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A Wiener-Laguerre model with artificial neural network (ANN) as its nonlinear static part was employed to describe the dynamic
behavior of a sequencing batch reactor (SBR) used for the treatment of dye-containing wastewater. The model was developed based
on the experimental data obtained from the treatment of an effluent containing a reactive textile azo dye, Cibacron yellow FN-2R,
by Sphingomonas paucimobilis bacterium. The influent COD, MLVSS, and reaction time were selected as the process inputs and
the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was « = 0.44. In order
to adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model
were compared to the experimental data and showed a high correlation with R* > 0.99 and a low mean absolute error (MAE).
The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters
of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater

treatment systems to predict effluent characteristics.

1. Introduction

The reactive dye-containing effluents from dye manufactur-
ing and application industries can cause serious environment
pollution due to the toxicity and slow degradation of dyes
[1]. In addition, the presence of dyes in water is highly
visible and affects water transparency and aesthetics even in
low concentrations. Therefore, the effluents must be treated
before being released into the environment.

In recent years, researchers have shown interests in bio-
logical treatment of wastewaters with high concentrations of
dyes [2, 3]. Treatment of these polluted wastewaters requires
high effectiveness and low cost dye removal processes [4].
Sequencing batch reactor (SBR) is a promising biological
system for treating dye-containing wastewaters [5, 6]. This
system is cost efficient and flexible to handle different feed

characteristics. Furthermore, its operation is easier than
other biological methods [1]. However, the SBR process, like
other biological processes, is highly nonlinear, time varying,
and subject to significant disturbances [7]. Modeling the
treatment process can provide better understanding, design,
operation, and control of the process [8].

The ability of artificial neural networks (ANNSs) in black-
box modeling of nonlinear systems with complicated struc-
ture has made them the most popular tool for modeling
of biological processes [9]. In recent years, recurrent neural
networks are developed based on common NARX (Nonlinear
AutoRegressive eXogenous model) topology in order to char-
acterize the behaviors of dynamic systems. In such models,
the past terms of input and output signals are used as the
network inputs [10]. In literature, different applications of
NARX networks have been reported for monitoring [11, 12],
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controlling [13], optimization [14], and simulation [15, 16]
of wastewater treatment process plants. In spite of good
performances of NARX networks, they are still suffering from
some drawbacks such as the need for prior terms information
of input and output variables. Furthermore, the presence of
output feedback may cause prediction errors to deteriorate
the model performances [10].

Wiener-type models are a class of block-oriented rep-
resentation of nonlinear systems, where a dynamic linear
part is cascaded by a static nonlinear part [17]. In recent
years, Wiener-type models have been successfully applied
to identify nonlinear dynamics in biological processes [18-
20]. Employing standard multilayer perceptron (MLP) net-
works as nonlinear mapping function in Wiener models
structure is proposed as an alternative solution to develop
nonlinear models [21]. The linear part of Wiener mod-
els is often chosen to be as formal autoregressive with
exogenous input (ARX) models. In this case, in order to
attain high performance, a large amount of training data
for estimating the order of model, time delays, and param-
eters would be required. A big obstacle is the high cost
of preparing training data, where special instruments and
data acquisition equipment for online system monitoring are
required.

A combination of orthogonal functions as the linear
dynamic part and artificial neural networks as the mem-
oryless nonlinear part of Wiener models was proposed to
deal with this problem [22, 23]. Laguerre functions are the
most common orthogonal functions used in Wiener model
structure. Simple structure and capability to give accurate
description of systems with rather small number of tunable
parameters are the reasons they have been widely employed
for linear and nonlinear system identification [24].

In this study, a Wiener-Laguerre model is employed
to describe the nonlinear behavior of an SBR used for
dye wastewater treatment. The proposed method has not
been previously used for biological treatment modeling of
dye-containing wastewaters. An aerobic bacterium, Sphin-
gomonas paucimobilis, was used for decolorizing of the
effluent containing a reactive textile azo dye, Cibacron yellow
FN-2R. S. paucimobilis has been shown previously to be
efficient for degradation of azo and triphenylmethane dyes
[25, 26].

2. Material and Methods

2.1. Microorganism. Sphingomonas paucimobilis was isolated
from a closed drainage system located in Perai industrial area,
Perai, Penang, Malaysia, where several heavy industries were
located. The microorganism was grown on slant agar at 35°C
for 2 days under static conditions.

2.2. Media Composition. A synthetic dye-containing wastew-
ater was used in this study. Seed culture medium consisted
of distilled water 1000 mL, powdered Cibacron yellow FN-
2R as the main carbon source, urea as the nitrogen source,
and K,HPO, and KH,PO, as the phosphorous sources
and the nutrients. The composition of the wastewater gave
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a C/N/P ratio of approximately 100/10/1 by adding NH,Cl and
KH,PO,. The initial pH was adjusted to 7 using NaOH.

2.3. Preparation of the Synthetic Dye Wastewater. Cibacron
yellow EN-2R is one of the main reactive dyes that are used
in textile industries. Reactive Cibacron FN-2R was purchased
from Sigma-Aldrich. The dye solution of various concen-
trations 250, 500, 1000, and 1500 mg/L were treated in four
reactors with successively increasing of dye concentration
and were analyzed for COD, BOD, and MLVSS everyday
according to the standard methods [27].

2.4. Experimental Setup. In this study, four cylindrical Plex-
iglass reactors with 14 cm diameter and 46 cm height were
used. The working volume and influent flow rate were 1.6 L
and 3.0L/d, respectively. Four air pumps and four mixers
were used for continuous aeration and mixing. The speed of
impeller was adjusted to 300 rpm to maintain the dissolved
oxygen concentration at DO > 2 ppm. After acclimatization
period, different concentrations of the dye and 2mL of
bacterium (S. paucimobilis) were added to each reactor. The
pH of the mixture was adjusted to 7 after stirring at a constant
temperature (35°C) for a certain period.

2.5. Input-Output Selection. In order to develop accurate and
reliable models, appropriate data sets should be collected
from the variables, which are governing the behavior of
the process. A set of variables including the influent COD,
MLYVSS, and reaction time as the process inputs and the
effluent COD and BOD as the process output were prepared.
Two sets of data including 147 data points (in 147 days) and 90
data points (in 90 days) are chosen for training and validation
of the models, respectively. As a result, the input/output
vectors would be as

Input = [COD,;

n’

MLVSS, Time] ,
@
Output = [BOD,,,, COD,,] .

out>

For increasing the performance of modeling process, the
recorded data are normalized in the range of [0, 1] by dividing
on the maximum value of each datum column.

3. Model Structure and System Identification

Based on the obtained experimental data, appropriate non-
linear models were developed to predict the concentrations
of COD and BOD in the effluent.

Wiener-type model is a well-known block-oriented rep-
resentation of nonlinear systems, in which a linear dynamic
part is cascaded with static nonlinearities. As it is shown in
Figure 1, the sequences of input variable u(k) are mapped into
the intermediate variable v(k) through the transfer function
H(z), where the model output y(k) is estimated throughout
the nonlinear mapping function f(-). Many different options
are available for the linear part and nonlinear mapping
functions.

Here, the considered Wiener model is a combination of
Laguerre basis filters as the linear part and a feed-forward
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FIGURE 1: Wiener type model configuration.

NN for nonlinear mapping. In this case, without loss of
generality by considering a SISO (single-input and single-
output) system, the nonlinear dynamics can be represented
as a discrete-time nonlinear mapping on filtered input terms,

y (k) = f(Iy (k) = u(k),l, (k) «u(k),....I; (k) = u(k)),
2)

where [;(k) denotes the Laguerre filters. This structure isa NN
realization of the Wiener-Laguerre model [21].

As it is presented in (1), three inputs are chosen as the
dominant variables on the effluent COD and BOD. In this
case, each process model can be considered as a multi-input
single-output (MISO) model, as it is presented in Figure 2.

3.1. Laguerre Filters. Laguerre functions can be represented
as a set of discrete-time transfer functions in z-domain,

Viee?[-a+z'Y
L (za) = Sl i=0,1,2,..., (3
l-az '\ 1-az!

where &« € {R || < 1} is the pole parameter. The
dominant pole “a” determines the rate of exponential decay
for Laguerre functions responses, which can be captured
through optimization or by experiments [28]. The first
section of L;(z,«) is a first-order low-pass filter, which is
followed by (i — 1) identical all-pass filters. The orthonormal
bases are formed by a set of Laguerre functions on L,[0,00),

which is defined on z-domain. Consider

1 nd
(L,,L,) = por (ﬁLn(z)Lm (z7) ;Z =8 (4)

For physical systems, the limited order of Laguerre stages can
be employed to approximate system dynamics. In this case,

for a given truncated order “a;” the transfer function H(z) for
a SISO linear discrete-time system is obtained as follows:

H(z) =

Y(z) +
Uz) i_z(,bi (W) L;(za), (%)

in which U(z) and Y (z) are input and output of the system
and b,(«) are the Laguerre coeflicients [28]. By considering
a =0, L;(z, «) will turn to regular delay operators and H(z)
to the usual FIR (finite input response) model. Introducing V;
as the output of Laguerre filters,

Vi=L;(z,&)U(z) i=0,1,2,...,a. (6)
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Thus, for a linear system, the output of an “a-order” Laguerre
network is obtained as the linear combination of the Laguerre
filters output as

Y (2) = ) b ()V,. (7)
i=0

The linear combination of the Laguerre filters’ output can be
replaced by a multilayer perceptrons (MLP) as the nonlinear
mapping function in order to deal with nonlinearities. In
order to increase the performances of Laguerre networks,
it is required that the pole parameters and the order of the
Laguerre filters have to be estimated.

Developing a first order linear model for the process could
be helpful to find appropriate process time constant. For this
aim, the influent and the effluent CODs can be considered as
the model input and output signals. We have

) __H
u(s) Tps+1’

(8)

in which k;, and 7, are the process gain and time constant.
The parameters ofp linear model can be captured using the
MATLAB System Identification Toolbox (Ver. 7.4.2). The best
possible result for the linear system pole was s = -1/7, =
—0.82, as the model output fit on the real data was about 52.1%.
The equivalent discrete pole parameter can be captured by
estimating o = exp(sT) in the z-domain, where the sampling
time T is equal to 1. This results in a = 0.44.

The step responses of Laguerre filters (normalized) are
shown in Figure 3. It is noted that by increasing the order



of Laguerre filters, the structure of the NN part would be
more complicated and therefore computational efforts for the
nonlinear part training would increase. A major advantage
of Laguerre network is its ability to describe the behavior of
nonlinear systems by high-truncated order models. Choosing
the order of filter a = 8 is an appropriate tradeoff between the
complexity and the accuracy of models. The pole parameters
and filter order are chosen to be 0.44 and 9, respectively, for
all input variables.

3.2. Neural Network. A multilayer feed-forward neural net-
work (FFNN) is considered as the nonlinear part of the pro-
posed models. A FFNN is developed by a number of cascaded
layers that are interconnected by weight coefficients to the
neighboring layers nodes. Neurons are the fundamental part
of NN and responsible for information processing, which are
consisting of weighting coefficients, activation functions, and
biases. The structure of FFNN is presented in Figure 4. It is
noted that, in this work, no bias connection was considered.

Generally, a FFNN may have one or more hidden lay-
ers; however, a network with a single hidden layer could
approximate many systems with an acceptable degree of
accuracy. In many cases, choosing the appropriate number
of neurons in the hidden layer and the type of the activation
functions is known as the dominant parameters on the model
performances. The number of neurons in the input/output
layers is chosen with respect to the number of input/output
variables of the investigated system, which are 27 and 1 for
input and output layers, respectively. For a single hidden-
layer NN, it is reccommended that number of hidden neurons
(N},) be chosen with respect to the geometric pyramid rule
proposed as

N, = B+/N, x N,, ©)

where N, and N, are the number of network inputs and
outputs, respectively, and f is multiplication factor. The value
of B should be selected in the range of 0.5 < 3 < 2 depends on
complexity of system [29]. As a result, by considering 8 = 1.8,
the number of neurons in the hidden layer N, would be equal
to 10.

The best activation functions may often be selected
through trial and error. For the hidden layer, activation func-
tions are chosen to be hyperbolic tangent sigmoid function
and the output layer chosen as linear transfer function.

In order to adjust the parameters of NN, the second-order
derivative-based Levenberg-Marquardt (LM) algorithm was
employed. The LM is an accelerated neural networks training
algorithm, which is rather used for adjusting the parameters
of moderate-sized MLP. The model weight parameters (W)
are tuned through iteration by the following equation:

Wip1 = Wi = []T (wi) T (wyi) + MI]A]T (wi) E (wy), (10)

where ] is the Jacobian matrix that is captured by first
derivation of network errors with respect to its parameters
and u is some nonnegative value known as the learning
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FIGURE 3: The step responses of Laguerre bases filters.

Input layer
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FIGURE 4: The structure of feed-forward neural network.

parameter [30]. The objective function for training process
was considered as mean square of error (MSE),

(7 =) (1)

1
e=—
P/

1

where y" and y' are the target and actual outputs for the ith
pattern, respectively, and P is the total number of training
patterns. The error vector E is calculated as follows:

E=le, e, -+ eP]T. (12)

The MATLAB Neural Network Toolbox (ver. 7.0.1) was
employed to perform the process of model training.

4. Simulations and Results

The proposed modeling approach was applied to the exper-
imental data. The performance of the models was measured
by the coefficient of determination (R%) and mean absolute
error (MAE) between the predicted values of the model and
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FIGURE 6: The responses of the developed model (a), Correlation between the actual values and the values predicted by the model for COD
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the experimental values, which were calculated by (13) and
(14), respectively. Consider

Z?:l (J’i* - )’S))z

R=1- "=, (13)
Yict ()’i* -7)
1 < % i

MAE = = 3|y - )|, (14)

nia

where y is the average of y over the n data, and y;" and yg)
are the ith target and predicted responses, respectively.

In Figure 5(a), the responses of the developed model for
prediction of BOD are presented. In addition, the correlation
between the experimental and predicted values is presented
in Figure 5(b). Figure 6(a) shows the responses of the devel-
oped model for prediction of COD, whereas the correlation
between the experimental and predicted values of COD are
depicted in Figure 6(b).

The results indicate the accuracy and ability of the
proposed model to predict the selected parameters perfectly.

The prediction accuracy of the developed models was also
evaluated by performing a comparison between the responses
of the models and the actual values. For this propose, the error

TaBLE 1: Error functions for the developed model predicting BOD
and COD parameters.

Max (le])  Min (le]) Mean MAE R?
BOD  5.3985 1.28¢ — 4 0.0173 03201  0.9998
COD 115073 2.78¢—4  -0.0367 07696  0.9987

functions were calculated, where the error is defined as the
difference between the predicted values by the models and the
experimental data. Here, the upper bound error (Max(|e|)),
lower bound error (Min(|e|)), MAE, and R? are calculated
and presented in Table 1. The results show a small deviation
between the models predicted values and the experimental
data. A significantly high R* and alow MAE obtained indicate
the superior data fitting and prediction capability of the
developed model.

BOD and COD are two major parameters for examining
the quality of discharged wastewater. Their measurements
need significant time and commitment to make proper
adjustments in the wastewater treatment process. The model
proposed has the ability to provide good generalization
performance in capturing nonlinear relationships between



parameters to estimate COD and BOD of the treated wastew-
ater.

5. Conclusion

The present study aimed to explore the potential of the
Wiener-Laguerre network model in estimation of BOD and
COD of the output stream of a SBR system. A multilayer feed-
forward neural network was considered as the nonlinear part
of the proposed model. The performance of the model was
found to be reasonably good with a high R* (0.99) and a small
deviation between the predicted and experimental values.
The proposed model can be used as a flexible alternative to the
first-order models commonly used for long-term prediction
of BOD and COD parameters.
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