0.7] , [0.5, 0.8] , [0.5, 0.8]}⟩ ,

⟨𝑥
4

, {[0.2, 0.4] , [0.5, 0.7]}⟩} ,

𝐻̃ (𝑒
2

, 𝑒
1

) = {⟨𝑥
1

, {[0.1, 0.4] , [0.2, 0.7] , [0.2, 0.8]}⟩ ,

⟨𝑥
2

, {[0.2, 0.5] , [0.3, 0.6] , [0.5, 0.6]}⟩ ,

⟨𝑥
3

, {[0.2, 0.4] , [0.4, 0.5]}⟩ ,

⟨𝑥
4

, {[0.2, 0.3] , [0.4, 0.6] , [0.4, 0.6]}⟩} ,

𝐻̃ (𝑒
2

, 𝑒
2

) = {⟨𝑥
1

, {[0.1, 0.4] , [0.3, 0.7] , [0.3, 0.8]}⟩ ,

⟨𝑥
2

, {[0.3, 0.5] , [0.4, 0.6]}⟩ ,

⟨𝑥
3

, {[0.2, 0.4] , [0.3, 0.5] , [0.4, 0.5]}⟩ ,

⟨𝑥
4

, {[0.2, 0.3] , [0.4, 0.6]}⟩} ,

𝐻̃ (𝑒
2

, 𝑒
3

) = {⟨𝑥
1

, {[0.1, 0.4] , [0.3, 0.6] , [0.3, 0.8]}⟩ ,

⟨𝑥
2

, {[0.4, 0.5] , [0.5, 0.6]}⟩ ,

⟨𝑥
3

, {[0.2, 0.4] , [0.4, 0.5] , [0.4, 0.5]}⟩ ,

⟨𝑥
4

, {[0.2, 0.3] , [0.4, 0.6]}⟩} ,

𝐼 (𝑒
1

, 𝑒
1

) = {⟨𝑥
1

, {[0.4, 0.6] , [0.3, 0.9]}⟩ ,

⟨𝑥
2

, {[0.3, 0.7] , [0.4, 0.9] , [0.7, 0.9]}⟩ ,

⟨𝑥
3

, {[0.6, 0.9] , [0.6, 0.8]}⟩ ,

⟨𝑥
4

, {[0.3, 0.5] , [0.6, 0.8] , [0.7, 0.8]}⟩} ,

𝐼 (𝑒
1

, 𝑒
2

) = {⟨𝑥
1

, {[0.3, 0.5] , [0.4, 0.8]}⟩ ,

⟨𝑥
2

, {[0.3, 0.7] , [0.4, 0.8] , [0.6, 0.8]}⟩ ,

⟨𝑥
3

, {[0.3, 0.9] , [0.5, 0.8] , [0.5, 0.8]}⟩ ,

⟨𝑥
4

, {[0.3, 0.5] , [0.5, 0.7]}⟩} ,
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𝐼 (𝑒
1

, 𝑒
3

) = {⟨𝑥
1

, {[0.3, 0.5] , [0.5, 0.6] , [0.8, 1.0]}⟩ ,

⟨𝑥
2

, {[0.55, 0.6] , [0.7, 0.9] , [0.7, 0.9]}⟩ ,

⟨𝑥
3

, {[0.3, 0.9] , [0.8, 0.85] , [0.9, 1.0]}⟩ ,

⟨𝑥
4

, {[0.7, 0.9] , [0.8, 1.0]}⟩} ,

𝐼 (𝑒
2

, 𝑒
1

) = {⟨𝑥
1

, {[0.4, 0.6] , [0.3, 0.9] , [0.3, 0.9]}⟩ ,

⟨𝑥
2

, {[0.4, 0.7] , [0.5, 0.9] , [0.7, 0.9]}⟩ ,

⟨𝑥
3

, {[0.6, 0.8] , [0.6, 0.8]}⟩ ,

⟨𝑥
4

, {[0.3, 0.5] , [0.6, 0.8] , [0.7, 0.8]}⟩} ,

𝐼 (𝑒
2

, 𝑒
2

) = {⟨𝑥
1

, {[0.3, 0.5] , [0.4, 0.8] , [0.4, 0.8]}⟩ ,

⟨𝑥
2

, {[0.4, 0.7] , [0.5, 0.8]}⟩ ,

⟨𝑥
3

, {[0.3, 0.5] , [0.4, 0.7] , [0.5, 0.8]}⟩ ,

⟨𝑥
4

, {[0.3, 0.5] , [0.5, 0.6]}⟩} ,

𝐼 (𝑒
2

, 𝑒
3

) = {⟨𝑥
1

, {[0.3, 0.5] , [0.5, 0.7] , [0.8, 1.0]}⟩ ,

⟨𝑥
2

, {[0.55, 0.6] , [0.7, 0.9]}⟩ ,

⟨𝑥
3

, {[0.3, 0.7] , [0.8, 0.85] , [0.9, 1.0]}⟩ ,

⟨𝑥
4

, {[0.7, 0.9] , [0.8, 1.0]}⟩} .

(23)

Theorem 35. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two interval-valued
hesitant fuzzy soft sets over 𝑈. Then one has the following:

(1) ((𝐹, 𝐴) ∧ (𝐺, 𝐵))
𝑐

= (𝐹, 𝐴)
𝑐

∨ (𝐺, 𝐵)
𝑐,

(2) ((𝐹, 𝐴) ∨ (𝐺, 𝐵))
𝑐

= (𝐹, 𝐴)
𝑐

∧ (𝐺, 𝐵)
𝑐.

Proof. (1) Suppose that (𝐹, 𝐴)∧(𝐺, 𝐵) = (𝐻̃, 𝐴×𝐵).Therefore,
by Definitions 30 and 32, we have ((𝐹, 𝐴)∧(𝐺, 𝐵))𝑐 = (𝐻̃, 𝐴×

𝐵)
𝑐

= (𝐻̃
𝑐

, 𝐴 × 𝐵), where, for all 𝑥 ∈ 𝑈 and (𝛼, 𝛽) ∈ 𝐴 ×

𝐵, 𝐻̃𝑐(𝛼, 𝛽)(𝑥) = (𝐹(𝛼)(𝑥) ∩ 𝐺(𝛽)(𝑥))
𝑐. From Theorem 14, it

follows that (𝐹(𝛼)(𝑥) ∩ 𝐺(𝛽)(𝑥))
𝑐

= 𝐹
𝑐

(𝛼)(𝑥) ∪ 𝐺
𝑐

(𝛽)(𝑥).
On the other hand, by Definitions 30 and 33, we have

(𝐹, 𝐴)
𝑐

∨(𝐺, 𝐵)
𝑐

= (𝐹
𝑐

, 𝐴)∨ (𝐺
𝑐

, 𝐵) = (𝐼, 𝐴×𝐵), where, for all
𝑥 ∈ 𝑈 and (𝛼, 𝛽) ∈ 𝐴 × 𝐵, 𝐼(𝛼, 𝛽)(𝑥) = 𝐹

𝑐

(𝛼)(𝑥) ∪ 𝐺
𝑐

(𝛽)(𝑥).
Hence, (𝐻̃𝑐, 𝐴 × 𝐵) = (𝐼, 𝐴 × 𝐵).

(2)The result can be proved in a similar way.

Theorem 36. Let (𝐹, 𝐴), (𝐺, 𝐵), and (𝐻̃, 𝐶) be three interval-
valued hesitant fuzzy soft sets over 𝑈. Then one has the
following:

(1) (𝐹, 𝐴) ∧ ((𝐺, 𝐵) ∧ (𝐻̃, 𝐶)) = ((𝐹, 𝐴) ∧ (𝐺, 𝐵)) ∧ (𝐻̃, 𝐶),
(2) (𝐹, 𝐴) ∨ ((𝐺, 𝐵) ∨ (𝐻̃, 𝐶)) = ((𝐹, 𝐴) ∨ (𝐺, 𝐵)) ∨ (𝐻̃, 𝐶),
(3) (𝐹, 𝐴)∧((𝐺, 𝐵)∨(𝐻̃, 𝐶)) = ((𝐹, 𝐴)∧(𝐺, 𝐵))∨((𝐹, 𝐴)∧

(𝐻̃, 𝐶)),
(4) (𝐹, 𝐴)∨((𝐺, 𝐵)∧(𝐻̃, 𝐶)) = ((𝐹, 𝐴)∨(𝐺, 𝐵))∧((𝐹, 𝐴)∨

(𝐻̃, 𝐶)).

Proof. (1) Consider ∀𝑥 ∈ 𝑈, 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, and 𝛾 ∈ 𝐶, we
have 𝐹(𝛼)(𝑥) ∩ (𝐺(𝛽)(𝑥) ∩ 𝐻̃(𝛾)(𝑥)) = (𝐹(𝛼)(𝑥) ∩𝐺(𝛽)(𝑥)) ∩

𝐻̃(𝛾)(𝑥), from which we can conclude that (𝐹, 𝐴) ∧ ((𝐺, 𝐵) ∧

(𝐻̃, 𝐶)) = ((𝐹, 𝐴) ∧ (𝐺, 𝐵)) ∧ (𝐻̃, 𝐶) holds.
Similar to the above progress, the proofs of (2), (3), and

(4) can be made.

Remark 37. Suppose that (𝐹, 𝐴) and (𝐺, 𝐵) are two interval-
valued hesitant fuzzy soft sets over 𝑈. It is noted that, for all
(𝛼, 𝛽) ∈ 𝐴×𝐵, if 𝛼 ̸= 𝛽, then (𝐺, 𝐵)∧ (𝐹, 𝐴) ̸= (𝐹, 𝐴)∧ (𝐺, 𝐵),
and (𝐺, 𝐵) ∨ (𝐹, 𝐴) ̸= (𝐹, 𝐴) ∨ (𝐺, 𝐵).

Next, on the basis of the operations in Definition 13,
we first present ring sum and ring product operations on
interval-valued hesitant fuzzy soft sets.

Definition 38. The ring sum operation on the two interval-
valued hesitant fuzzy soft sets 𝐹 and 𝐺 over 𝑈, denoted by
𝐹 ⊕ 𝐺 = 𝐻̃, is a mapping given by

𝐻̃ : 𝐸 󳨀→ IVHF (𝑈) , (24)

such that, for all 𝑒 ∈ 𝐸,

𝐻̃ (𝑒) = {⟨𝑥, 𝐻̃ (𝑒) (𝑥)⟩ : 𝑥 ∈ 𝑈}

= {⟨𝑥, 𝐹 (𝑒) (𝑥) ⊕ 𝐺 (𝑒) (𝑥)⟩ : 𝑥 ∈ 𝑈} .

(25)

Definition 39. The ring product operation on the two
interval-valued hesitant fuzzy soft sets 𝐹 and 𝐺 over 𝑈,
denoted by 𝐹 ⊗ 𝐺 = 𝐻̃, is a mapping given by

𝐻̃ : 𝐸 󳨀→ IVHF (𝑈) , (26)

such that, for all 𝑒 ∈ 𝐸,

𝐻̃ (𝑒) = {⟨𝑥, 𝐻̃ (𝑒) (𝑥)⟩ : 𝑥 ∈ 𝑈}

= {⟨𝑥, 𝐹 (𝑒) (𝑥) ⊗ 𝐺 (𝑒) (𝑥)⟩ : 𝑥 ∈ 𝑈} .

(27)

Example 40. Let us consider the interval-valued hesitant
fuzzy soft set 𝐺 in Example 28. Let 𝐹 be another interval-
valued hesitant fuzzy soft set over 𝑈 defined as follows:

𝐹 (𝑒
1

) = {⟨𝑥
1

, {[0.3, 0.5] , [0.3, 0.8]}⟩ ,

⟨𝑥
2

, {[0.1, 0.5] , [0.2, 0.5] , [0.4, 0.7]}⟩ ,

⟨𝑥
3

, {[0.2, 0.5] , [0.3, 0.6] , [0.5, 0.8]}⟩ ,

⟨𝑥
4

, {[0.3, 0.4] , [0.5, 0.7]}⟩} ,
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𝐹 (𝑒
2

) = {⟨𝑥
1

, {[0.4, 0.5] , [0.3, 0.7]}⟩ ,

⟨𝑥
2

, {[0.2, 0.6] , [0.3, 0.6]}⟩ ,

⟨𝑥
3

, {[0.2, 0.3] , [0.3, 0.4] , [0.5, 0.8]}⟩ ,

⟨𝑥
4

, {[0.2, 0.4] , [0.4, 0.6]}⟩} ,

𝐹 (𝑒
3

) = {⟨𝑥
1

, {[0.2, 0.5] , [0.4, 0.7]}⟩ ,

⟨𝑥
2

, {[0.5, 0.6] , [0.5, 0.8]}⟩ ,

⟨𝑥
3

, {[0.3, 0.5] , [0.2, 0.7] , [0.3, 0.8]}⟩ ,

⟨𝑥
4

, {[0.3, 0.5] , [0.2, 0.7]}⟩} .

(28)

Then, by Definition 38, we have

(𝐹 ⊕ 𝐺) (𝑒
1

)

= {⟨𝑥
1

, {[0.58, 0.8] , [0.44, 0.98]}⟩ ,

⟨𝑥
2

, {[0.28, 0.85] , [0.44, 0.95] , [0.82, 0.97]}⟩ ,

⟨𝑥
3

, {[0.68, 0.9] , [0.72, 0.92] , [0.8, 0.96]}⟩ ,

⟨𝑥
4

, {[0.51, 0.7] , [0.8, 0.94] , [0.85, 0.94]}⟩} ,

(𝐹 ⊕ 𝐺) (𝑒
2

)

= {⟨𝑥
1

, {[0.58, 0.75] , [0.58, 0.94]}⟩ ,

⟨𝑥
2

, {[0.44, 0.88] , [0.58, 0.92]}⟩ ,

⟨𝑥
3

, {[0.44, 0.65] , [0.51, 0.82] , [0.75, 0.96]}⟩ ,

⟨𝑥
4

, {[0.44, 0.7] , [0.7, 0.84]}⟩} ,

(𝐹 ⊕ 𝐺) (𝑒
3

)

= {⟨𝑥
1

, {[0.44, 0.75] , [0.7, 0.88] , [0.88, 1.0]}⟩ ,

⟨𝑥
2

, {[0.775, 0.84] , [0.85, 0.98]}⟩ ,

⟨𝑥
3

, {[0.51, 0.85] , [0.84, 0.955] , [0.93, 1.0]}⟩ ,

⟨𝑥
4

, {[0.79, 0.95] , [0.84, 1.0]}⟩} .

(29)

By Definition 39, then

(𝐹 ⊗ 𝐺) (𝑒
1

)

= {⟨𝑥
1

, {[0.12, 0.3] , [0.06, 0.72]}⟩ ,

⟨𝑥
2

, {[0.02, 0.35] , [0.06, 0.45] , [0.28, 0.63]}⟩ ,

⟨𝑥
3

, {[0.12, 0.4] , [0.18, 0.48] , [0.3, 0.64]}⟩ ,

⟨𝑥
4

, {[0.09, 0.2] , [0.3, 0.56] , [0.35, 0.56]}⟩} ,

(𝐹 ⊗ 𝐺) (𝑒
2

)

= {⟨𝑥
1

, {[0.12, 0.25] , [0.12, 0.56]}⟩ ,

⟨𝑥
2

, {[0.06, 0.42] , [0.12, 0.48]}⟩ ,

⟨𝑥
3

, {[0.06, 0.15] , [0.09, 0.28] , [0.25, 0.64]}⟩ ,

⟨𝑥
4

, {[0.06, 0.2] , [0.2, 0.36]}⟩} ,

(𝐹 ⊗ 𝐺) (𝑒
3

)

= {⟨𝑥
1

, {[0.06, 0.25] , [0.2, 0.42] , [0.32, 0.7]}⟩ ,

⟨𝑥
2

, {[0.275, 0.36] , [0.35, 0.72]}⟩ ,

⟨𝑥
3

, {[0.09, 0.35] , [0.16, 0.595] , [0.27, 0.8]}⟩ ,

⟨𝑥
4

, {[0.21, 0.45] , [0.16, 0.7]}⟩} .

(30)

Theorem 41. Let 𝐹 and 𝐺 be two interval-valued hesitant
fuzzy soft sets over 𝑈. Then the following laws are valid:

(1) 𝐹 ⊕ 𝐺 = 𝐺 ⊕ 𝐹,
(2) 𝐹 ⊗ 𝐺 = 𝐺 ⊗ 𝐹,
(3) (𝐹 ⊕ 𝐺)

𝑐

= 𝐹
𝑐

⊗ 𝐺
𝑐,

(4) (𝐹 ⊗ 𝐺)
𝑐

= 𝐹
𝑐

⊕ 𝐺
𝑐.

Proof. The proof directly follows from Definitions 38 and 39
andTheorem 14.

Theorem 42. Let 𝐹, 𝐺, and 𝐻̃ be any three interval-valued
hesitant fuzzy soft sets over 𝑈; then the following hold:

(1) (𝐹 ⊕ 𝐺) ⊕ 𝐻̃ = 𝐹 ⊕ (𝐺 ⊕ 𝐻̃),
(2) (𝐹 ⊗ 𝐺) ⊗ 𝐻̃ = 𝐹 ⊗ (𝐺 ⊗ 𝐻̃).

Proof. The properties follow from Definitions 13, 38, and 39.

Definition 43. An interval-valued hesitant fuzzy soft set is
said to be an empty interval-valued hesitant fuzzy soft set,
denoted by ⌀̃, if 𝐹 : 𝐸 → IVHF(𝑈), such that 𝐹(𝑒) =

{⟨𝑥, 𝐹(𝑒)(𝑥)⟩ : 𝑥 ∈ 𝑈} = {⟨𝑥, {[0, 0]}⟩ : 𝑥 ∈ 𝑈}, ∀𝑒 ∈ 𝐸.

Definition 44. An interval-valued hesitant fuzzy soft set is
said to be a full interval-valued hesitant fuzzy soft set, denoted
by 𝑈̃, if 𝐹 : 𝐸 → IVHF(𝑈), such that 𝐹(𝑒) = {⟨𝑥, 𝐹(𝑒)(𝑥)⟩ :

𝑥 ∈ 𝑈} = {⟨𝑥, {[1, 1]}⟩ : 𝑥 ∈ 𝑈}, ∀𝑒 ∈ 𝐸.

From Definitions 43 and 44, obviously we have

(1) ⌀̃ ⊑ 𝐹 ⊑ 𝑈̃,
(2) ⌀̃𝑐 = 𝑈̃,
(3) 𝑈̃𝑐 = ⌀̃.

Theorem 45. Let 𝐹 be an interval-valued hesitant fuzzy soft
set over 𝑈; then the following hold:
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(1) 𝐹 ∨ ⌀̃ = 𝐹, 𝐹 ∧ ⌀̃ = ⌀̃,
(2) 𝐹 ∨ 𝑈̃ = 𝑈̃, 𝐹 ∧ 𝑈̃ = 𝐹,
(3) 𝐹 ⊕ ⌀̃ = 𝐹, 𝐹 ⊗ ⌀̃ = ⌀̃,
(4) 𝐹 ⊕ 𝑈̃ = 𝑈̃, 𝐹 ⊗ 𝑈̃ = 𝐹.

Proof. The proof is straightforward.

Remark 46. Let𝐹 be an interval-valued hesitant fuzzy soft set
over 𝑈. If 𝐹 ̸= 𝑈̃ or 𝐹 ̸= ⌀̃, then 𝐹 ∨ 𝐹

𝑐

̸= 𝑈̃, and 𝐹 ∧ 𝐹
𝑐

̸= ⌀̃.

Remark 47. Let 𝐹 be an interval-valued hesitant fuzzy soft set
over 𝑈. If 𝐹 ̸= 𝑈̃ or 𝐹 ̸= ⌀̃, then 𝐹 ⊕ 𝐹

𝑐

̸= 𝑈̃, and 𝐹 ⊗ 𝐹
𝑐

̸= ⌀̃.

4. An Adjustable Approach to
Interval-Valued Hesitant Fuzzy Soft Sets
Based on Decision Making

After interval-valued hesitant fuzzy sets were introduced by
Chen et al. [37], interval-valued hesitant fuzzy sets have
been used in handlingmany fuzzy decisionmaking problems
[38–40]. With the development of soft sets, the application
of fuzzy soft sets in solving decision making problems has
been investigated by many researchers [13–15]. In the current
section, we will present an adjustable approach to interval-
valued hesitant fuzzy soft sets based on decision making. In
the following, we will introduce the concept of level hesitant
fuzzy soft sets of interval-valued hesitant fuzzy soft sets.

Definition 48. LetS = (𝐹, 𝐴) be the interval-valued hesitant
fuzzy soft set over 𝑈, where 𝐴 ⊆ 𝐸 and 𝐸 is the parameter
set. For 𝑡 ∈ Int[0, 1] and 𝛾

𝜎(𝑘)

∈ 𝐹(𝑒)(𝑥) (𝑘 = 1, 2, . . . , 𝑙), we
define

𝛼
𝜎(𝑘)

=

{

{

{

1, 𝛾
𝜎(𝑘)

≥ 𝑡,

0, 𝛾
𝜎(𝑘)

< 𝑡,

(31)

where Int[0, 1] stands for the set of all closed subintervals of
[0, 1] and 𝛾

𝜎(𝑘)

= [𝛾
𝜎(𝑘)𝐿

, 𝛾
𝜎(𝑘)𝑈

] is the 𝑘th largest interval
number in the IVHFE𝐹(𝑒)(𝑥).Then the hesitant fuzzy soft set
(𝐹
𝑡

, 𝐴), called a 𝑡-level hesitant fuzzy soft set𝐿(S; 𝑡) = (𝐹
𝑡

, 𝐴),
is defined by

𝐹
𝑡

(𝑒) = 𝐿 (𝐹 (𝑒) ; 𝑡)

= {⟨𝑥, 𝐹
𝑡

(𝑒) (𝑥)⟩ : 𝑥 ∈ 𝑈} = {⟨𝑥, {𝛼
𝜎(𝑘)

}⟩ : 𝑥 ∈ 𝑈} ,

(32)

for all 𝑒 ∈ 𝐴.

Remark 49. In Definition 48, it is worth noting that 𝑡 which
is viewed as a given threshold is not a real number but an
interval value belonging to Int[0, 1] on membership values.
In practical applications, these interval value thresholds are
in advance given by decision makers according to their
requirements on “membership levels.” It is easy to see that
HFEs of level hesitant fuzzy soft sets consist of 1 and 0, which
is very important in real-life applications of interval-valued
hesitant fuzzy soft sets based on decision making.

Table 4: Tabular representation of 𝐿(S; [0.6, 0.8]).

𝑈 𝑒
1

𝑒
2

𝑒
3

𝑥
1

{1, 0, 1} {0, 0, 0} {0, 0, 0}

𝑥
2

{0, 1, 1} {1, 1, 1} {0, 0, 1}

𝑥
3

{1, 1, 1} {1, 1, 1} {0, 1, 0}

𝑥
4

{1, 1, 1} {0, 0, 1} {1, 1, 1}

To illustrate Definition 48, let us consider the interval-
valued hesitant fuzzy soft set (𝐹, 𝐴) shown in Example 17.

Example 50 (the [0.6, 0.8]-level hesitant fuzzy soft set of
the interval-valued hesitant fuzzy soft set S). Reconsider
Example 17. Now taking 𝑡 = [0.6, 0.8], then, by (3) and
Definition 48, we have the following [0.6, 0.8]-level hesitant
fuzzy soft sets:

𝐿 (𝐹 (𝑒
1

) ; [0.6, 0.8]) = {⟨𝑥
1

, {1, 0, 1}⟩ , ⟨𝑥
2

, {0, 1, 1}⟩ ,

⟨𝑥
3

, {1, 1, 1}⟩ , ⟨𝑥
4

, {1, 1, 1}⟩} ,

𝐿 (𝐹 (𝑒
2

) ; [0.6, 0.8]) = {⟨𝑥
1

, {0, 0, 0}⟩ , ⟨𝑥
2

, {1, 1, 1}⟩ ,

⟨𝑥
3

, {1, 1, 1}⟩ , ⟨𝑥
4

, {0, 0, 1}⟩} ,

𝐿 (𝐹 (𝑒
3

) ; [0.6, 0.8]) = {⟨𝑥
1

, {0, 0, 0}⟩ , ⟨𝑥
2

, {0, 0, 1}⟩ ,

⟨𝑥
3

, {0, 1, 0}⟩ , ⟨𝑥
4

, {1, 1, 1}⟩} .

(33)

Then the [0.6, 0.8]-level hesitant fuzzy soft set of S =

(𝐹, 𝐴) is a special hesitant fuzzy soft set 𝐿(S; [0.6, 0.8]) =

(𝐹
[0.6,0.8]

, 𝐴), where, for 𝑥
𝑗

∈ 𝑈, HFEs of the hesitant fuzzy
sets 𝐹

[0.6,0.8]

(𝑒
𝑖

) = 𝐿(𝐹(𝑒
𝑖

); [0.6, 0.8]) consist of 1 and 0.
For example, 𝐹

[0.6,0.8]

(𝑒
1

) (𝑥
2

) = 𝐿(𝐹(𝑒
1

)(𝑥
2

); [0.6, 0.8]) =

{0, 1, 1}, which means that the second judge and the third
judge think the performance of candidate 𝑥

2

is confident on
the membership degree [0.6, 0.8].

Table 4 gives the tabular representation of the level
hesitant fuzzy soft set 𝐿(S; [0.6, 0.8]).

In Definition 48, we can note that the level threshold is
always a constant interval value 𝑡 ∈ Int[0, 1]. However, in
the process of making decision, decision makers may impose
different thresholds on different parameters. So we substitute
a function for the constant interval value as the thresholds on
the membership value to address this issue.

Definition 51. Let (𝐹, 𝐴) be the interval-valued hesitant fuzzy
soft set over 𝑈, where 𝐴 ⊆ 𝐸 and 𝐸 is the parameter set. Let
𝜆 : 𝐴 → Int[0, 1] be an interval-valued fuzzy set in 𝐴 which
is called a threshold interval-valued fuzzy set. For 𝑥 ∈ 𝑈, and
𝛾
𝜎(𝑘)

∈ 𝐹(𝑒)(𝑥) (𝑘 = 1, 2, . . . , 𝑙), one defines

𝛼
𝜎(𝑘)

=

{

{

{

1, 𝛾
𝜎(𝑘)

≥ 𝜆 (𝑒) ,

0, 𝛾
𝜎(𝑘)

< 𝜆 (𝑒) .

(34)
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Then the hesitant fuzzy soft set (𝐹
𝜆

, 𝐴), called a level hesitant
fuzzy soft set 𝐿(S; 𝜆(𝑒)) = (𝐹

𝜆

, 𝐴) with respect to the fuzzy
set 𝜆, is defined by

𝐹
𝜆

(𝑒) = 𝐿 (𝐹 (𝑒) ; 𝜆 (𝑒))

= {⟨𝑥, 𝐹
𝜆

(𝑒) (𝑥)⟩ : 𝑥 ∈ 𝑈} = {⟨𝑥, {𝛼
𝜎(𝑘)

}⟩ : 𝑥 ∈ 𝑈} ,

(35)

for all 𝑒 ∈ 𝐴.

In order to better understand the above definition, let us
consider the following examples.

Example 52 (the mid-level of interval-valued hesitant fuzzy
soft set). Let S = (𝐹, 𝐴) be an interval-valued hesitant
fuzzy soft sets over 𝑈, where 𝐴 ⊆ 𝐸 and 𝐸 is the parameter
set. Suppose that (𝐹

𝑁

, 𝐴) is a neutral reduct interval-valued
fuzzy soft set of the interval-valued hesitant fuzzy soft set
S = (𝐹, 𝐴) defined by Definition 25. Based on the neutral
reduct interval-valued fuzzy soft set (𝐹

𝑁

, 𝐴), we can define
an interval-valued fuzzy set midS : 𝐴 → Int[0, 1] by

midS (𝑒) =

1

|𝑈|

∑

𝑥∈𝑈

𝐹
𝑁

(𝑒) (𝑥) , (36)

for all 𝑒 ∈ 𝐴. The interval-valued fuzzy set midS is called
the mid-threshold of the interval-valued hesitant fuzzy soft
set S. Moreover, the level hesitant fuzzy soft set of the
interval-valued hesitant fuzzy soft set S with respect to
the mid-threshold interval-valued fuzzy set midS, namely,
𝐿(S;midS), is called the mid-level hesitant fuzzy soft set of
S which is simply denoted as 𝐿(S;mid). In the discussions
below, the mid-level decision rule means that we will adopt
the mid-threshold and consider the mid-level hesitant fuzzy
soft set in interval-valued hesitant fuzzy soft sets based on
decision making.

Reconsider the interval-valued hesitant fuzzy soft setS =

(𝐹, 𝐴)with its tabular representation shown inTable 1. Table 3
gives the tabular representation of the neutral reduct interval-
valued fuzzy soft set (𝐹

𝑁

, 𝐴) of S. From Table 3, the mid-
threshold midS ofS can be given as follows:

midS = {(𝑒
1

, [0.67, 0.7825]) , (𝑒
2

, [0.61, 0.775]) ,

(𝑒
3

, [0.5425, 0.7325])} ,

(37)

and the mid-level hesitant fuzzy soft set ofS is a special hes-
itant fuzzy soft set 𝐿(S;mid) with its tabular representation
given by Table 5.

Example 53 (the top-level of interval-valued hesitant fuzzy
soft set). Let S = (𝐹, 𝐴) be interval-valued hesitant fuzzy
soft sets over 𝑈, where 𝐴 ⊆ 𝐸 and 𝐸 is the parameter
set. Suppose that (𝐹

+

, 𝐴) is an optimistic reduct interval-
valued fuzzy soft set defined by Definition 24. Based on the
optimistic reduct interval-valued fuzzy soft set (𝐹

+

, 𝐴), we
can define an interval-valued fuzzy setmaxS : 𝐴 → Int[0, 1]
by

maxS (𝑒) = max
𝑥∈𝑈

𝐹
+

(𝑒) (𝑥) , (38)

Table 5: Tabular representation of 𝐿(S;mid).

𝑈 𝑒
1

𝑒
2

𝑒
3

Choice value (𝑐
𝑗

)

𝑥
1

{0, 0, 1} {0, 0, 0} {0, 0, 0} 𝑐
1

= 1

𝑥
2

{0, 1, 0} {1, 1, 1} {1, 1, 1} 𝑐
2

= 7

𝑥
3

{1, 0, 1} {1, 1, 1} {0, 1, 0} 𝑐
3

= 6

𝑥
4

{1, 1, 1} {0, 0, 1} {1, 1, 1} 𝑐
4

= 7

Table 6: Tabular representation of 𝐿(S;max).

𝑈 𝑒
1

𝑒
2

𝑒
3

Choice value (𝑐
𝑗

)

𝑥
1

{0, 0, 0} {0, 0, 0} {0, 0, 0} 𝑐
1

= 0

𝑥
2

{0, 0, 0} {0, 1, 0} {0, 0, 0} 𝑐
1

= 1

𝑥
3

{0, 0, 0} {0, 0, 0} {0, 0, 0} 𝑐
1

= 0

𝑥
4

{0, 0, 1} {0, 0, 0} {0, 1, 0} 𝑐
1

= 2

for all 𝑒 ∈ 𝐴. The interval-valued fuzzy set maxS is called
the max-threshold of the interval-valued hesitant fuzzy soft
set S. Moreover, the level hesitant fuzzy soft set of the
interval-valued hesitant fuzzy soft set S with respect to
the max-threshold interval-valued fuzzy set maxS, namely,
𝐿(S;maxS), is called the top-level hesitant fuzzy soft set of
S which is simply denoted as 𝐿(S;max). In the discussions
below, the top-level decision rule means that we will use
the max-threshold and consider the top-level hesitant fuzzy
soft set in interval-valued hesitant fuzzy soft sets based on
decision making.

We also reconsider the interval-valued hesitant fuzzy
soft set S = (𝐹, 𝐴) with its tabular representation shown
in Table 1. Table 2 gives the tabular representation of the
optimistic reduct interval-valued fuzzy soft set (𝐹

+

, 𝐴) of S.
From Table 2, the max-threshold maxS ofS can be given as
follows:

maxS = {(𝑒
1

, [0.8, 1.0]) , (𝑒
2

, [0.8, 0.9]) , (𝑒
3

, [0.8, 0.9])} ,

(39)

and the top-level hesitant fuzzy soft set ofS is a special hes-
itant fuzzy soft set 𝐿(S;max) with its tabular representation
given by Table 6.

In the following we will present an adjustable approach
to interval-valued hesitant fuzzy soft sets based on decision
making.

Algorithm 54.

Step 1. Input an interval-valued hesitant fuzzy soft set S =

(𝐹, 𝐴).

Step 2. Input a threshold interval-valued fuzzy set 𝜆 : 𝐴 →

Int[0, 1] (or give a threshold value 𝑡 ∈ Int[0, 1]; or choose the
mid-level decision rule; or choose the top-level decision rule)
for decision making.

Step 3. Compute the level hesitant fuzzy soft set 𝐿(S; 𝜆) of
S with respect to the threshold interval-valued fuzzy set 𝜆
(or the 𝑡-level hesitant fuzzy soft set 𝐿(S; 𝑡); or the mid-level
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hesitant fuzzy soft set 𝐿(S;mid); or the top-level hesitant
fuzzy soft set 𝐿(S;max)).

Step 4. Present the level hesitant fuzzy soft set 𝐿(S; 𝜆) (or
𝐿(S; 𝑡); or 𝐿(S;mid); or 𝐿(S;max)) in tabular form. For any
𝑥
𝑗

∈ 𝑈, compute the choice value 𝑐
𝑗

of 𝑥
𝑗

.

Step 5. The optimal decision is to select 𝑥
𝑘

if 𝑐
𝑘

= max
𝑗

𝑐
𝑗

.

Step 6. If 𝑘 has more than one value, then any one of 𝑥
𝑘

may
be chosen.

Remark 55. Thebasic motivation for designing Algorithm 54
is to solve interval-valued hesitant fuzzy soft set based on
decision making problem by using level hesitant fuzzy soft
sets initiated in this study. By choosing certain thresholds
or decision strategies such as the mid-level or the top-level
decision rules, we can convert a complex interval-valued
hesitant fuzzy soft set into a simple hesitant fuzzy soft set
called the level hesitant fuzzy soft set. Thus we need not treat
interval-valued hesitant fuzzy soft sets directly in decision
making but only deal with the level hesitant fuzzy soft sets
derived from them.

To illustrate the basic idea of Algorithm 54, we give the
following example.

Example 56. Let us reconsider the decision making problem
that involves the interval-valued hesitant fuzzy soft set S =

(𝐹, 𝐴) with tabular representation as in Table 1. Assume that
all the opinions of three judges must be considered by us. So
we intend to select the object fulfilling the different standards
of three judges in most aspects as the optimal person. Hence,
it is reasonable to use the mid-level decision rule for decision
making in such cases. In Example 52, we have obtained the
mid-level hesitant fuzzy soft set 𝐿(S;mid) ofS with respect
to the threshold interval-valued fuzzy set midS with its
tabular representation given by Table 5.

In Table 5, we can calculate choice values as follows:

𝑐
1

= 1 + 0 + 0 = 1,

𝑐
2

= 1 + 1 × 3 + 1 × 3 = 7,

𝑐
3

= 1 × 2 + 1 × 3 + 1 = 6,

𝑐
4

= 1 × 3 + 1 + 1 × 3 = 7.

(40)

From the choice value listed in Table 5, we can conclude
that the ranking of the four candidates is 𝑥

4

= 𝑥
2

> 𝑥
3

> 𝑥
1

and the best choice is 𝑥
4

and 𝑥
2

.
Next, we use the top-level decision rule to handle the

decision making problem. Table 6 gives the tabular represen-
tation of the level hesitant fuzzy soft set𝐿(S;max) ofS. From
Table 6, it follows that the ranking of the four candidates is
𝑥
4

> 𝑥
2

> 𝑥
3

= 𝑥
1

, and the optimal decision is to select
𝑥
4

.

5. Weighted Interval-Valued Hesitant Fuzzy
Soft Set Based on Decision Making

Section 4 has investigated the application of interval-valued
hesitant fuzzy soft sets based on decision making. It is worth
noting that the importance of the parameters is not reflected
in the process of the above application about interval-
valued hesitant fuzzy soft set. Therefore, the weights of the
parameters should be considered by decisionmakers inmany
decision making events. Suppose that the parameters that we
consider have different weights. In that case, we should take
into account the weighted interval-valued hesitant fuzzy soft
set based on decision making.

In the present section, inspired by the idea of Feng et al. in
[15, 16], we first introduce the concept of weighted interval-
valued hesitant fuzzy soft sets and discuss its applications to
decision making problems.

Definition 57. Let (𝐹, 𝐴) be the interval-valued hesitant fuzzy
soft set over 𝑈, where 𝐴 ⊆ 𝐸 and 𝐸 is the parameter set.
A weighted interval-valued hesitant fuzzy soft set is a triple
℘ = (𝐹, 𝐴, 𝜔) where 𝜔 : 𝐴 → [0, 1] is a weight function
specifying the weight 𝜔

𝑖

= 𝜔(𝑒
𝑖

) for each attribute 𝑒
𝑖

∈ 𝐴.

Remark 58. In Definition 57, if there is only one element
in the IVHFE 𝐹(𝑒)(𝑥), we can note that weighted interval-
valued hesitant fuzzy soft sets degenerate into the weighted
interval-valued fuzzy soft sets presented by Feng et al. in [16].

Remark 59. When there is only one interval value in the
IVHFE 𝐹(𝑒)(𝑥) whose upper and lower limits are identical, it
should be noted that weighted interval-valued hesitant fuzzy
soft sets inDefinition 57 degenerate to theweighted fuzzy soft
set introduced by Feng et al. in [15]. In general, the weighted
fuzzy soft sets and weighted interval-valued fuzzy soft sets
presented by Feng et al. in [15, 16] are two special cases of
weighted interval-valued hesitant fuzzy soft sets defined by
us.

In reality, all the parameters may not be of equal impor-
tance in many decision making problems.The importance of
different parameters can be described as the weight function
in a weighted interval-valued hesitant fuzzy soft set. So the
weighted interval-valued hesitant fuzzy soft set can be applied
to some decision making problems in which the parameters
are not of equal importance.

In order to deal with the weighted interval-valued hesi-
tant fuzzy soft sets based on decision making problems, we
develop a revised version of Algorithm 54 by using weighted
choice values 𝑐

𝑗

as substitutes for choice values 𝑐
𝑗

(see
Algorithm 60).

Algorithm 60.

Step 1. Input a weighted interval-valued hesitant fuzzy soft set
℘ = (𝐹, 𝐴, 𝜔).

Step 2. Input a threshold interval-valued fuzzy set 𝜆 : 𝐴 →

Int[0, 1] (or give a threshold value 𝑡 ∈ Int[0, 1]; or choose
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Table 7: Tabular representation ofG = (𝐹, 𝐴).

𝑈 𝑒
1

𝑒
2

𝑒
3

𝑒
4

ℎ
1

{[0.6, 0.8], [0.6, 0.7]} {[0.6, 0.8], [0.6, 0.6]} {[0.5, 0.6], [0.6, 0.7]} {[0.5, 0.5], [0.4, 0.5]}

ℎ
2

{[0.2, 0.3], [0.3, 0.5]} {[0.6, 0.8], [0.7, 0.8]} {[0.7, 0.8], [0.5, 0.8]} {[0.7, 0.7], [0.6, 0.9]}

ℎ
3

{[0.5, 0.7], [0.6, 0.8]} {[0.7, 0.9], [0.6, 0.8]} {[0.6, 0.8], [0.7, 0.7]} {[0.8, 0.9], [0.9, 0.9]}

ℎ
4

{[0.6, 0.7], [0.8, 0.9]} {[0.5, 0.7], [0.7, 0.8]} {[0.8, 0.9], [0.7, 0.8]} {[0.6, 0.6], [0.8, 0.9]}

ℎ
5

{[0.6, 0.8], [0.7, 0.9]} {[0.6, 0.8], [0.7, 0.8]} {[0.6, 0.8], [0.4, 0.6]} {[0.5, 0.7], [0.8, 0.8]}

Table 8: Tabular representation of ℘ = (𝐹, 𝐴, 𝜔).

𝑈 𝑒
1

, 𝜔
1

= 0.4 𝑒
2

, 𝜔
2

= 0.2 𝑒
3

, 𝜔
3

= 0.15 𝑒
4

, 𝜔
4

= 0.25

ℎ
1

{[0.6, 0.8], [0.6, 0.7]} {[0.6, 0.8], [0.6, 0.6]} {[0.5, 0.6], [0.6, 0.7]} {[0.5, 0.5], [0.4, 0.5]}

ℎ
2

{[0.2, 0.3], [0.3, 0.5]} {[0.6, 0.8], [0.7, 0.8]} {[0.7, 0.8], [0.5, 0.8]} {[0.7, 0.7], [0.6, 0.9]}

ℎ
3

{[0.5, 0.7], [0.6, 0.8]} {[0.7, 0.9], [0.6, 0.8]} {[0.6, 0.8], [0.7, 0.7]} {[0.8, 0.9], [0.9, 0.9]}

ℎ
4

{[0.6, 0.7], [0.8, 0.9]} {[0.5, 0.7], [0.7, 0.8]} {[0.8, 0.9], [0.7, 0.8]} {[0.6, 0.6], [0.8, 0.9]}

ℎ
5

{[0.6, 0.8], [0.7, 0.9]} {[0.6, 0.8], [0.7, 0.8]} {[0.6, 0.8], [0.4, 0.6]} {[0.5, 0.7], [0.8, 0.8]}

the mid-level decision rule; or choose the top-level decision
rule) for decision making.

Step 3. Compute the level hesitant fuzzy soft set 𝐿((𝐹, 𝐴); 𝜆) of
℘with respect to the threshold interval-valued fuzzy set 𝜆 (or
the 𝑡-level hesitant fuzzy soft set 𝐿((𝐹, 𝐴); 𝑡); or the mid-level
hesitant fuzzy soft set 𝐿((𝐹, 𝐴);mid); or the top-level hesitant
fuzzy soft set 𝐿((𝐹, 𝐴);max)).

Step 4. Present the level hesitant fuzzy soft set 𝐿((𝐹, 𝐴); 𝜆) (or
𝐿((𝐹, 𝐴); 𝑡); or 𝐿((𝐹, 𝐴);mid); or 𝐿((𝐹, 𝐴);max)) in tabular
form. For any 𝑥

𝑗

∈ 𝑈, compute the weighted choice value
𝑐
𝑗

of 𝑥
𝑗

.

Step 5. The optimal decision is to select 𝑥
𝑘

if 𝑐
𝑘

= max
𝑗

𝑐
𝑗

.

Step 6. If 𝑘 has more than one value, then any one of 𝑥
𝑘

may
be chosen.

To illustrate the above idea, we consider the following
example.

Example 61. A car company is eager to select the optimum
robot for its manufacturing process. Suppose that 𝑈 =

{ℎ
1

, ℎ
2

, ℎ
3

, ℎ
4

, ℎ
5

} is a set of five robots and 𝐴 is a set of four
criteria, where 𝐴 = {𝑒

1

, 𝑒
2

, 𝑒
3

, 𝑒
4

} = {load capacity; speed;
memory capacity; degree of freedom}.

Now, assume that two evaluation experts impose the
weights on the parameters in 𝐴 as follows: for the parameter
“load capacity,” 𝜔

1

= 0.4; for the parameter “speed,” 𝜔
2

=

0.2; for the parameter “memory capacity,” 𝜔
3

= 0.15; for
the parameter “degree of freedom,” 𝜔

4

= 0.25. The two
experts evaluate the performances of the alternatives ℎ

𝑗

(𝑗 =

1, 2, 3, 4, 5) with respect to criteria 𝑒
𝑖

(𝑖 = 1, 2, 3, 4) and
construct an interval-valued hesitant fuzzy soft setG = (𝐹, 𝐴)

shown in Table 7.
Then the weight function 𝜔 : 𝐴 → [0, 1] and the

interval-valued hesitant fuzzy soft set G = (𝐹, 𝐴) are
transformed into a weighted interval-valued hesitant fuzzy
soft set ℘ = (𝐹, 𝐴, 𝜔). The tabular representation of ℘ =

(𝐹, 𝐴, 𝜔) is shown in Table 8.

Assume that all the evaluations of two experts for five
robots must be taken into account by us. In that case, we
should deal with this problem by using mid-level decision
rule. That is, we will use the mid-threshold midG. In order
to obtain the mid-threshold midG ofG, by Definition 25, we
can calculate the neutral reduct interval-valued fuzzy soft set
ofG given in Table 9. So themid-thresholdmidG ofG can be
obtained as follows:

midG = {(𝑒
1

, [0.55, 0.71]) , (𝑒
2

, [0.63, 0.78]) ,

(𝑒
3

, [0.61, 0.75]) , (𝑒
4

, [0.66, 0.74])} .

(41)

By Definition 51, we obtain the mid-level hesitant fuzzy soft
set of S with respect to the mid-threshold midG. Table 10
gives the tabular representation of the mid-level hesitant
fuzzy soft set 𝐿(G;mid) with weighted choice values. In
Table 10, we can calculate choice values as follows:

𝑐
1

= 0.4 × 2 + 0 + 0 + 0 = 0.8,

𝑐
2

= 0 + 0.2 × 1 + 0.15 × 1 + 0.25 × 2 = 0.85,

𝑐
3

= 0.4 × 1 + 0.2 × 1 + 0.15 × 1 + 0.25 × 2 = 1.25,

𝑐
4

= 0.4 × 2 + 0.2 × 1 + 0.15 × 2 + 0.25 × 1 = 1.55,

𝑐
5

= 0.4 × 2 + 0.2 × 1 + 0 + 0.25 × 1 = 1.25.

(42)

Therefore, according to Table 10, we can conclude that the
ranking of the five alternatives is ℎ

4

> ℎ
5

= ℎ
3

> ℎ
2

> ℎ
1

and
the best choice is ℎ

4

.
As an adjustable approach, one can also use other rules

in the above decision making problem and in general the
final decision result will change accordingly. For instance, we
use the top-level decision rule to handle the decision making
problem. Similar to Example 53, Table 11 gives the tabular
representation of the level hesitant fuzzy soft set 𝐿(G;max)
of G. From Table 11, it follows that the ranking of the five
alternatives is ℎ

4

> ℎ
3

> ℎ
1

= ℎ
2

= ℎ
5

, and the optimal
decision is to select ℎ

4

.
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Table 9: NRIVFS ofG = (𝐹, 𝐴).

𝑈 𝑒
1

𝑒
2

𝑒
3

𝑒
4

ℎ
1

[0.60, 0.75] [0.60, 0.70] [0.55, 0.65] [0.45, 0.50]

ℎ
2

[0.25, 0.40] [0.65, 0.80] [0.60, 0.80] [0.65, 0.80]

ℎ
3

[0.55, 0.75] [0.65, 0.85] [0.65, 0.75] [0.85, 0.90]

ℎ
4

[0.70, 0.80] [0.60, 0.75] [0.75, 0.85] [0.70, 0.75]

ℎ
5

[0.65, 0.85] [0.65, 0.80] [0.50, 0.70] [0.65, 0.75]

Table 10: Tabular representation of 𝐿(G;mid) with weighted choice values.

𝑈 𝑒
1

, 𝜔
1

= 0.4 𝑒
2

, 𝜔
2

= 0.2 𝑒
3

, 𝜔
3

= 0.15 𝑒
4

, 𝜔
4

= 0.25 Weighted choice value (𝑐
𝑗

)

ℎ
1

{1, 1} {0, 0} {0, 0} {0, 0} 𝑐
1

= 0.8

ℎ
2

{0, 0} {0, 1} {1, 0} {1, 1} 𝑐
2

= 0.85

ℎ
3

{0, 1} {1, 0} {0, 1} {1, 1} 𝑐
3

= 1.25

ℎ
4

{1, 1} {0, 1} {1, 1} {0, 1} 𝑐
4

= 1.55

ℎ
5

{1, 1} {0, 1} {0, 0} {0, 1} 𝑐
5

= 1.25

Table 11: Tabular representation of 𝐿(G;max) with weighted choice values.

𝑈 𝑒
1

, 𝜔
1

= 0.4 𝑒
2

, 𝜔
2

= 0.2 𝑒
3

, 𝜔
3

= 0.15 𝑒
4

, 𝜔
4

= 0.25 Weighted choice value (𝑐
𝑗

)

ℎ
1

{0, 0} {0, 0} {0, 0} {0, 0} 𝑐
1

= 0

ℎ
2

{0, 0} {0, 0} {0, 0} {0, 0} 𝑐
2

= 0

ℎ
3

{0, 0} {1, 0} {0, 0} {0, 1} 𝑐
3

= 0.45

ℎ
4

{0, 1} {0, 0} {1, 0} {0, 0} 𝑐
4

= 0.55

ℎ
5

{0, 0} {0, 0} {0, 0} {0, 0} 𝑐
5

= 0

6. Conclusion

In this paper, we propose the concept of interval-valued
hesitant fuzzy soft sets and their properties are also investi-
gated. Meanwhile, an adjustable approach to interval-valued
hesitant fuzzy soft sets based on decision making is proposed
by using level hesitant fuzzy soft sets. Also, we illustrate the
efficiency of the novel method by some examples. More-
over, the weighted interval-valued hesitant fuzzy soft set is
introduced and an example problem is provided to show the
effectiveness of the proposedmodel.This work can be viewed
as the extension of Feng et al. [15, 16].

In the future, it is important and interesting to further
investigate level hesitant fuzzy soft set approach to decision
making based on other extensions of hesitant fuzzy soft set
theory, such as dual hesitant fuzzy soft set theory and dual
interval-valued fuzzy soft set theory.
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