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We study dynamics of generalized tachyon scalar field in the framework of teleparallel gravity. This model is an extension of
tachyonic teleparallel dark energy model which has been proposed by Banijamali and Fazlpour (2012). In contrast with tachyonic
teleparallel dark energymodel that has no scaling attractors, here we find some scaling attractors whichmeans that the cosmological
coincidence problem can be alleviated. Scaling attractors are presented for both interacting and noninteracting dark energy and
dark matter cases.

1. Introduction

The usual proposal to explain the late-time accelerated
expansion of our universe is an unknown energy component,
dubbed as dark energy.Thenatural choice andmost attractive
candidate for dark energy is the cosmological constant, but
it is not well accepted because of the cosmological constant
problem [1, 2] as well as the age problem [3]. Thus, many
dynamical dark energy models as alternative possibilities
have been proposed. Quintessence, phantom, k-essence,
quintom, and tachyon field are the most familiar dark energy
models in the literature (for reviews on dark energy models
see [4, 5]). The tachyon field arising in the context of string
theory [4, 5] and its application in cosmology both as a source
of early inflation and late-time cosmic acceleration have been
extensively studied [6–9].

The so-called “teleparallel equivalent of general relativity”
or teleparallel gravity was first constructed by Einstein [10–
13]. In this formulation one uses the curvature-less Weitzen-
bock connection instead of the torsion-less Levi-Civita con-
nection. The relevant Lagrangian in teleparallel gravity is the
torsion scalar 𝑇 which is constructed by contraction of the
torsion tensor.We recall that the Einstein-Hilbert Lagrangian
𝑅 is constructed by contraction of the curvature tensor. Since
teleparallel gravitywith torsion scalar as Lagrangian density is
completely equivalent to a matter-dominated universe in the

framework of general relativity, it cannot be accelerated.Thus
one should generalize teleparallel gravity either by replacing
𝑇 with an arbitrary function, the so-called 𝑓(𝑇) gravity
[14–16], or by adding dark energy into teleparallel gravity
allowing also a nonminimal coupling between dark energy
and gravity. Note that both approaches are inspired by the
similarmodifications of general relativity, that is,𝑓(𝑅) gravity
[17, 18] and nonminimally coupled dark energymodels in the
framework of general relativity [19–26].

Recently Geng et al. [27, 28] have included a nonminimal
coupling between quintessence and gravity in the context of
teleparallel gravity. This theory has been called “teleparallel
dark energy” and its dynamics was studied in [29–31]. Tachy-
onic teleparallel dark energy is a generalization of teleparallel
dark energy by inserting a noncanonical scalar field instead
of quintessence in the action [32]. Phase-space analysis of this
model has been investigated in [33]. On the other hand, there
is no physical argument to exclude the interaction between
dark energy and dark matter. The interaction between these
completely different components of our universe has the same
important consequences such as addressing the coincidence
problem [34]. There are also observational evidences of the
interaction in dark sector [35–40]. In [35–38] Bertolami et al.
have shown that this interaction might imply a violation of
the equivalence principle. By using optical, X-ray, and weak
lensing data from the relaxed galaxy clusters, Abdalla et al.
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[39, 40] have found the signature of interaction between dark
energy and dark matter. An interacting scenario provides
solution to a number of cosmological problems in both
canonical scalar field models [41] and nonminimally coupled
scalar field models such as Brans-Dick field [42, 43].

In this paper, we consider generalized tachyon field as
responsible for dark energy in the framework of teleparallel
gravity. We will be interested in performing a dynamical
analysis of such a model in FRW space time. In such a
study we investigate our model for both interacting and
noninteracting cases. We consider the nonminimal coupling
function of the form 𝑓(𝜙) ∝ 𝜙

2 and choose 𝑛 = 2 in (2).
The basic equations are presented in Section 2. In Section 3
the evolution equations are translated in the language of the
autonomous dynamical system by suitable transformation of
the basic variables. Section 3.1 deals with phase-space analysis
as well as the cosmological implications of the equilibrium
points of the model in noninteracting dark energy dark
matter case. In Section 3.2 an interaction between dark
energy and dark matter has been considered and critical
points and their behavior have been extracted. Section 4 is
devoted to a short summary of our results.

2. Basic Equations

Our model is described by the following action as a general-
ization of tachyon teleparallel dark energy model [32]:

𝑆 = ∫𝑑
4
𝑥𝑒 [L

𝑇
+L
𝜑
+L
𝑚
] ,

L
𝑇
=

𝑇

2𝜅2
,

(1)

L
𝜑
= 𝜉𝑓 (𝜑) 𝑇 − 𝑉 (𝜑) (1 − 2𝑋)

𝑛
, (2)

where 𝑒 = det(𝑒𝑖
𝜇
) = √−𝑔 (𝑒𝑖

𝜇
are the orthonormal comp-

onents of the tetrad), while𝑇/2𝜅2 is the Lagrangian of telepar-
allelism with 𝑇 as the torsion scalar (for an introductory
review of teleparallelism see [12]). L

𝜑
shows nonminimal

coupling of generalized tachyon field 𝜑 with gravity in the
framework of teleparallel gravity and 𝑋 = (1/2)𝜕

𝜇
𝜑𝜕
𝜇
𝜑. The

second part in L
𝜑
is the Lagrangian density of the general-

ized tachyon field which has been studied in [44, 45]. 𝑓(𝜑)
is the nonminimal coupling function, 𝜉 is a dimensionless
constant measuring the nonminimal coupling, and L

𝑚
is

the matter Lagrangian. For 𝑛 = 1/2 our model reduced to
tachyonic teleparallel dark energy discussed in [32]. Here we
consider the case 𝑛 = 2 for two reasons. The first is that for
arbitrary 𝑛 our equations will be very complicated and one
cannot solve themanalytically and the second is that for 𝑛 = 2
wewill obtain interesting physical results as we will see below.

Furthermore, due to complexity of tachyon dynamics,
[46] has proposed an approach based on the redefinition of
the tachyon field as follows:

𝜑 󳨀→ 𝜙 = ∫𝑑𝜑√𝑉 (𝜑) ⇐⇒ 𝜕𝜑 =
𝜕𝜙

√𝑉 (𝜙)

. (3)

In order to obtain a closed autonomous system and perform
the phase-space analysis of the model, we apply (3) in (2) for
𝑛 = 2 that leads to the following action:

𝑆 = ∫𝑑
4
𝑥𝑒 [

𝑇

2𝜅2
+ 𝜉𝑓 (𝜙) 𝑇 − 𝑉 (𝜙)(1 −

2𝑋

𝑉 (𝜙)
)

2

+L
𝑚
] .

(4)

In a spatially flat FRW space-time,

𝑑𝑠
2
= 𝑑𝑡
2
− 𝑎
2
(𝑡) (𝑑𝑟

2
+ 𝑟
2
𝑑Ω
2
) , (5)

and a vierbein choice of the form 𝑒
𝑖

𝜇
= diag(1, 𝑎, 𝑎, 𝑎), the

corresponding Friedmann equations are given by

𝐻
2
=
1

3
(𝜌
𝜙
+ 𝜌
𝑚
) ,

𝐻̇ = −
1

2
(𝜌
𝜙
+ 𝑃
𝜙
+ 𝜌
𝑚
+ 𝑃
𝑚
) ,

(6)

where 𝐻 = ̇𝑎/𝑎 is the Hubble parameter and a dot stands
for the derivative with respect to the cosmic time 𝑡. In these
equations, 𝜌

𝑚
and 𝑃

𝑚
are the matter energy density and

pressure, respectively.
The effective energy density and pressure of generalized

tachyon dark energy read

𝜌
𝜙
= 𝑉 (𝜙) + 2 ̇𝜙

2
− 3

̇𝜙
4

𝑉 (𝜙)
− 6𝜉𝐻

2
𝑓 (𝜙) ,

𝑃
𝜙
= −𝑉 (𝜙) + 2𝜉 (3𝐻

2
+ 2𝐻̇) 𝑓 (𝜙) + 10𝜉𝐻𝑓

,𝜙
̇𝜙

+ ̇𝜙
2
(2 −

̇𝜙
2

𝑉 (𝜙)
) ,

(7)

where 𝑓
,𝜙
= 𝑑𝑓/𝑑𝜙.

The equation of motion of the scalar field can be obtained
by variation of the action (4) with respect to 𝜙:

̈𝜙 + 3𝜇
−2]2𝐻 ̇𝜙 +

1

4
]2 (1 +

3 ̇𝜙
4

𝑉2 (𝜙)
)𝑉
,𝜙

+ 6𝜉]2𝐻2𝑓
,𝜙
= −

]2𝑄
4 ̇𝜙

,

(8)

with 𝑄 a general interaction coupling term between dark
energy and dark matter, 𝜇 = 1/√1 − 2𝑋/𝑉, and ] =

1/√1 − 6𝑋/𝑉. In (7) and (8) we have used the useful relation:

𝑇 = −6𝐻
2
, (9)

which simply arises from the calculation of torsion scalar for
the FRW metric (5). The scalar field evolution (8) expresses
the continuity equation for the field and matter as follows:

̇𝜌
𝜙
+ 3𝐻(1 + 𝜔

𝜙
) 𝜌
𝜙
= −𝑄,

̇𝜌
𝑚
+ 3𝐻 (1 + 𝜔

𝑚
) 𝜌
𝑚
= 𝑄,

(10)
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Table 1: Location of the critical points and the corresponding values of the dark energy density parameter Ω
𝜙
and equation of state 𝜔

𝜙
and

the condition required for an accelerating universe for𝑄 = 0. Here 𝜆
1
= 𝛼(4𝛼𝜉+√16𝛼2𝜉2 − 2𝜆2𝜉)/𝜆

2 and 𝜆
2
= 𝛼(4𝛼𝜉−√16𝛼2𝜉2 − 2𝜆2𝜉)/𝜆

2.

Label (𝑥
𝑐
, 𝑦
𝑐
, 𝑢
𝑐
) Ω

𝜙
𝜔
𝜙

Acceleration

𝐴
1

0, 2√𝜆
1
,
𝜆𝜆
1

2𝛼𝜉
4𝜆
1
(1 −

𝜆
2

8𝜉𝛼2
𝜆
1
)

16𝜉
2
𝛼
4

(𝜆2𝜆
2

1
+ 2𝜉𝛼2) (𝜆2𝜆

1
− 8𝜉𝛼2)

𝜆
2
>
𝜉𝛼
2
(4𝜆
1
− 1)

𝜆
2

1

(1 + √1 −
32𝜆
1

(1 − 4𝜆
1
)
2
)

or

𝜆
2
<
𝜉𝛼
2
(4𝜆
1
− 1)

𝜆
2

1

(1 − √1 −
32𝜆
1

(1 − 4𝜆
1
)
2
)

𝐴
2

0, 2√𝜆
2
,
𝜆𝜆
2

2𝛼𝜉
4𝜆
2
(1 −

𝜆
2

8𝜉𝛼2
𝜆
2
)

16𝜉
2
𝛼
4

(𝜆2𝜆
2

2
+ 2𝜉𝛼2) (𝜆2𝜆

2
− 8𝜉𝛼2)

𝜆
2
>
𝜉𝛼
2
(4𝜆
2
− 1)

𝜆
2

2

(1 + √1 −
32𝜆
2

(1 − 4𝜆
2
)
2
)

or

𝜆
2
<
𝜉𝛼
2
(4𝜆
2
− 1)

𝜆
2

2

(1 − √1 −
32𝜆
2

(1 − 4𝜆
2
)
2
)

Table 2: Stability and existence conditions of the critical points of
the model for 𝑄 = 0.

Label Stability Existence

𝐴
1

Saddle point
if 𝛼 > 0 and 𝜉/𝜆 > 0 and

stable point
if 𝜉 > 0, 𝛼 < 0 and 𝜆 < 0

For all 𝜉 < 0
or

𝜉 ≥ 𝜆
2
/8𝛼
2

𝐴
2

Saddle point
if 𝛼 < 0 and 𝜉/𝜆 < 0 and

stable point
if 𝜉 > 0, 𝛼 > 0 and 𝜆 > 0

For all 𝜉 < 0
or

𝜉 ≥ 𝜆
2
/8𝛼
2

where 𝜔
𝜙
= 𝑃
𝜙
/𝜌
𝜙
is the equation of state parameter of dark

energy which is attributed to the scalar field 𝜙.The barotropic
index is defined by 𝛾 ≡ 1 + 𝜔

𝑚
with 0 < 𝛾 < 2.

Although dynamics of tachyonic teleparallel dark energy
has been studied in [33], no scaling attractors has been found.
Here we are going to perform a phase-space analysis of
generalized tachyonic teleparallel dark energy and as we will
see below that some interesting scaling attractors appear in
such theory.

3. Cosmological Dynamics

In order to perform phase-space and stability analysis of the
model, we introduce the following auxiliary variables:

𝑥 ≡

̇𝜙

√𝑉
, 𝑦 ≡

√𝑉

√3𝐻
, 𝑢 ≡ √𝑓. (11)

The auxiliary variables allow us to straightforwardly obtain
the density parameter of dark energy and dark matter:

Ω
𝜙
≡

𝜌
𝜙

3𝐻2
= 𝜇
−2
𝑦
2
(1 + 3𝑥

2
) − 2𝜉𝑢

2
, (12)

Ω
𝑚
≡
𝜌
𝑚

3𝐻2
= 1 − Ω

𝜙
, (13)

while the equation of state of the field reads

𝜔
𝜙
≡

𝑃
𝜙

𝜌
𝜙

=

−𝜇
−4
𝑦
2
+ 2𝜉𝑢 [(5√3/3) 𝛼𝑥𝑦 + 𝑢 (1 − (2/3) 𝑠)]

𝜇−2𝑦2 (1 + 3𝑥2) − 2𝜉𝑢2
,

(14)

where 𝛼 ≡ 𝑓
,𝜙
/√𝑓 and

𝑠 = −
𝐻̇

𝐻2
= (2𝜉𝑢

2
+ 1)
−1

⋅ [5√3𝛼𝜉𝑢𝑥𝑦 + 6𝜇
−2
𝑥
2
𝑦
2

−
3

2
𝛾𝜇
−2
𝑦
2
(1 + 3𝑥

2
)] +

3𝛾

2
.

(15)

From now we concentrate on exponential scalar field poten-
tial of the form 𝑉 = 𝑉

0
𝑒
−𝑘𝜆𝜙 and the nonminimal coupling

function of the form 𝑓(𝜙) ∝ 𝜙
2. These choices lead to

constant 𝜆 and 𝛼, respectively.
Another quantities with great physical significance,

namely, the total equation of state parameter and the decel-
eration parameter, are given by

𝜔tot ≡
𝑃
𝜙
+ 𝑃
𝑚

𝜌
𝜙
+ 𝜌
𝑚

= 𝜇
−2
𝑦
2
(4𝑥
2
− 𝛾 (1 + 3𝑥

2
))

+ 2𝜉𝑢 [
5√3

3
𝛼𝑥𝑦 + 𝑢(𝛾 −

2

3
𝑠)]

+ 𝛾 − 1,

(16)

𝑞 ≡ −1 −
𝐻̇

𝐻2
=
1

2
+
3

2
𝜔tot

=
3

2
𝜇
−2
𝑦
2
(4𝑥
2
− 𝛾 (1 + 3𝑥

2
))

+ 𝜉𝑢 [5√3𝛼𝑥𝑦 + 𝑢 (3𝛾 − 2𝑠)] +
3𝛾

2
− 1.

(17)
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Figure 1: From (a) to (c), the projections of the phase-space trajectories on the 𝑥-𝑦, 𝑥-𝑢, and 𝑢-𝑦 planes with 𝜉 = 0.5, 𝜆 = −0.6, and 𝛼 = −2
for 𝑄 = 0. For these values of the parameters, point 𝐴

1
is a stable attractor of the model.

Using auxiliary variables (11) the evolution equations (6)
and (8) can be recast as a dynamical system of ordinary
differential equations:

𝑥
󸀠
=
√3

2
[𝜆𝑥
2
𝑦 +

1

2
𝜆]2 (1 + 3𝑥4) 𝑦

− 4𝛼𝜉]2𝑢𝑦−1 − 2√3𝜇−2]2𝑥] − 𝑄,

𝑦
󸀠
= (−

√3

2
𝜆𝑥𝑦 + 𝑠)𝑦,

𝑢
󸀠
=
√3𝛼𝑥𝑦

2
,

(18)

where 𝑄 = 𝑄/ ̇𝜙𝐻√𝑉(𝜙), 𝜆 ≡ −𝑉
,𝜙
/𝑘𝑉, and prime in (18)

denotes differentiation with respect to the so-called e-folding
time𝑁 = ln 𝑎.
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Figure 2: From (a) to (c), the projections of the phase-space trajectories on the 𝑥-𝑦, 𝑥-𝑢, and 𝑢-𝑦 planes with 𝜉 = 0.5, 𝜆 = 0.6, and 𝛼 = 2 for
𝑄 = 0. For these values of the parameters, point 𝐴

2
is a stable attractor of the model.

The next step is the introduction of interaction term 𝑄

to obtain an autonomous system out of (18). The fixed points
(𝑥
𝑐
, 𝑦
𝑐
, 𝑢
𝑐
) for which 𝑥󸀠 = 𝑦󸀠 = 𝑢󸀠 = 0 depend on the choice

of the interaction term 𝑄 and two general possibilities will
be treated in the sequel. The stability of the system at a fixed
point can be obtained from the analysis of the determinant
and trace of the perturbation matrix 𝑀. Such a matrix can
be constructed by substituting linear perturbations 𝑥 →

𝑥
𝑐
+ 𝛿𝑥, 𝑦 → 𝑦

𝑐
+ 𝛿𝑦, and 𝑢 → 𝑢

𝑐
+ 𝛿𝑢 about the

critical point (𝑥
𝑐
, 𝑦
𝑐
, 𝑢
𝑐
) into the autonomous system (18).The

3 × 3 matrix𝑀 of the linearized perturbation equations of
the autonomous system is shown in the appendix. Therefore,
for each critical point we examine the sign of the real part
of the eigenvalues of 𝑀. According to the usual dynamical
system analysis, if the eigenvalues are real and have opposite
signs, the corresponding critical point is a saddle point. A
fixed point is unstable if the eigenvalues are positive and it
is stable for negative real part of the eigenvalues.

In the following subsections we will study the dynamics
of generalized tachyon field with different interaction term
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Figure 3: Three-dimensional phase-space trajectories of the model for 𝑄 = 0 with stable attractors 𝐴
1
(a) and 𝐴

2
(b). The values of the

parameters are those mentioned in Figures 1 and 2, respectively.

𝑄. Although one can work with a general 𝛾 (𝛾 = 1 and 4/3
correspond to dust matter and radiation, resp.) without loss
of generality, we assume 𝛾 = 1 for simplicity.

3.1. The Case for 𝑄 = 0. The first case 𝑄 = 0 clearly
means that there is no interaction between dark energy and
background matter. In this case, there are two critical points
presented in Table 1. From (12) and (14) one can obtain the
corresponding values of density parameter Ω

𝜙
and equation

of state of dark energy𝜔
𝜙
at each point. Also, using (17)we can

find the condition required for acceleration (𝑞 < 0) at each
point. These parameters and conditions have been shown
in Table 1. The stability and existence conditions of critical
points 𝐴

1
and 𝐴

2
are presented in Table 2. We mention that

the corresponding eigenvalues of perturbation matrix 𝑀 at
critical points 𝐴

1
and 𝐴

2
are considerably involved and here

we do not present their explicit expressions, but we can find
sign of them numerically.

Critical Point 𝐴
1
. This critical point is a scaling attractor if

𝜉 > 0, 𝛼 < 0, and 𝜆 < 0. Therefore, cosmological coincidence
problem can be alleviated at this point. 𝐴

1
is a saddle point

for 𝛼 > 0 and 𝜉/𝜆 > 0.

Critical Point 𝐴
2
. 𝐴
2
can also be a scaling attractor of the

model or a saddle point under the same conditions as for𝐴
1
.

In Figure 1 we have chosen the values of the parameters
𝜉, 𝜆, and 𝛼, such that 𝐴

1
became a stable attractor of the

model. Plots in Figure 1 show the phase-space trajectories on
𝑥-𝑦, 𝑥-𝑢, and 𝑢-𝑦 planes from (a) to (c), respectively. The
same plots are shown in Figure 2 for critical point 𝐴

2
. Note

that the values of the parameter have been chosen in the way
that 𝐴

2
became a stable point of the model. In Figure 3, the

corresponding 3-dimensional phase-space trajectories of the
model have been presented. One can see that 𝐴

1
and 𝐴

2
are

stable attractors of themodel in (a) and (b) plots, respectively.

3.2.The Case for𝑄 = 𝛽𝜅𝜌
𝑚
̇𝜙. This deals with the most famil-

iar interaction term extensively considered in the literature
(see, e.g., [31, 47–51]). Here 𝑄 in terms of auxiliary variables
is 𝑄 = √3𝛽𝑦−1Ω

𝑚
. Inserting such an interaction term in (18)

and setting the left hand sides of the equations to zero lead
to the critical points 𝐵

1
, 𝐵
2
, 𝐵
3
, and 𝐵

4
presented in Table 3.

In the same table we have provided the corresponding values
ofΩ
𝜙
and 𝜔

𝜙
as well as the condition needed for accelerating

universe at each fixed points.
The stability and existence conditions for each point are

presented in Table 4. Since the corresponding eigenvalues of
the fixed points are complicated we do not give them here,
but one can obtain their signs numerically and then examine
the stability properties of the critical points.

Critical Point 𝐵
1
.This point exists for 𝜆 > 0 and 𝜉 ≥ 𝜆2/8𝛼2.

However, it is an unstable saddle point.

Critical Point 𝐵
2
.The critical point 𝐵

2
exists for 𝜆 > 0 and 𝜉 <

0 or 𝜉 ≥ 𝜆2/8𝛼2. This point is a scaling attractor of the model
if 𝛼 > 0 and 𝜉 > 0. Figure 4 shows clearly such a behavior of
the model for suitable choices of 𝜉, 𝜆, and 𝛼.

Critical Point 𝐵
3
.This point exists for negative values of 𝜆 and

𝜉 or when 𝜉 ≥ 𝜆
2
/8𝛼
2. Also, it is a stable point if 𝛼 < 0

and 𝜉 > 0 and a saddle point if 𝛼 > 0 and 𝜉 < 0. The
values of parameters have been chosen in Figure 5 such that
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Figure 4: From (a) to (c), the projections of the phase-space trajectories on the 𝑥-𝑦, 𝑥-𝑢, and 𝑢-𝑦 planes with 𝜉 = 0.5, 𝜆 = 0.6, 𝛼 = 2, and
𝛽 = 1.5 for 𝑄 = 𝛽𝜅𝜌

𝑚
̇𝜙. For these values of the parameters, point 𝐵

2
is a stable attractor of the model.

𝐵
3
became a attractor of the model as it is clear from phase-

space trajectories.

Critical Point 𝐵
4
.Thepoint𝐵

4
exists for𝜆 < 0 and 𝜉 ≥ 𝜆2/8𝛼2.

It is a stable point if 𝛼 < 0 and 𝜉 > 0. In Figure 6 values of the
parameters 𝜉 and 𝛼 are those satisfying these constraints and
so 𝐵
4
becomes a attractor point for phase-plane trajectories.

The corresponding 3-dimensional phase-space trajectories of
the model for attractor points 𝐵

2
(a), 𝐵

3
(b), and 𝐵

4
(c) are

plotted in Figure 7.

4. Conclusion

A model of dark energy with nonminimal coupling of
quintessence scalar field with gravity in the framework of
teleparallel gravity was called teleparallel dark energy [27]. If
one replaces quintessence by tachyon field in such a model,
then tachyonic teleparallel dark energy will be constructed
[32].

Moreover, although dark energy and dark matter scale
differently with the expansion of our universe, according to
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Figure 5: From (a) to (c), the projections of the phase space trajectories on the 𝑥-𝑦, 𝑥-𝑢, and 𝑢-𝑦 planes with 𝜉 = 0.5, 𝜆 = −0.6, 𝛼 = −2, and
𝛽 = 1.5 for 𝑄 = 𝛽𝜅𝜌

𝑚
̇𝜙. For these values of the parameters, point 𝐵

3
is a stable attractor of the model.

the observations [52–54] we are living in an epoch in which
dark energy and dark matter densities are comparable and
this is the well-known cosmological coincidence problem
[30]. This problem can be alleviated in most dark energy
models via the method of scaling solutions in which the
density parameters of dark energy and dark matter are both
nonvanishing over there.

In this paper, we investigated the phase-space analysis
of generalized tachyon cosmology in the framework of
teleparallel gravity. Our model was described by action (2)

which generalizes tachyonic teleparallel dark energy model
proposed in [32]. We found some scaling attractors in our
model for the case 𝑛 = 2 and the coupling function
𝑓(𝜙) ∝ 𝜙

2. These scaling attractors are 𝐴
1
and 𝐴

2
when

there is no interaction between dark energy and dark matter.
𝐵
2
, 𝐵
3
, and 𝐵

4
are scaling attractors in the case that dark

energy interacts with dark matter through the interacting
term 𝑄 = 𝛽𝜅𝜌

𝑚
̇𝜙. As it is shown in [29] original teleparallel

dark energy model also has a late-time attractor in which
dark energy behaves like a cosmological constant and so
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Figure 6: From (a) to (c), the projections of the phase space trajectories on the 𝑥-𝑦, 𝑥-𝑢, and 𝑢-𝑦 planes with 𝜉 = 0.5, 𝜆 = −0.6, 𝛼 = −0.5,
and 𝛽 = 1.5 for 𝑄 = 𝛽𝜅𝜌

𝑚
̇𝜙. For these values of the parameters, point 𝐵

4
is a stable attractor of the model.

it provides a natural way for the stabilization of the dark
energy equation of state to the cosmological constant value,
without the need for parameter tuning. Also, the authors in
[55] by using power-law potentials and nonminimal coupling
functions have shown that teleparallel gravity has no stable
future solutions for positive nonminimal coupling, and the
scalar field results always in oscillations.Our results show that
generalized tachyon field represents interesting cosmological
behavior in comparison with ordinary tachyon fields in the

framework of teleparallel gravity because there is no scaling
attractor in the latter model. Note that however in [33]
Otalora has considered a dynamically changing coefficient
𝛼 = 𝑓

,𝜙
/√𝑓 and found a field matter dominated solution

in which it has some portions of the dark energy density in
the matter dominated era. So, generalized tachyon field gives
us the hope that cosmological coincidence problem can be
alleviated without fine-tunings. One can study our model for
different kinds of potential and other famous interaction term
between dark energy and dark matter.
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Figure 7:Three-dimensional phase-space trajectories of the model for𝑄 = 𝛽𝜅𝜌
𝑚
̇𝜙with stable attractors 𝐵

2
(a), 𝐵

3
(b), and 𝐵

4
(c).The values

of the parameters are those mentioned in Figures 4, 5, and 6, respectively.

Table 3: Location of the critical points and the corresponding values of the dark energy density parameterΩ
𝜙
and equation of state𝜔

𝜙
and the

condition required for an accelerating universe for𝑄 = 𝛽𝜅𝜌
𝑚
̇𝜙. Here 𝜃

1
= (4𝛼𝜉+√16𝛼2𝜉2 − 2𝜆2𝜉)/2𝜆𝜉 and 𝜃

2
= (4𝛼𝜉−√16𝛼2𝜉2 − 2𝜆2𝜉)/2𝜆𝜉.

Label (𝑥
𝑐
, 𝑦
𝑐
, 𝑢
𝑐
) Ω

𝜙
𝜔
𝜙

Acceleration

𝐵
1

0,
2√2𝜆𝛼𝜉𝜃

1

𝜆
, 𝜃
1

2𝜉𝜃
1
(
4𝛼

𝜆
− 𝜃
1
)

2 (𝜉𝜃
3

1
+ 2𝛼/𝜆)

(𝜃
1
− 4𝛼/𝜆) (1 + 2𝜉𝜃

2

1
)

𝜆 >
8𝛼 (𝜉𝜃

2

1
− 1)

𝜃
1
(8𝜉𝜃
2

1
+ 1)

𝐵
2

0,
2√2𝜆𝛼𝜉𝜃

2

𝜆
, 𝜃
2

2𝜉𝜃
2
(
4𝛼

𝜆
− 𝜃
2
)

2 (𝜉𝜃
3

2
+ 2𝛼/𝜆)

(𝜃
2
− 4𝛼/𝜆) (1 + 2𝜉𝜃

2

2
)

𝜆 >
8𝛼(𝜉𝜃

2

2
− 1)

𝜃
2
(8𝜉𝜃
2

2
+ 1)

𝐵
3

0, −
2√2𝜆𝛼𝜉𝜃

1

𝜆
, 𝜃
1

2𝜉𝜃
1
(
4𝛼

𝜆
− 𝜃
1
)

2 (𝜉𝜃
3

1
+ 2𝛼/𝜆)

(𝜃
1
− 4𝛼/𝜆) (1 + 2𝜉𝜃

2

1
)

𝜆 >
8𝛼 (𝜉𝜃

2

1
− 1)

𝜃
1
(8𝜉𝜃
2

1
+ 1)

𝐵
4

0, −
2√2𝜆𝛼𝜉𝜃

2

𝜆
, 𝜃
2

2𝜉𝜃
2
(
4𝛼

𝜆
− 𝜃
2
)

2 (𝜉𝜃
3

2
+ 2𝛼/𝜆)

(𝜃
2
− 4𝛼/𝜆) (1 + 2𝜉𝜃

2

2
)

𝜆 >
8𝛼 (𝜉𝜃

2

2
− 1)

𝜃
2
(8𝜉𝜃
2

2
+ 1)
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Table 4: Stability and existence conditions of the critical points of
the model for 𝑄 = 𝛽𝜅𝜌

𝑚
̇𝜙.

Label Stability Existence

𝐵
1

Saddle point
if 𝛼 > 0 and 𝜉 > 0

𝜆 > 0 and 𝜉 ≥ 𝜆2/8𝛼2

𝐵
2

Saddle point
if 𝛼 < 0 and 𝜉 < 0 and

stable point
if 𝛼 > 0 and 𝜉 > 0

𝜆 > 0 and
for all 𝜉 < 0

or
𝜉 ≥ 𝜆

2
/8𝛼
2

𝐵
3

Saddle point
if 𝛼 > 0 and 𝜉 < 0 and

stable point
if 𝛼 < 0 and 𝜉 > 0

𝜆 < 0 and
for all 𝜉 < 0

or
𝜉 ≥ 𝜆

2
/8𝛼
2

𝐵
4

Stable point
if 𝛼 < 0 and 𝜉 > 0

𝜆 < 0 and 𝜉 ≥ 𝜆2/8𝛼2

Appendix

Perturbation Matrix Elements

The elements of 3 × 3 matrix 𝑀 of the linearized per-
turbation equations for the real and physically meaningful
critical points (𝑥

𝑐
, 𝑦
𝑐
, 𝑢
𝑐
) of the autonomous system (18) read

as follows:

𝑀
11
= 3]2
𝑐
(
√3

2
𝜆𝑥
𝑐
𝑦
𝑐
(2𝑥
2

𝑐
+ ]2
𝑐
(1 + 3𝑥

4

𝑐
)) − 6𝜇

−2

𝑐
]2
𝑐
𝑥
2

𝑐

− 4√3𝛼𝜉𝑢
𝑐
𝑥
𝑐
]2
𝑐
𝑦
−1

𝑐
) + √3𝜆𝑥

𝑐
𝑦
𝑐
− 3 +M

11
,

𝑀
12
=
√3

4
(𝜆 (2𝑥

2

𝑐
+ ]2
𝑐
(1 + 3𝑥

4

𝑐
)) + 8𝛼𝜉𝑢

𝑐
]2
𝑐
𝑦
−2

𝑐
) +M

12
,

𝑀
13
= −2√3𝛼𝜉]2

𝑐
𝑦
−1

𝑐
+M
13
,

𝑀
21
=

2𝑦
2

𝑐
(√3𝛼𝜉𝑢

𝑐
+ 3𝑥
𝑐
𝑦
𝑐
]−2
𝑐
)

(2𝜉𝑢2
𝑐
+ 1)

−
√3𝜆𝑦

2

𝑐

2
,

𝑀
22
=

2𝑦
𝑐
(− (9/4) 𝜇

−4

𝑐
𝑦
𝑐
+ 5√3𝛼𝜉𝑥

𝑐
𝑢
𝑐
)

(2𝜉𝑢2
𝑐
+ 1)

− √3𝜆𝑥
𝑐
𝑦
𝑐
+
3

2
,

𝑀
23
=

6𝜉𝑢
𝑐
𝑦
2

𝑐
(− (10√3/3) 𝛼𝜉𝑢

𝑐
𝑥
𝑐
+ 𝜇
−4

𝑐
𝑦
2

𝑐
)

(2𝜉𝑢2
𝑐
+ 1)
2

+
5√3𝛼𝜉𝑥

𝑐
𝑦
2

𝑐

2𝜉𝑢2
𝑐
+ 1

,

𝑀
31
=
√3𝛼𝑦

𝑐

2
,

𝑀
32
=
√3𝛼𝑥

𝑐

2
,

𝑀
33
= 0,

(A.1)

where in the case of 𝑄 = 0 we have M
11
= M
12
= M
13
= 0

and in the case of 𝑄 = 𝛽𝜅𝜌
𝑚
̇𝜙, we have

M
11
= 4√3𝛽]−2

𝑐
𝑥
𝑐
𝑦
𝑐
,

M
12
= 2√3𝛽𝜇

−2

𝑐
(1 + 3𝑥

2

𝑐
) ,

M
13
= −4√3𝛽𝜉𝑢

𝑐
𝑦
−1

𝑐
.

(A.2)

Examining the eigenvalues of the matrix𝑀 for each critical
point, one determines its stability conditions.
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