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We investigate the multiple criteria decision making (MCDM) problem concerns on the selection of shale gas areas with interval-
valued hesitant fuzzy information. First, some Hamacher operations of interval-valued hesitant fuzzy information are introduced,
which generalize and extend the existing ones.Then some interval-valued hesitant fuzzyHamacherweighted aggregation operators,
especially, the interval-valued hesitant fuzzyHamacher synergetic weighted averaging (IVHFHSWA) operators and their geometric
version (IVHFHSWG) operators that weight simultaneously the argument variables themselves and their position orders and
thus generalize the ideas of the weighted averaging and the ordered weighted averaging, are proposed. The distinct advantages
of these operators are that they can provide more choices for the decision makers and considerably enhance or deteriorate the
performance of aggregation. The essential properties of these operators are studied and their specific cases are discussed. Based
on the IVHFHSWA operator, we propose a practical approach to shale gas areas selection with interval-valued hesitant fuzzy
information. Finally, an illustrative example for selecting the shale gas areas is used to demonstrate the practicality and effectiveness
of the proposed approach and a comparative analysis is performed with other approaches to highlight the distinctive advantages of
the proposed operators.

1. Instruction

As a novel generalization of fuzzy sets, hesitant fuzzy sets
(HFSs) [1, 2] introduced by Torra and Narukawa have been
successfully used in the decision making field as a powerful
tool for processing with uncertain and vague information.
Unlike the other generalizations of fuzzy sets, HFSs, which
permit the membership degree of an element to a set to
be represented as several possible values between 0 and 1,
are quite suited for describing the situation where we have
a set of possible values, rather than a margin of error or
some possibility distribution on the possible values, and thus
HFSs are very useful in dealing with the practical decision
making situations where people hesitate among several val-
ues to express their opinions [3–5] or their opinions with
incongruity [6–8], especially, the group decision making

with anonymity [9–12]. Moreover, HFSs could also avoid
performing information aggregation and can directly reflect
the differences of the opinions of different experts [1, 13, 14].
In addition, it is proven that the envelope of hesitant fuzzy set
is an intuitionistic fuzzy set (IFS); all HFSs are type-2 fuzzy set
and hesitant fuzzy set and fuzzy multiset have the same form,
but their operations are different [2]. Thus, HFSs open new
perfectives for further research on decision making under
hesitant environments and have received much attention
from many authors. Torra and Narukawa [1, 2] proposed
some set theoretic operations such as union, intersection, and
complement on HFSs. Subsequently, Xia and Xu [6] defined
some new operations on HFSs based on the interconnection
between HFSs and the IFSs and then made an intensive
study of hesitant fuzzy information aggregation techniques
and their applications in decision making. Xu and Xia [7]
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investigated some distancemeasures forHFSs drawing on the
well-known Hamming distance, the Euclidean distance, the
Hausdorff metric, and their generalizations. Following these
pioneering studies, many subsequent studies on the aggre-
gation operators [8, 9, 12–15], the discrimination measures
[16] (including distance measures [3–5, 13–15], similarity
measures [3, 7], correlation measures [3, 17], entropy, and
cross-entropy [18]) for hesitant fuzzy sets (HFSs), and the
further extensions of the HFSs, such as the interval-values
HFSs (IVHFSs) [11, 17], the dual (or generalized) HFSs
(DHFSs) [10, 19], and the hesitant fuzzy linguistic term sets
(HFLTSs) [20, 21], have been conducted.

In some practical decision making problems, however,
the precise membership degrees of an element to a set are
sometimes hard to be specified. To overcome the barrier,
Chen et al. [11, 17] proposed the concept of interval-valued
hesitant fuzzy sets (IVHFSs) that represent the membership
degrees of an element to a set with several possible interval
values and then presented some interval-valued hesitant
fuzzy aggregation operators. Wei [22] developed some hesi-
tant interval-valued fuzzy aggregation operators (which are
essential interval-valued hesitant fuzzy aggregation opera-
tors), such as the hesitant interval-valued fuzzy weighted
aggregation operators (HIVFWAandHIVFWG), the hesitant
interval-valued fuzzy ordered weighted aggregation oper-
ators (HIVFOWA and HIVFOWG), the hesitant interval-
valued fuzzy choquet ordered aggregation operators (HIVF-
COA and HIVFCOG), the hesitant interval-valued fuzzy
prioritized aggregation operator and the hesitant interval-
valued fuzzy power aggregation operator.

It is well known that the aggregation operators introduced
above are based on the basic algebraic 𝑡-norms (𝑡-norm and
𝑡-conorm) ofHFSs (or IVHFSs) for carrying the combination
process, which are not the unique 𝑡-norms that can be chosen
to model the intersection and union of HFSs (or IVHFSs).
For instance, Wei and Zhao [23] presented the Einstein oper-
ations of interval-valued hesitant fuzzy sets based the Einstein
𝑡-norms and then developed some interval-valued hesitant
fuzzy Einstein aggregation operators and induced interval-
valued hesitant fuzzy Einstein aggregation operators. Besides,
there are a lot of 𝑡-norms that can be used to construct the
operations ofHFSs (or IVHFSs); one of them is theHamacher
𝑡-norms [24–27], which have proven that the basic algebraic
𝑡-norms and the Einstein 𝑡-norms are the special cases of
the Hamacher 𝑡-norms and can supply a wide class of 𝑡-
norm operators ranging from the probabilistic product to
the weakest 𝑡-norm by the choice of a parameter. Thus the
Hamacher 𝑡-norms can considerably enhance or deteriorate
the performance of aggregation. Given the advantages of the
Hamacher 𝑡-norms, in this paper, we will investigate the
interval-valued hesitant fuzzy aggregation operators based
on the Hamacher 𝑡-norms and apply them to the multiple
criteria decision making.

To do so, the remainder of this paper is organized as fol-
lows. Section 2 introduces some preliminary concepts related
to the interval-valued hesitant fuzzy sets and their operations
based on the Hamacher 𝑡-norms. In Section 3, based on
the defined operations, we first develop the interval-valued
hesitant fuzzy Hamacher weighted averaging operators

and the interval-valued hesitant fuzzy Hamacher ordered
weighted averaging operators, then, based on which, we
further propose the interval-valued hesitant fuzzy Hamacher
synergetic weighted aggregation operators that simultane-
ously consider the weights of argument variables them-
selves and their position orders. Moreover, some essential
properties and special cases of these operators are studied.
In Section 4, we develop a practical approach based on
the IVHFHSWA operators to multicriteria decision making
under interval-valued hesitant fuzzy environments. Section 5
an illustrative example for selecting the shale gas areas is
used to demonstrate the practicality and effectiveness of the
proposed approach and Section 6 a comparative analysis is
performed with other approaches to highlight the distinctive
advantages of the proposed operators. Finally, we summarize
the main conclusions of the paper in Section 7.

2. Preliminaries

To overcome the barrier that the precise membership degrees
of an element to a set are sometimes hard to be specified,
Chen et al. [11, 17] introduce interval-valued hesitant fuzzy
set (IVHFS), that represents the membership degrees of an
element to a set with several possible interval values.

Definition 1 (see [11]). Let𝑋 be a reference set and let𝐷[0, 1]

be the set of all closed subintervals of [0, 1]. Then an IVHFS
on𝑋 is defined as

𝐸 = {⟨𝑥, ℎ̃
̃

𝐸

(𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)

where ℎ̃
̃

𝐸

(𝑥) : 𝑥 → 𝐷[0, 1] denotes all possible interval-
valued membership degrees of the element 𝑥 ∈ 𝑋 to the set
𝐸. For convenience, we call ℎ̃

̃

𝐸

(𝑥) an interval-valued hesitant
fuzzy element (IVHFE), which reads

ℎ̃
̃

𝐸

(𝑥) = ⋃

𝛾∈

̃

ℎ
̃

𝐸

(𝑥)

{𝛾 = [𝛾
𝐿

, 𝛾
𝑈

] | 0 ≤ 𝛾
𝐿

≤ 𝛾
𝑈

≤ 1} . (2)

The operational laws of IVHFSs can be constructed by
𝑡-norms (𝑡-norm and 𝑡-conorm), which satisfy the require-
ments of the conjunction and disjunction operators, respec-
tively. The existing interval-valued hesitant fuzzy operational
laws include the ones based on the algebraic 𝑡-norms [6,
11, 13–15, 22] and the ones based on the Einstein 𝑡-norms
[23]. It is well known that the Hamacher 𝑡-norms are more
generalized and flexible than the algebraic 𝑡-norms and the
Einstein 𝑡-norms, and they are defined as follows.

Definition 2 (see [24, 25]). The Hamacher 𝑡-norm 𝜙
𝜂

and its
conorm 𝜑

𝜂

are defined as

𝜙
𝜂

(𝑥, 𝑦) =
𝑥𝑦

𝜂 + (1 − 𝜂) (𝑥 + 𝑦 − 𝑥𝑦)
, 𝜂 > 0,

𝜑
𝜂

(𝑥, 𝑦) =
𝑥 + 𝑦 − 𝑥𝑦 − (1 − 𝜂) 𝑥𝑦

1 − (1 − 𝜂) 𝑥𝑦
, 𝜂 > 0.

(3)

Similar to the existing operations of IVHFEs, based on
the Hamacher 𝑡-norms, we can establish some fundamental
Hamacher operations of IVHFEs.
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Definition 3. Let ℎ̃, ℎ̃
1

, and ℎ̃
2

be three IVHFEs; then the
Hamacher operations of IVHFSs are defined as follows:

(1)

𝜆ℎ̃ = ⋃

𝛾∈

̃

ℎ

{

{

{

[

[

(1 + (𝜂 − 1) 𝛾
𝐿

)
𝜆

− (1 − 𝛾
𝐿

)
𝜆

(1 + (𝜂 − 1) 𝛾
𝐿

)
𝜆

+ (𝜂 − 1) (1 − 𝛾
𝐿

)
𝜆

,

(1 + (𝜂 − 1) 𝛾
𝑈

)
𝜆

− (1 − 𝛾
𝑈

)
𝜆

(1 + (𝜂 − 1) 𝛾
𝑈

)
𝜆

+ (𝜂 − 1) (1 − 𝛾
𝑈

)
𝜆

]

]

}

}

}

,

(𝜆 > 0) ;

(4)

(2)

ℎ̃
𝜆

= ⋃

𝛾∈

̃

ℎ

{

{

{

[

[

𝜂(𝛾
𝐿

)
𝜆

(1 + (𝜂 − 1) (1 − 𝛾
𝐿

))
𝜆

+ (𝜂 − 1) (𝛾
𝐿

)
𝜆

,

𝜂(𝛾
𝑈

)
𝜆

(1 + (𝜂 − 1) (1 − 𝛾
𝑈

))
𝜆

+ (𝜂 − 1) (𝛾
𝑈

)
𝜆

]

]

}

}

}

,

(𝜆 > 0) ;

(5)

(3)

ℎ̃
1

⊕ ℎ̃
2

= ⋃

𝛾

1

∈

̃

ℎ

1

,𝛾

2

∈

̃

ℎ

2

{[
𝛾
𝐿

1

+ 𝛾
𝐿

2

− 𝛾
𝐿

1

𝛾
𝐿

2

− (1 − 𝜂) 𝛾
𝐿

1

𝛾
𝐿

2

1 − (1 − 𝜂) 𝛾
𝐿

1

𝛾
𝐿

2

,

𝛾
𝑈

1

+ 𝛾
𝑈

2

− 𝛾
𝑈

1

𝛾
𝑈

2

− (1 − 𝜂) 𝛾
𝑈

1

𝛾
𝑈

2

1 − (1 − 𝜂) 𝛾
𝑈

1

𝛾
𝑈

2

]} ;

(6)

(4)

ℎ̃
1

⊗ ℎ̃
2

= ⋃

𝛾

1

∈

̃

ℎ

1

,𝛾

2

∈

̃

ℎ

2

{[
𝛾
𝐿

1

𝛾
𝐿

2

𝜂 − (1 − 𝜂) (𝛾
𝐿

1

+ 𝛾
𝐿

2

− 𝛾
𝐿

1

𝛾
𝐿

2

)
,

𝛾
𝑈

1

𝛾
𝑈

2

𝜂 − (1 − 𝜂) (𝛾
𝑈

1

+ 𝛾
𝑈

2

− 𝛾
𝑈

1

𝛾
𝑈

2

)
]} .

(7)

TheHamacher operations of IVHFEs contain a wide class
of special cases. Especially, if 𝜂 = 1, then we have (1)–(4)
reduced to the following forms, which are presented by Chen
et al. [11]:

(1󸀠)

𝜆ℎ̃ = ⋃

𝛾∈

̃

ℎ

{[1 − (1 − 𝛾
𝐿

)
𝜆

, 1 − (1 − 𝛾
𝑈

)
𝜆

]} ; (8)

(2󸀠)

ℎ̃
𝜆

= ⋃

𝛾∈

̃

ℎ

{[(𝛾
𝐿

)
𝜆

, (𝛾
𝑈

)
𝜆

]} ; (9)

(3󸀠)

ℎ̃
1

⊕ ℎ̃
2

= ⋃

𝛾

1

∈

̃

ℎ

1

,𝛾

2

∈

̃

ℎ

2

{[𝛾
𝐿

1

+ 𝛾
𝐿

2

− 𝛾
𝐿

1

𝛾
𝐿

2

,

𝛾
𝑈

1

+ 𝛾
𝑈

2

− 𝛾
𝑈

1

𝛾
𝑈

2

]} ;

(10)

(4󸀠)

ℎ̃
1

⊗ ℎ̃
2

= ⋃

𝛾

1

∈

̃

ℎ

1

,𝛾

2

∈

̃

ℎ

2

{[𝛾
𝐿

1

𝛾
𝐿

2

, 𝛾
𝑈

1

𝛾
𝑈

2

]} . (11)

If 𝜂 = 2, then we have (1)–(4) reduced to the following
forms, which are presented by Wei and Zhao [23]:

(1󸀠󸀠)

𝜆ℎ̃ = ⋃

𝛾∈

̃

ℎ

{

{

{

[

[

(1 + 𝛾
𝐿

)
𝜆

− (1 − 𝛾
𝐿

)
𝜆

(1 + 𝛾
𝐿

)
𝜆

+ (1 − 𝛾
𝐿

)
𝜆

,

(1 + 𝛾
𝑈

)
𝜆

− (1 − 𝛾
𝑈

)
𝜆

(1 + 𝛾
𝑈

)
𝜆

+ (1 − 𝛾
𝑈

)
𝜆

]

]

}

}

}

;

(12)

(2󸀠󸀠)

ℎ̃
𝜆

= ⋃

𝛾∈

̃

ℎ

{

{

{

[

[

2(𝛾
𝐿

)
𝜆

(2 − 𝛾
𝐿

)
𝜆

+ (𝛾
𝐿

)
𝜆

,

2(𝛾
𝑈

)
𝜆

(2 − 𝛾
𝑈

)
𝜆

+ (𝛾
𝑈

)
𝜆

]

]

}

}

}

;

(13)

(3󸀠󸀠)

ℎ̃
1

⊕ ℎ̃
2

= ⋃

𝛾

1

∈

̃

ℎ

1

,𝛾

2

∈

̃

ℎ

2

{[
𝛾
𝐿

1

+ 𝛾
𝐿

2

1 + 𝛾
𝐿

1

𝛾
𝐿

2

,
𝛾
𝑈

1

+ 𝛾
𝑈

2

1 + 𝛾
𝑈

1

𝛾
𝑈

2

]} ; (14)

(4󸀠󸀠)

ℎ̃
1

⊗ ℎ̃
2

= ⋃

𝛾

1

∈

̃

ℎ

1

,𝛾

2

∈

̃

ℎ

2

{[
𝛾
𝐿

1

𝛾
𝐿

2

1 + (1 − 𝛾
𝐿

1

) (1 − 𝛾
𝐿

2

)
,

𝛾
𝑈

1

𝛾
𝑈

2

1 + (1 − 𝛾
𝑈

1

) (1 − 𝛾
𝑈

2

)
]} .

(15)
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Based on Definition 3, the following Theorem 4 can be
easily proven.

Theorem 4. Let ℎ̃
1

and ℎ̃
2

be two IVHFEs; then

(1) ℎ̃
1

⊕ ℎ̃
2

= ℎ̃
2

⊕ ℎ̃
1

,

(2) ℎ̃
1

⊗ ℎ̃
2

= ℎ̃
2

⊗ ℎ̃
1

,

(3) 𝜆
1

ℎ̃
1

⊕ 𝜆
2

ℎ̃
1

= (𝜆
1

+ 𝜆
2

)ℎ̃
1

, 𝜆
1

, 𝜆
2

> 0,

(4) 𝜆(ℎ̃
1

⊕ ℎ̃
2

) = 𝜆ℎ̃
2

⊕ 𝜆ℎ̃
1

, 𝜆 > 0,

(5) ℎ̃𝜆1
1

⊗ ℎ̃
𝜆

2

1

= ℎ̃
(𝜆

1

+𝜆

2

)

1

, 𝜆
1

, 𝜆
2

> 0,

(6) ℎ̃𝜆
2

⊗ ℎ̃
𝜆

1

= (ℎ̃
1

⊗ ℎ̃
2

)
𝜆, 𝜆 > 0.

The proofs of Theorem 4 are straightforward and omitted
here for saving space.

Chen et al. [11] defined the score function of IVHFE, and
gave a comparison approach of the score values of two IVHFEs
with the possibility degree.

Definition 5. For an IVHFE ℎ̃, 𝑠(ℎ̃) = (1/#ℎ̃) ∑
𝛾∈

̃

ℎ

𝛾 =

[(1/#ℎ̃) ∑
𝛾∈

̃

ℎ

𝛾
𝐿

, (1/#ℎ̃) ∑
𝛾∈

̃

ℎ

𝛾
𝑈

] is called the score function
of ℎ̃. Moreover, for two IVHFEs, ℎ

1

and ℎ
2

, if

𝑃 (ℎ̃
1

≥ ℎ̃
2

)

= max
{

{

{

1 −max((
1

#ℎ̃
2

∑

𝛾

2

∈

̃

ℎ

2

𝛾
𝑈

2

−
1

#ℎ̃
1

∑

𝛾

1

∈

̃

ℎ

1

𝛾
𝐿

1

)

× (
1

#ℎ̃
1

∑

𝛾

1

∈

̃

ℎ

1

(𝛾
𝑈

1

− 𝛾
𝐿

1

)

+
1

#ℎ̃
2

∑

𝛾

2

∈

̃

ℎ

2

(𝛾
𝑈

2

− 𝛾
𝐿

2

))

−1

,

0) , 0

}

}

}

> 0.5,

(16)

then ℎ̃
1

> ℎ̃
2

; if 𝑃(ℎ̃
1

≥ ℎ̃
2

) = 0.5, then ℎ̃
1

= ℎ̃
2

.
Based on the possibility degree, we further give the

definition of the relative possibility degree to rank or compare
multiple IVHFEs ℎ̃

𝑗

(𝑗 = 1, 2, . . . , 𝑛).

Definition 6. Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

= [𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛)

be a collection of IVHFEs, then the relative possibility degree
of ℎ̃

𝑗

that dominates all ℎ̃
𝑘

(𝑘 = 1, 2, . . . , 𝑛) is defined as

𝑃 (ℎ̃
𝑗

) =
1

𝑛 (𝑛 − 1)

× (

𝑛

∑

𝑘=1

max
{{

{{

{

1 −max ((
1

#ℎ̃
𝑘

∑

𝛾

𝑘

∈

̃

ℎ

𝑘

𝛾
𝑈

𝑘

−
1

#ℎ̃
𝑗

∑

𝛾

𝑗

∈

̃

ℎ

𝑗

𝛾
𝐿

𝑗

)

× (
1

#ℎ̃
𝑗

∑

𝛾

𝑗

∈

̃

ℎ

𝑗

(𝛾
𝑈

𝑗

− 𝛾
𝐿

𝑗

)

+
1

#ℎ̃
𝑘

×

𝛾

𝑘

∈

̃

ℎ

𝑘

∑(𝛾
𝑈

𝑘

−𝛾
𝐿

𝑘

))

−1

),0}

+
𝑛

2
− 1) .

(17)

Definition 7 (see [28]). An ordered weighted averaging
(OWA) operator of dimensions 𝑛 is a mapping OWA : 𝑅

𝑛

→

𝑅 that has an associated weight vector 𝑤 = (𝑤
1

, 𝑤
2

, . . . , 𝑤
𝑛

)
𝑇

with the properties 0 ≤ 𝑤
𝑗

≤ 1(𝑗 = 1, 2, . . . , 𝑛) and ∑
𝑛

𝑗=1

𝑤
𝑗

=

1, such that

OWA (𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑛

) = 𝑤
1

𝑎
𝜎(1)

+ 𝑤
2

𝑎
𝜎(2)

+ ⋅ ⋅ ⋅ + 𝑤
𝑛

𝑎
𝜎(1)

,

(18)

where𝜎 defines a permutation of {1, 2, . . . , 𝑛} such that 𝑎
𝜎(𝑗)

≥

𝑎
𝜎(𝑗+1)

for all 𝑗.
It is well known that the weights in OWA operator are

assigned by the positions of argument variables, that is, there
is a one-to-one relative relation for each associatedweight and
its corresponding value of argument variable [4, 29, 30].Thus,
we can find a permutation 𝜌 : {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛},
which is the inverse permutation of 𝜎; that is, 𝜌 = 𝜎

−1, and
the OWA operator can be alternatively defined as

OWA󸀠

(𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑛

) = 𝑤
𝜌(1)

𝑎
1

+ 𝑤
𝜌(2)

𝑎
2

+ ⋅ ⋅ ⋅ + 𝑤
𝜌(𝑛)

𝑎
𝑛

,

(19)

where 𝜌 = 𝜎
−1

: {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛} is the inverse
permutation of 𝜎, 𝑎

𝑗

is the 𝜌(𝑖)th largest element of the
collection of 𝑎

𝑗

(𝑖 = 1, 2, . . . , 𝑛), and 𝑤 = (𝑤
1

, 𝑤
2

, . . . , 𝑤
𝑛

)
𝑇 is

the associated weight vector, with𝑤
𝑖

∈ [0, 1] and∑
𝑛

𝑖=1

𝑤
𝑖

= 1.
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Theorem 8. 𝑤 = (𝑤
1

, 𝑤
2

, . . . , 𝑤
𝑛

)
𝑇 is the associated weight

vector with 𝑤
𝑖

∈ [0, 1], ∑𝑛

𝑖=1

𝑤
𝑖

= 1 and 𝜌(⋅) and 𝜎(⋅) are two
permutations of {1, 2, . . . , 𝑛}, if 𝜌(⋅) = 𝜎(⋅)

−1; then

𝑂𝑊𝐴(𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑛

) = 𝑂𝑊𝐴
󸀠

(𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑛

) . (20)

Proof. Suppose

𝜌 :󳨃󳨀→ OWA (𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑛

)

= 𝑤
𝜌(1)

𝑎
𝜌(𝜎(1))

+ 𝑤
𝜌(2)

𝑎
𝜌(𝜎(2))

+ ⋅ ⋅ ⋅ + 𝑤
𝜌(𝑛)

𝑎
𝜌(𝜎(𝑛))

= 𝑤
𝜌(1)

𝑎
1

+ 𝑤
𝜌(2)

𝑎
2

+ ⋅ ⋅ ⋅ + 𝑤
𝜌(𝑛)

𝑎
𝑛

= OWA󸀠

(𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑛

) ,

𝜎 :󳨃󳨀→ OWA󸀠

(𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑛

)

= 𝑤
𝜎(𝜌(1))

𝑎
𝜎(1)

+ 𝑤
𝜎(𝜌(2))

𝑎
𝜎(2)

+ ⋅ ⋅ ⋅ + 𝑤
𝜎(𝜌(𝑛))

𝑎
𝜎(𝑛)

= 𝑤
1

𝑎
𝜎(1)

+ 𝑤
2

𝑎
𝜎(2)

+ ⋅ ⋅ ⋅ + 𝑤
𝑛

𝑎
𝜎(1)

= OWA (𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑛

) .

(21)

Hence, OWA(𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑛

) = OWA󸀠

(𝑎
1

, 𝑎
2

, . . . , 𝑎
𝑛

).

3. Interval-Valued Hesitant Fuzzy Hamacher
Synergetic Weighted Aggregation Operators

The weighted averaging operator and the ordered weighted
averaging operator are the most common and basic aggre-
gation operators. In the section, based on the above
Hamacher operations of IVHFSs, we first develop the
interval-valued hesitant fuzzy Hamacher weighted averag-
ing (IVHFHWA) operator and the interval-valued hesitant
fuzzy Hamacher ordered weighted averaging (IVHFHOWA)
operator; then, based on which, we further propose the
interval-valued hesitant fuzzyHamacher synergetic weighted
averaging (IVHFHSWA) operator to unify the IVHFHWA
and IVHFHOWA operators. Furthermore, based on the
geometric mean, we propose the interval-valued hesitant
fuzzy Hamacher synergetic weighted geometric (IVHFH-
SWG) operators.The essential properties of the operators are
studied and special cases are discussed.

3.1. Interval-Valued Hesitant Fuzzy Hamacher Synergetic
Weighted Averaging Operator

Definition 9. Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

= [𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛)

be a collection of IVHFEs, and 𝜔 = (𝜔
1

, 𝜔
2

, . . . , 𝜔
𝑛

)
𝑇 is the

relative weighting vector of ℎ̃
𝑗

(𝑖 = 1, 2, . . . , 𝑛), with 𝜔
𝑖

∈

[0, 1] and ∑
𝑛

𝑖=1

𝜔
𝑖

= 1. Then an interval-valued hesitant

fuzzy Hamacher weighted averaging (IVHFHWA) operator
is a mapping IVHFWAHamacher : 𝐻̃

𝑛

→ 𝐻̃ such that

IVHFWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨁

𝑗=1

𝜔
𝑗

ℎ̃
𝑗

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

+ (𝜂−1)

𝑛

∏

𝑗=1

(1−𝛾
𝑈

𝑗

)
𝜔

𝑗

)

−1

]

]

}

}

}

.

(22)

Because the algebraic 𝑡-norms and Einstein 𝑡-norms are
the special cases of the Hamacher 𝑡-norms, the following
theorems hold.

Theorem 10. The IVHFWA operator proposed by Chen et al.
[11] is a special case of the IVHFHWAoperator; that is, if 𝜂 = 1,
then

𝐼𝑉𝐻𝐹𝑊𝐴
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=1

󳨀󳨀󳨀→ 𝐼𝑉𝐻𝐹𝑊𝐴(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

]

]

}

}

}

.

(23)
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Proof. Suppose

IVHFWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (1 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

+ (1 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (1 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (1 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

+ (1 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

)

−1

]

]

}

}

}

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

]

]

}

}

}

= IVHFWA (ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

) .

(24)

Thus, IVHFWAHamacher(ℎ̃1, ℎ̃2, . . . , ℎ̃𝑛)
𝜂=1

󳨀󳨀󳨀→ IVHFWA
(ℎ̃

1

, ℎ̃
2

, . . . , ℎ̃
𝑛

).

Theorem 11. The IVHFEWA operator proposed by Wei and
Zhao [23] is a special case of the IVHFHWA operator; that is,
if 𝜂 = 2, then

𝐼𝑉𝐻𝐹𝑊𝐴
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=2

󳨀󳨀󳨀→ 𝐼𝑉𝐻𝐹𝐸𝑊𝐴(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

∏
𝑛

𝑗=1

(1 + 𝛾
𝐿

𝑗

)
𝜔

𝑗

− ∏
𝑛

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

∏
𝑛

𝑗=1

(1 + 𝛾
𝐿

𝑗

)
𝜔

𝑗

+ ∏
𝑛

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

,

∏
𝑛

𝑗=1

(1 + 𝛾
𝑈

𝑗

)
𝜔

𝑗

− ∏
𝑛

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

∏
𝑛

𝑗=1

(1 + 𝛾
𝑈

𝑗

)
𝜔

𝑗

+ ∏
𝑛

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

]

]

}

}

}

.

(25)

Proof. Suppose

IVHFWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨁

𝑗=1

𝜔
𝑗

ℎ̃
𝑗

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (2 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (2 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

+ (2 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (2 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (2 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

+ (2 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

)

−1

]

]

}

}

}

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + 𝛾
𝐿

𝑗

)
𝜔

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + 𝛾
𝐿

𝑗

)
𝜔

𝑗

+

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

)

−1

,

(

𝑛

∏

𝑗=1

(1 + 𝛾
𝑈

𝑗

)
𝜔

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + 𝛾
𝑈

𝑗

)
𝜔

𝑗

+

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

)

−1

]

]

}

}

}

= IVHFEWA (ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

) .

(26)
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Thus, IVHFWAHamacher(ℎ̃1, ℎ̃2, . . . , ℎ̃𝑛)
𝜂=2

󳨀󳨀󳨀→ IVHFEWA
(ℎ̃

1

, ℎ̃
2

, ..., ℎ̃
𝑛

).
From the above analysis, we know that the IVHFWA

operator [11] and the IVHFEWA operator [23] are the
special cases of the IVHFHWA operator, and the IVHFHWA
operator can provide more special cases by selecting different
values of parameter 𝜂, which can providemore choices for the
decision makers and considerably enhance or deteriorate the
performance of aggregation. Thus, the IVHFHWA operator
is more general and more flexible. Similar to the IVHFWA
operator and the IVHFEWA operator, the IVHFHWA oper-
ator is also monotonic, bounded, and idempotent.

Example 12. Given the collection of IVHFEs, ℎ̃
1

= {[0.2, 0.4],
[0.5, 0.7], [0.6, 0.8]} and ℎ̃

2

= {[0.4, 0.5],[0.7, 0.8]}, the relative
weights are 𝜔

1

= 0.3, 𝜔
2

= 0.7, and suppose that the 𝜂 = 1,
then

IVHFWA
Hamacher

(ℎ̃
1

, ℎ̃
2

)

=

2

⨁

𝑗=1

𝜔
𝑗

ℎ̃
𝑗

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2

{

{

{

[

[

1 −

2

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

, 1 −

2

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

]

]

}

}

}

× {[1 − (1 − 0.2)
0.3

(1 − 0.4)
0.7

,

1 − (1 − 0.4)
0.3

(1 − 0.5)
0.7

],

[1 − (1 − 0.2)
0.3

(1 − 0.7)
0.7

,

1 − (1 − 0.4)
0.3

(1 − 0.8)
0.7

],

[1 − (1 − 0.5)
0.3

(1 − 0.4)
0.7

,

1 − (1 − 0.7)
0.3

(1 − 0.5)
0.7

],

[1 − (1 − 0.5)
0.3

(1 − 0.7)
0.7

,

1 − (1 − 0.7)
0.3

(1 − 0.8)
0.7

],

[1 − (1 − 0.6)
0.3

(1 − 0.4)
0.7

,

1 − (1 − 0.8)
0.3

(1 − 0.5)
0.7

],

[1 − (1 − 0.6)
0.3

(1 − 0.7)
0.7

,

1 − (1 − 0.8)
0.3

(1 − 0.8)
0.7

]}

= {[0.3459, 0.4719] , [0.5974, 0.7219],

[0.4319, 0.5710] , [0.6503, 0.7741],

[0.4687, 0.6202] , [0.673, 0.8]}.

(27)

Definition 13. Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

= [𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛)

be a collection of IVHFEs, and 𝑤 = (𝑤
1

, 𝑤
2

, . . . , 𝑤
𝑛

)
𝑇 is

the associated weighting vector of ℎ̃
𝑗

(𝑖 = 1, 2, . . . , 𝑛), with
𝑤
𝑖

∈ [0, 1] and ∑
𝑛

𝑖=1

𝑤
𝑖

= 1. Then an interval-valued hesitant
fuzzy Hamacher ordered weighted averaging (IVHFHOWA)
operator is a mapping IVHFOWAHamacher : 𝐻̃

𝑛

→ 𝐻̃ such
that

IVHFOWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨁

𝑗=1

𝑤
𝑗

ℎ̃
𝜎(𝑗)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝜎(𝑗)
)

𝑤

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝜎(𝑗)
)

𝑤

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝜎(𝑗)
)

𝑤

𝑗

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝜎(𝑗)
)

𝑤

𝑗

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝜎(𝑗)
)

𝑤

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝜎(𝑗)
)

𝑤

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝜎(𝑗)
)

𝑤

𝑗

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝜎(𝑗)
)

𝑤

𝑗

)

−1

]

]

}

}

}

,

(28)

where 𝜌 : {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛} is a permutation
function such that ℎ̃

𝜎(𝑗)

is the 𝜎(𝑗)th largest element of the
collection of ℎ̃

𝑗

(𝑖 = 1, 2, . . . , 𝑛).
On the other hand,

IVHFOWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨁

𝑗=1

𝜔
𝑝(𝑗)

ℎ̃
𝑗
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= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

,

(29)

where 𝜌 : {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛} is a permutation
function such that ℎ̃

𝑗

is the 𝜌(𝑗)th largest element of the
collection of ℎ̃

𝑗

(𝑖 = 1, 2, . . . , 𝑛).
Analogously, because the algebraic 𝑡-norms and Einstein

𝑡-norms are the special cases of the Hamacher 𝑡-norms, the
following theorems hold.

Theorem 14. The IVHFOWA operator proposed by Chen et al.
[11] is a special case of the IVHFHOWA operator; that is, if 𝜂 =

1, then

𝐼𝑉𝐻𝐹𝑂𝑊𝐴
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=1

󳨀󳨀󳨀→ 𝐼𝑉𝐻𝐹𝑂𝑊𝐴(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝜎(𝑗)
)

𝑤

𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝜎(𝑗)
)

𝑤

𝑗

]

]

}

}

}

.

(30)

Theorem 15. The IVHFEOWA operator proposed by Wei and
Zhao [23] is a special case of the IVHFHOWA operator that is,
if 𝜂 = 2, then

𝐼𝑉𝐻𝐹𝑂𝑊𝐴
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=2

󳨀󳨀󳨀→ 𝐼𝑉𝐻𝐹𝐸𝑂𝑊𝐴(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + 𝛾
𝐿

𝜎(𝑗)

)
𝑤

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝜎(𝑗)

)
𝑤

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + 𝛾
𝐿

𝜎(𝑗)

)
𝑤

𝑗

+

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝜎(𝑗)

)
𝑤

𝑗

)

−1

,

(

𝑛

∏

𝑗=1

(1 + 𝛾
𝑈

𝜎(𝑗)

)
𝑤

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝜎(𝑗)

)
𝑤

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + 𝛾
𝑈

𝜎(𝑗)

)
𝑤

𝑗

+

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝜎(𝑗)

)
𝑤

𝑗

)

−1

]

]

}

}

}

.

(31)
Analogously, compared with IVHFOWA operator [11] and

the IVHFEOWA operator [23], the IVHFHOWA operator
can provide more special cases by selecting different values of
parameter 𝜂, which can provide more choices for the decision
makers and considerably enhance or deteriorate the perfor-
mance of aggregation.Thus, the IVHFHOWA operator is more
general and more flexible. Similar to the IVHFOWA operator
and the IVHFEOWA operator, the IVHFHOWA operator is
also commutative, monotonic, bounded, and idempotent.

Example 16. Given the collection of IVHFEs, ℎ̃
1

=

{[0.2, 0.4], [0.5, 0.7], [0.6, 0.8]} and ℎ̃
2

= {[0.4, 0.5],[0.7, 0.8]},
the associatedweights are𝑤

1

= 0.6 and𝑤
2

= 0.4, and suppose
that the 𝜂 = 1, then, since

𝑃 (ℎ̃
1

≥ ℎ̃
2

)

= max{1 −max((1/2) (0.5+0.8)−(1/3) (0.2+0.5+0.6)

(1/3) (0.2+0.5+0.6)+(1/2) (0.1+0.1)
,

0) , 0} = 0.267,

(32)
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we have ℎ̃
1

< ℎ̃
2

and the assigned associated weights of ℎ̃
1

and
ℎ̃
2

are 𝑤
𝜌(1)

= 0.4 and 𝑤
𝜌(2)

= 0.6, respectively. Then

IVHFOWA
Hamacher

(ℎ̃
1

, ℎ̃
2

)

=

2

⨁

𝑗=1

𝑤
𝜌(𝑗)

ℎ̃
𝑗

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2

{

{

{

[

[

1 −

2

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

,

1 −

2

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

]

]

}

}

}

= {[1 − (1 − 0.2)
0.4

(1 − 0.4)
0.6

,

1 − (1 − 0.4)
0.4

(1 − 0.5)
0.6

] ,

[1 − (1 − 0.2)
0.4

(1 − 0.7)
0.6

,

1 − (1 − 0.4)
0.4

(1 − 0.8)
0.6

] ,

[1 − (1 − 0.5)
0.4

(1 − 0.4)
0.6

,

1 − (1 − 0.7)
0.4

(1 − 0.5)
0.6

] ,

[1 − (1 − 0.5)
0.4

(1 − 0.7)
0.6

,

1 − (1 − 0.7)
0.4

(1 − 0.8)
0.6

] ,

[1 − (1 − 0.6)
0.4

(1 − 0.4)
0.6

,

1 − (1 − 0.8)
0.4

(1 − 0.5)
0.6

] ,

[1 − (1 − 0.6)
0.4

(1 − 0.7)
0.6

,

1 − (1 − 0.8)
0.4

(1 − 0.8)
0.6

]}

= {[0.3268, 0.4622] , [0.5559, 0.6896] ,

[0.4422, 0.5924] , [0.6320, 0.7648] ,

[0.4898, 0.6534] , [0.6634, 0.8]} .

(33)

According to the above analysis, we know that the IVHFHWA
operator weights only the interval-valued hesitant fuzzy
argument variables; its weights are the relative weights and
represent the differential importance (salience, significance)
of argument variables themselves, while the IVHFHOWA
operator weights only the ordered positions of the interval-
valued hesitant fuzzy argument variables (or the magnitudes
of the interval-valued hesitant fuzzy argument values); its
weights are the associated weights and depend on the
corresponding satisfaction values of argument variables.
According to the associated weights are derived in view of the
satisfaction values of argument variables; the IVHFHOWA

operator can relieve (or intensify) the influence of unduly
large or unduly small deviations on the aggregation results
[31] or decide the portion of the criteria they feel is necessary
for a good solution [28, 32, 33]. Therefore, weights represent
different aspects in both the IVHFHWA and IVHFHOWA
operators. However, in general, we need to consider the
two weights because they represent different aspects of
decision making problems. Obviously, both the IVHFHWA
and IVHFHOWA operators have drawbacks. In order to
solve these drawbacks, according to Theorem 8 and inspired
by the idea of twofold weighting [4, 34], we propose an
interval-valued hesitant fuzzyHamacher synergetic weighted
averaging (IVHFHSWA) operator in what follows.

Definition 17. Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

= [𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛)

be a collection of IVHFEs, and 𝜔 = (𝜔
1

, 𝜔
2

, . . . , 𝜔
𝑛

)
𝑇 is

the relative weighting vector of the ℎ̃
𝑗

(𝑖 = 1, 2, . . . , 𝑛), with
𝜔
𝑖

∈ [0, 1] and ∑
𝑛

𝑖=1

𝜔
𝑖

= 1. Then an interval-valued hesitant
fuzzy Hamacher synergetic weighted averaging (IVHFH-
SWA) operator is a mapping IVHFSWAHamacher : 𝐻̃

𝑛

→ 𝐻̃,
associated with a weighting vector𝑤 = (𝑤

1

, 𝑤
2

, . . . , 𝑤
𝑛

), such
that 𝑤

𝑖

∈ [0, 1] and ∑
𝑛

𝑖=1

𝑤
𝑖

= 1, according to the following
expression:

IVHFSWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

⨁
𝑛

𝑗=1

𝜔
𝑗

ℎ̃
𝑗

𝑤
𝜌(𝑗)

∑
𝑛

𝑗=1

𝜔
𝑗

𝑤
𝜌(𝑗)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

,

(34)
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where 𝜌 : {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛} is a permutation
function such that ℎ̃

𝑗

is the 𝜌(𝑗)th largest element of the
collection of ℎ̃

𝑗

(𝑖 = 1, 2, . . . , 𝑛). In particular, if all 𝛾𝐿
𝑗

= 𝛾
𝑈

𝑗

,
the IVHFEs ℎ̃

𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

= [𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛) are
reduced to HFEs ℎ

𝑗

= ⋃
𝛾

𝑗

∈ℎ

𝑗

{𝛾
𝑗

}(𝑗 = 1, 2, . . . , 𝑛), then the
IVHFHSWA operator becomes a hesitant fuzzy Hamacher
synergetic weighted averaging (HFHSWA) operator:
HFSWA
Hamacher

(ℎ
1

, ℎ
2

, . . . , ℎ
𝑛

)

=

⨁
𝑛

𝑗=1

𝜔
𝑗

ℎ
𝑗

𝑤
𝜌(𝑗)

∑
𝑛

𝑗=1

𝜔
𝑗

𝑤
𝜌(𝑗)

= ⋃

𝛾

𝑗

∈ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1 − 𝛾
𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

}

}

}

.

(35)

Example 18. Given the collection of IVHFEs, ℎ̃
1

=

{[0.2, 0.4], [0.5, 0.7], [0.6, 0.8]} and ℎ̃
2

= {[0.4, 0.5], [0.7, 0.8]},
the relative weights are 𝜔

1

= 0.3, 𝜔
2

= 0.7 and the associated
weights are 𝑤

1

= 0.6 and 𝑤
2

= 0.4, and suppose that the
𝜂 = 1, then since

𝑃 (ℎ̃
1

≥ ℎ̃
2

)

= max{ 1−max((1/2) (0.5+0.8) − (1/3) (0.2+0.5+0.6)

(1/3) (0.2+0.2+0.2) + (1/2) (0.1+0.1)
,

0) , 0} = 0.267,

(36)

we have ℎ̃
1

< ℎ̃
2

, and the associated weights of ℎ̃
1

and ℎ̃
2

are
𝑤
𝜌(1)

= 0.4 and 𝑤
𝜌(2)

= 0.6, respectively. Thus

IVHFSWA
Hamacher

(ℎ̃
1

, ℎ̃
2

)

=

2

⨁

𝑗=1

𝜔
𝑗

ℎ̃
𝑗

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2

{

{

{

[

[

1 −

2

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

2

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

,

1 −

2

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

2

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

]

]

}

}

}

= {[1 − (1 − 0.2)
0.22

(1 − 0.4)
0.78

,

1 − (1 − 0.4)
0.22

(1 − 0.5)
0.78

],

[1 − (1 − 0.2)
0.22

(1 − 0.7)
0.78

,

1 − (1 − 0.4)
0.22

(1 − 0.8)
0.78

],

[1 − (1 − 0.5)
0.22

(1 − 0.4)
0.78

,

1 − (1 − 0.7)
0.22

(1 − 0.5)
0.78

],

[1 − (1 − 0.5)
0.22

(1 − 0.7)
0.78

,

1 − (1 − 0.7)
0.22

(1 − 0.8)
0.78

],

[1 − (1 − 0.6)
0.22

(1 − 0.4)
0.78

,

1 − (1 − 0.8)
0.22

(1 − 0.5)
0.78

],

[1 − (1 − 0.6)
0.22

(1 − 0.7)
0.78

,

1 − (1 − 0.8)
0.22

(1 − 0.8)
0.78

]}

= {[0.3608, 0.4795], [0.6278, 0.7453],

[0.4236, 0.5531], [0.6643, 0.7813],

[0.4512, 0.5913], [0.6804, 0.8]}.

(37)

By comparing Examples 12, 16, and 18, we know that
the results derived from the IVHFHWA, IVHFHOWA, and
IVHFHSWA operators are different; the reason is intu-
itive; the IVHFHWA operator focuses solely on the relative
weights and ignores the associated weights in the process of
aggregation, while the IVHFHOWA operator focuses only
on the associated weights and ignores the relative weights
in the process of aggregation; the IVHFHSWA operator
comprehensively and simultaneously considers the relative
weights and the associated weights and then its aggregated
results are more feasible and effective.

Inevitably, we can see that the aggregation procedure of
the interval-valued hesitant fuzzy information is complex,
especially, with the increases of the number of argument
variables, but it can surely better describe the situationswhere
people have hesitancy in providing their preferences in the
process of decision making, and the proposed operators can
be easily solved using Microsoft Excel Solver or integrated in
a decision support system [4, 10].

IVHFHSWA operator not only integrates the relative
weights and the associated weights into the weighted averag-
ing operation and then generalizes the IVHFHWA operator
and IVHFHOWA operator but also satisfies the properties of
idempotency, boundary and monotonicity, and so on.

Theorem 19 (Idempotency). Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

=

[𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛) be a collection of IVHFEs; if ℎ̃
𝑗

=

ℎ̃ = ⋃
𝛾∈

̃

ℎ

{𝛾 = [𝛾
𝐿

, 𝛾
𝑈

]} for all 𝑗 = 1, 2, . . . , 𝑛, then

𝐼𝑉𝐻𝐹𝑆𝑊𝐴
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

) = ℎ̃. (38)
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Proof. Consider

IVHFSWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

⨁
𝑛

𝑗=1

𝜔
𝑗

ℎ̃
𝑗

𝑤
𝜌(𝑗)

∑
𝑛

𝑗=1

𝜔
𝑗

𝑤
𝜌(𝑗)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂−1)

𝑛

∏

𝑗=1

(1−𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1−𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1+(𝜂−1) 𝛾
𝑈

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1 −𝛾
𝑈

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

]}

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

{[

(1 + (𝜂 − 1) 𝛾
𝐿

) − (1 − 𝛾
𝐿

)

(1 + (𝜂 − 1) 𝛾
𝐿

) + (𝜂 − 1) (1 − 𝛾
𝐿

)
,

(1 + (𝜂 − 1) 𝛾
𝑈

) − (1 − 𝛾
𝑈

)

(1 + (𝜂 − 1) 𝛾
𝑈

) + (𝜂 − 1) (1 − 𝛾
𝑈

)
]}

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{[𝛾
𝐿

, 𝛾
𝑈

]} = ℎ̃.

(39)

Thus, IVHFSWAHamacher(ℎ̃1, ℎ̃2, . . . , ℎ̃𝑛) = ℎ̃.

Theorem 20 (Boundedness). Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

=

[𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛) be a collection of IVHFEs, ⋂𝑛

𝑗=1

ℎ̃
𝑗

=

⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

{[min
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗

},min
1≤𝑗≤𝑛

{𝛾
𝑈

𝑗

}]}, and ⋃
𝑛

𝑗=1

ℎ̃
𝑗

=

⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

{[max
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗

},max
1≤𝑗≤𝑛

{𝛾
𝑈

𝑗

}]}; then

𝑛

⋂

𝑗=1

ℎ̃
𝑗

≤ 𝐼𝑉𝐻𝐹𝑆𝑊𝐴
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

) ≤

𝑛

⋃

𝑗=1

ℎ̃
𝑗

. (40)

Proof. Suppose ⋂
𝑛

𝑗=1

ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

{[min
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗

},
min

1≤𝑗≤𝑛

{𝛾
𝑈

𝑗

}]}, and

𝑛

⋃

𝑗=1

ℎ̃
𝑗

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

{[max
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗

} ,max
1≤𝑗≤𝑛

{𝛾
𝑈

𝑗

}]} . (41)

For any a combination, we always have

[min
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗

} , min
1≤𝑗≤𝑛

{𝛾
𝑈

𝑗

}]

≤ [

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

,
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(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

]

]

≤ [max
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗

} ,max
1≤𝑗≤𝑛

{𝛾
𝑈

𝑗

}] .

(42)

Then, considering all possible combinations, we have

⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

{[min
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗

} , min
1≤𝑗≤𝑛

{𝛾
𝑈

𝑗

}]}

≤ ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1

+ (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

,

⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

(

𝑛

∏

𝑗=1

(1

+(𝜂−1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1−𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

≤ ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

{[max
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗

} ,max
1≤𝑗≤𝑛

{𝛾
𝑈

𝑗

}]} .

(43)

Hence, we have ⋂
𝑛

𝑗=1

ℎ̃
𝑗

≤ IVHFSWAHamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

) ≤ ⋃
𝑛

𝑗=1

ℎ̃
𝑗

.

Theorem 21 (Monotonicity). Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

= [𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}

and ℎ̃
󸀠

𝑗

= ⋃
𝛾

󸀠

𝑗

∈

̃

ℎ

󸀠

𝑗

{𝛾
󸀠

𝑗

= [𝛾
󸀠𝐿

𝑗

, 𝛾
󸀠𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛) be two

collections of IVHFEs; if only if 𝛾
𝑗

≥ 𝛾
󸀠

𝑗

, 𝛾
𝑗

∈ ℎ̃
𝑗

, and 𝛾
󸀠

𝑗

∈ 𝛾
󸀠

𝑗

for
all 𝑗 = 1, 2, . . . , 𝑛, then

𝐼𝑉𝐻𝐹𝑆𝑊𝐴
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ
1

, ℎ
2

, . . . , ℎ
𝑛

) ≥ 𝐼𝑉𝐻𝐹𝑆𝑊𝐴
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ
󸀠

1

, ℎ
󸀠

2

, . . . , ℎ
󸀠

𝑛

) .

(44)

Proof. We have known that 𝜑
𝜂

(𝑥, 𝑦) = (𝑥 + 𝑦 − 𝑥𝑦 − (1 −

𝜂)𝑥𝑦)/(1 − (1 − 𝜂)𝑥𝑦), 𝜂 > 0, is a strictly increasing function.
Since 𝛾

𝑗

≥ 𝛾
󸀠

𝑗

, 𝛾
𝑗

∈ ℎ̃
𝑗

, 𝛾󸀠
𝑗

∈ ℎ̃
󸀠

𝑗

for all 𝑗 = 1, 2, . . . , 𝑛, then

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)
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× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

]

]

≥ [

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
󸀠𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
󸀠𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
󸀠𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
󸀠𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
󸀠𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
󸀠𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
󸀠𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
󸀠𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

]

]

.

(45)

By considering all possible combinations, we can
get easily that IVHFSWAHamacher(ℎ1, ℎ2, . . . , ℎ𝑛) ≥

IVHFSWAHamacher(ℎ
󸀠

1

, ℎ
󸀠

2

, . . . , ℎ
󸀠

𝑛

).
In the following, we discuss some special cases of the

IVHFHSWA operator.
(1) From the perspective of parameter 𝜂.

Case 1. If 𝜂 = 1, then the IVHFHSWA operator results in an
interval-valued hesitant fuzzy synergetic weighted averaging
(IVHFSWA) operator:

IVHFSWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=1

󳨀󳨀󳨀→ IVHFSWA (ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

,

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

]

]

}

}

}

.

(46)

Case 2. If 𝜂 = 2, then the IVHFHSWA operator results in an
interval-valued hesitant fuzzy Einstein synergetic weighted
averaging (IVHFESWA) operator:

IVHFSWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=2

󳨀󳨀󳨀→ IVHFESWA (ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

,

(

𝑛

∏

𝑗=1

(1 + 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+

𝑛

∏

𝑗=1

(1

−𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

.

(47)
(2) From the perspective of the types of weights.

Case 1. If the relative weighting vector 𝜔 = (𝜔
1

, 𝜔
2

, . . . , 𝜔
𝑛

) =

(1/𝑛, 1/𝑛, . . . , 1/𝑛), then the IVHFHSWA operator is reduced
to the IVHFHOWA operator.

Proof. Suppose

IVHFSWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1+(𝜂−1) 𝛾
𝐿

𝑗

)
(1/𝑛)𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

(1/𝑛)𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
(1/𝑛)𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

(1/𝑛)𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1+(𝜂−1) 𝛾
𝐿

𝑗

)
(1/𝑛)𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

(1/𝑛)𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1−𝛾
𝐿

𝑗

)
(1/𝑛)𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

(1/𝑛)𝑤

𝜌(𝑗)

)

−1

,
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(

𝑛

∏

𝑗=1

(1+(𝜂−1) 𝛾
𝑈

𝑗

)
(1/𝑛)𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

(1/𝑛)𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
(1/𝑛)𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

(1/𝑛)𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1+(𝜂−1) 𝛾
𝑈

𝑗

)
(1/𝑛)𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

(1/𝑛)𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1

−𝛾
𝑈

𝑗

)
(1/𝑛)𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

(1/𝑛)𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

= IVHFOWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

) .

(48)

Thus, IVHFSWAHamacher(ℎ̃1, ℎ̃2, . . . , ℎ̃𝑛)
𝜔

𝑗

=1/𝑛,𝑗=1,...,𝑛

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→

IVHFOWAHamacher(ℎ̃1, ℎ̃2, . . . , ℎ̃𝑛).

Case 2. If the associated weighting vector 𝑤 =

(𝑤
1

, 𝑤
2

, . . . , 𝑤
𝑛

) = (1/𝑛, 1/𝑛, . . . , 1/𝑛), then the IVHFHSWA
operator is reduced to the IVHFHWA operator.

Proof. Suppose

IVHFSWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

(1/𝑛)/∑

𝑛

𝑗=1

𝜔

𝑗

(1/𝑛)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

(1/𝑛)/∑

𝑛

𝑗=1

𝜔

𝑗

(1/𝑛)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

(1/𝑛)/∑

𝑛

𝑗=1

𝜔

𝑗

(1/𝑛)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

(1/𝑛)/∑

𝑛

𝑗=1

𝜔

𝑗

(1/𝑛)

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

(1/𝑛)/∑

𝑛

𝑗=1

𝜔

𝑗

(1/𝑛)

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

(1/𝑛)/∑

𝑛

𝑗=1

𝜔

𝑗

(1/𝑛)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

(1/𝑛)/∑

𝑛

𝑗=1

𝜔

𝑗

(1/𝑛)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

(1/𝑛)/∑

𝑛

𝑗=1

𝜔

𝑗

(1/𝑛)

)

−1

]

]

}

}

}

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
𝜔

𝑗

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

)
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× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
𝜔

𝑗

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

)

−1

]

]

}

}

}

= IVHFWA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

) .

(49)

Thus, IVHFSWAHamacher(ℎ̃1, ℎ̃2, . . . , ℎ̃𝑛)
𝑤

𝑗

=1/𝑛,𝑗=1,...,𝑛

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→

IVHFWAHamacher(ℎ̃1, ℎ̃2, . . . , ℎ̃𝑛).

Case 3. If 𝑤 = (𝑤
1

, 𝑤
2

, . . . , 𝑤
𝑛

) = (1/𝑛, 1/𝑛, . . . , 1/𝑛)

and 𝜔 = (𝜔
1

, 𝜔
2

, . . . , 𝜔
𝑛

) = (1/𝑛, 1/𝑛, . . . , 1/𝑛), then
the IVHFHSWA operator results in an interval-valued hes-
itant fuzzy Hamacher averaging (IVHFHA) operator:

IVHFA
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨁

𝑗=1

1

𝑛
ℎ̃
𝑗

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
1/𝑛

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
1/𝑛

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝐿

𝑗

)
1/𝑛

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗

)
1/𝑛

)

−1

,

(

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
1/𝑛

−

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
1/𝑛

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) 𝛾
𝑈

𝑗

)
1/𝑛

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗

)
1/𝑛

)

−1

]

]

}

}

}

.

(50)

From Examples 12, 16, and 18 as well as Cases 1 and 2,
it follows that the IVHFHSWA operator generalizes both

the IVHFHWA operator and the IVHFHOWA operator, and
thus it can reflect the importance of both the considered
argument and its ordered position.

3.2. Interval-Valued Hesitant Fuzzy Hamacher Synergetic
Weighted Geometric Operator

Definition 22. Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

= [𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛)

be a collection of IVHFEs, and 𝜔 = (𝜔
1

, 𝜔
2

, . . . , 𝜔
𝑛

)
𝑇 is

the relative weighting vector of the ℎ̃
𝑗

(𝑖 = 1, 2, . . . , 𝑛), with
𝜔
𝑖

∈ [0, 1] and ∑
𝑛

𝑖=1

𝜔
𝑖

= 1. Then an interval-valued hesitant
fuzzy Hamacher synergetic weighted geometric (IVHFH-
SWG) operator is a mapping IVHFSWGHamacher : 𝐻̃

𝑛

→ 𝐻̃,
associated with a weighting vector𝑤 = (𝑤

1

, 𝑤
2

, . . . , 𝑤
𝑛

), such
that 𝑤

𝑖

∈ [0, 1] and ∑
𝑛

𝑖=1

𝑤
𝑖

= 1, according to the following
expression:

IVHFSWG
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨂

𝑗=1

ℎ̃
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

𝑗

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(𝜂

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1)

× (1 − 𝛾
𝐿

𝑗

))
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

,

(𝜂

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1)

× (1 − 𝛾
𝑈

𝑗

))
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

,

(51)

where 𝜌 : {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛} is a permutation
function such that ℎ̃

𝑗

is the 𝜌(𝑗)th largest element of the
collection of ℎ̃

𝑗

(𝑖 = 1, 2, . . . , 𝑛). In particular, if all 𝛾𝐿
𝑗

= 𝛾
𝑈

𝑗

,
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the IVHFEs ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

= [𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛)

are reduced to HFEs ℎ
𝑗

= ⋃
𝛾

𝑗

∈ℎ

𝑗

{𝛾
𝑗

}(𝑗 = 1, 2, . . . , 𝑛); then
the IVHFHSWG operator becomes a hesitant fuzzy
Hamacher synergetic weighted geometric (HFHSWG)
operator:

HFSWG
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨂

𝑗=1

ℎ
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

𝑗

= ⋃

𝛾

𝑗

∈ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

(𝜂

𝑛

∏

𝑗=1

(𝛾
𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1)

× (1 − 𝛾
𝑗

))
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+ (𝜂 − 1)

×

𝑛

∏

𝑗=1

(𝛾
𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

}

}

}

.

(52)

Example 23. Given the collection of IVHFEs, ℎ̃
1

=

{[0.2, 0.4], [0.5, 0.7], [0.6, 0.8]} and ℎ̃
2

= {[0.4, 0.5], [0.7, 0.8]},
the relative weights 𝜔

1

= 0.3, 𝜔
2

= 0.7 and the associated
weight vectors are 𝑤

1

= 0.6, 𝑤
2

= 0.4, and suppose that the
𝜂 = 2, then, since ℎ̃

1

< ℎ̃
2

, and the associated weights of ℎ̃
1

and ℎ̃
2

are 𝑤
𝜌(1)

= 0.4 and 𝑤
𝜌(2)

= 0.6, respectively, then

IVHFSWG
Hamacher

(ℎ̃
1

, ℎ̃
2

)

=

2

⨂

𝑗=1

ℎ̃
𝑤

𝜌(𝑗)

𝜔

𝑗

/∑

2

𝑗=1

𝑤

𝜌(𝑗)

𝜔

𝑗

𝑗

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2

{

{

{

[

[

(2

2

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

2

∏

𝑗=1

(2 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+

2

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

,

(2

2

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

× (

2

∏

𝑗=1

(2 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

+

2

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

= {[0.346, 0.477] , [0.551, 0.699] , [0.421, 0.541],

[0.653, 0.778] , [0.439, 0.559] , [0.677, 0.8]}.

(53)

Furthermore, we can obtain the aggregated results corre-
sponding to some special cases of the parameter 𝜂, which are
shown in Table 1.

FromTable 1, we know that the aggregated results derived
from the IVHFHSWG steadily increases as the parameter 𝜂
increases, which implies that the IVHFHSWG operator with
parameters can provide the decision makers more choices
and thus the aggregated results are more flexible than the
existing ones, because we can choose different values of the
parameter according to the different situations.

The IVHFHSWG operator has some essential properties,
such as idempotency, boundary, and monotonicity.

Theorem 24 (Idempotency). Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

}(𝑗 =

1, 2, . . . , 𝑛) be a collection of IVHFEs. If ℎ̃
𝑗

= ℎ̃ = ⋃
𝛾∈

̃

ℎ

{𝛾 =

[𝛾
𝐿

, 𝛾
𝑈

]} for all 𝑗 = 1, 2, . . . , 𝑛, then

𝐼𝑉𝐻𝐹𝑆𝑊𝐺
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

) = ℎ̃. (54)

Theorem 25 (Boundedness). Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

=

[𝛾
𝐿

𝑗

, 𝛾
𝑈

𝑗

]}(𝑗 = 1, 2, . . . , 𝑛) be a collection of IVHFEs, ⋂𝑛

𝑗=1

ℎ̃
𝑗

=

⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

{[min
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗

},min
1≤𝑗≤𝑛

{𝛾
𝑈

𝑗

}]}, and ⋃
𝑛

𝑗=1

ℎ̃
𝑗

=

⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,2,...,𝑛

{[max
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗

},max
1≤𝑗≤𝑛

{𝛾
𝑈

𝑗

}]}, then

𝑛

⋂

𝑗=1

ℎ̃
𝑗

≤ 𝐼𝑉𝐻𝐹𝑆𝑊𝐺
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

) ≤

𝑛

⋃

𝑗=1

ℎ̃
𝑗

. (55)

Theorem 26 (Monotonicity). Let ℎ̃
𝑗

= ⋃
𝛾

𝑗

∈

̃

ℎ

𝑗

{𝛾
𝑗

}(𝑗 =

1, 2, . . . , 𝑛) be a collection of IVHFEs. If ℎ
𝑗

≤ ℎ
󸀠

𝑗

for all 𝑗 =

1, 2, . . . , 𝑛, then

𝐼𝑉𝐻𝐹𝑆𝑊𝐺(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

) ≤ 𝐼𝑉𝐻𝐹𝑆𝑊𝐺
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
󸀠

1

, ℎ̃
󸀠

2

, . . . , ℎ̃
󸀠

𝑛

) .

(56)

In the following, we discuss the special cases of the
IVHFHSWG operator.

(1) From the perspective of parameter 𝜂.

Case 1. If 𝜂 = 1, then the IVHFHSWG operator results in an
interval-valued hesitant fuzzy synergetic weighted geometric
(IVHFSWG) operator:

IVHFSWG (ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

,

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

]

]

}

}

}

.

(57)
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Table 1: Aggregated results for the different 𝜂.

ID 𝜂 Aggregated results Score values
1 0.1 {[0.332, 0.474], [0.470, 0.661], [0.419, 0.534], [0.644, 0.776], [0.433, 0.546], [0.675, 0.8]} [0.496, 0.632]
2 0.5 {[0.340, 0.475], [0.509, 0.676], [0.420, 0.537], [0.648, 0.776], [0.435, 0.551], [0.676, 0.8]} [0.505, 0.636]
3 1 {[0.343, 0.476], [0.531, 0.687], [0.420, 0.538], [0.650, 0.777], [0.437, 0.554], [0.677, 0.8]} [0.510, 0.639]
4 1.5 {[0.345, 0.476], [0.543, 0.694], [0.420, 0.540], [0.652, 0.777], [0.438, 0.557], [0.677, 0.8]} [0.513, 0.641]
5 2 {[0.346, 0.477], [0.551, 0.699], [0.421, 0.541], [0.653, 0.778], [0.439, 0.559], [0.677, 0.8]} [0.515, 0.642]
6 5 {[0.348, 0.477], [0.570, 0.713], [0.421, 0.543], [0.656, 0.779], [0.441, 0.566], [0.678, 0.8]} [0.519, 0.646]
7 100 {[0.349, 0.478], [0.587, 0.728], [0.422, 0.546], [0.659, 0.780], [0.443, 0.575], [0.679, 0.8]} [0.523, 0.651]

Case 2. If 𝜂 = 2, then the IVHFHSWG operator results in an
interval-valued hesitant fuzzy Einstein synergetic weighted
geometric (IVHFESWG) operator:

IVHFESWG (ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(2

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

)

× (

𝑛

∏

𝑗=1

(2 − 𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

+

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

)

−1

,

(2

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

)

× (

𝑛

∏

𝑗=1

(2 − 𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

+

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌𝜆(𝑗)

)

−1

]

]

}

}

}

.

(58)

(2) From the perspective of the types of weights.

Case 1. If the relative weighting vector 𝜔 = (𝜔
1

, 𝜔
2

, . . . , 𝜔
𝑛

) =

(1/𝑛, 1/𝑛, . . . , 1/𝑛), then the IVHFHSWG operator becomes
an interval-valued hesitant fuzzy Hamacher ordered
weighted geometric (IVHFHOWG) operator:

IVHFSWG
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜔

𝑗

=1/𝑛,𝑗=1,...,𝑛

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ IVHFOWG
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨂

𝑗=1

ℎ̃
𝑤

𝜌(𝑗)

𝑗

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(𝜂

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) (1 − 𝛾
𝐿

𝑗

))
𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

)

−1

,

(𝜂

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) (1 − 𝛾
𝑈

𝑗

))
𝑤

𝜌(𝑗)

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

.

(59)

On the other hand

IVHFSWG
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜔

𝑗

=1/𝑛,𝑗=1,...,𝑛

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ IVHFOWG
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨂

𝑗=1

ℎ̃
𝑤

𝑗

𝜎(𝑗)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(𝜂

𝑛

∏

𝑗=1

(𝛾
𝐿

𝜎(𝑗)

)
𝑤

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) (1 − 𝛾
𝐿

𝜎(𝑗)

))
𝑤

𝑗

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(𝛾
𝐿

𝜎(𝑗)

)
𝑤

𝑗

)

−1

,
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(𝜂

𝑛

∏

𝑗=1

(𝛾
𝑈

𝜎(𝑗)

)
𝑤

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) (1 − 𝛾
𝑈

𝜎(𝑗)

))
𝑤

𝑗

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(𝛾
𝑈

𝜎(𝑗)

)
𝑤

𝑗

)

−1

]

]

}

}

}

.

(60)

Furthermore, similar toTheorems 10 and 11, the following
theorems hold.

Theorem 27. The IVHFOWG operator proposed by Chen et
al. [11] is the special case of the IVHFHOWG operator; that is,
if 𝜂 = 1,then

𝐼𝑉𝐻𝐹𝑂𝑊𝐺
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=1

󳨀󳨀󳨀→ 𝐼𝑉𝐻𝐹𝑂𝑊𝐺(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

𝑛

∏

𝑗=1

(𝛾
𝐿

𝜎(𝑗)

)
𝑤

𝑗

,

𝑛

∏

𝑗=1

(𝛾
𝑈

𝜎(𝑗)

)
𝑤

𝑗

]

]

}

}

}

.

(61)

On the other hand

𝐼𝑉𝐻𝐹𝑂𝑊𝐺
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=1

󳨀󳨀󳨀→ 𝐼𝑉𝐻𝐹𝑂𝑊𝐺(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

,

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

]

]

}

}

}

.

(62)

Theorem 28. The IVHFEOWG operator proposed byWei and
Zhao [23] is the special case of the IVHFHOWG operator; that
is, if 𝜂 = 2, then

𝐼𝑉𝐻𝐹𝑂𝑊𝐺
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=2

󳨀󳨀󳨀→ 𝐼𝑉𝐻𝐹𝐸𝑂𝑊𝐺(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(2

𝑛

∏

𝑗=1

(𝛾
𝐿

𝜎(𝑗)

)
𝑤

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (1 − 𝛾
𝐿

𝜎(𝑗)

))
𝑤

𝑗

+

𝑛

∏

𝑗=1

(𝛾
𝐿

𝜎(𝑗)

)
𝑤

𝑗

)

−1

,

(2

𝑛

∏

𝑗=1

(𝛾
𝑈

𝜎(𝑗)

)
𝑤

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (1 − 𝛾
𝑈

𝜎(𝑗)

))
𝑤

𝑗

+

𝑛

∏

𝑗=1

(𝛾
𝑈

𝜎(𝑗)

)
𝑤

𝑗

)

−1

]

]

}

}

}

.

(63)

On the other hand

𝐼𝑉𝐻𝐹𝑂𝑊𝐺
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=2

󳨀󳨀󳨀→ 𝐼𝑉𝐻𝐹𝐸𝑂𝑊𝐺(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(2

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (1 − 𝛾
𝐿

𝑗

))
𝑤

𝜌(𝑗)

+

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝑤

𝜌(𝑗)

)

−1

,

(2

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

)

× (

𝑛

∏

𝑗=1

(1 + (1 − 𝛾
𝑈

𝑗

))
𝑤

𝜌(𝑗)

+

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝑤

𝜌(𝑗)

)

−1

]

]

}

}

}

.

(64)

Case 2. If the associated weighting vector 𝑤 = (𝑤
1

, 𝑤
2

,
. . . , 𝑤

𝑛

) = (1/𝑛, 1/𝑛, . . . , 1/𝑛), then the IVHFHSWG oper-
ator becomes an interval-valued hesitant fuzzy Hamacher
weighted geometric (IVHFHWG) operator:

IVHFSWG
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝑤

𝑗

=1/𝑛,𝑗=1,...,𝑛

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ IVHFWG
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨂

𝑗=1

ℎ̃
𝜔

𝑗

𝑗
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= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(𝜂

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) (1 − 𝛾
𝐿

𝑗

))
𝜔

𝑗

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

)

−1

,

(𝜂

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) (1 − 𝛾
𝑈

𝑗

))
𝜔

𝑗

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

)

−1

]

]

}

}

}

.

(65)

Furthermore, the following theorems hold.

Theorem 29. The IVHFWG operator proposed by Chen et al.
[11] is the special case of the IVHFHWG operator; that is, if
𝜂 = 1, then

𝐼𝑉𝐻𝐹𝑊𝐺
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=1

󳨀󳨀󳨀→ 𝐼𝑉𝐻𝐹𝑊𝐺(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

,

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

]

]

}

}

}

.

(66)

Theorem 30. The IVHFEWG operator proposed by Wei and
Zhao [23] is the special case of the IVHFHWG operator; that
is, if 𝜂 = 2, then

𝐼𝑉𝐻𝐹𝑊𝐺
𝐻𝑎𝑚𝑎𝑐ℎ𝑒𝑟

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜂=2

󳨀󳨀󳨀→ 𝐼𝑉𝐻𝐹𝐸𝑊𝐺(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

2∏
𝑛

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

∏
𝑛

𝑗=1

(1 + (1 − 𝛾
𝐿

𝑗

))
𝜔

𝑗

+ ∏
𝑛

𝑗=1

(𝛾
𝐿

𝑗

)
𝜔

𝑗

,

2∏
𝑛

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

∏
𝑛

𝑗=1

(1 + (1 − 𝛾
𝑈

𝑗

))
𝜔

𝑗

+ ∏
𝑛

𝑗=1

(𝛾
𝑈

𝑗

)
𝜔

𝑗

]

]

}

}

}

.

(67)

Case 3. If 𝑤 = (𝑤
1

, 𝑤
2

, . . . , 𝑤
𝑛

) = (1/𝑛, 1/𝑛, . . . , 1/𝑛)

and 𝜔 = (𝜔
1

, 𝜔
2

, . . . , 𝜔
𝑛

) = (1/𝑛, 1/𝑛, . . . , 1/𝑛), then

the IVHFHSWG operator becomes an interval-valued hesi-
tant fuzzy Hamacher geometric (IVHFHG) operator:

IVHFSWG
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

𝜔

𝑗

=1/𝑛,𝑗=1,...,𝑛

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→
𝑤

𝑗

=1/𝑛,𝑗=1,...,𝑛

IVHFG
Hamacher

(ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

= ⋃

𝛾

𝑗

∈

̃

ℎ

𝑗

,𝑗=1,...,𝑛

{

{

{

[

[

(𝜂

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
1/𝑛

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) (1 − 𝛾
𝐿

𝑗

))
1/𝑛

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗

)
1/𝑛

)

−1

,

(𝜂

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
1/𝑛

)

× (

𝑛

∏

𝑗=1

(1 + (𝜂 − 1) (1 − 𝛾
𝑈

𝑗

))
1/𝑛

+ (𝜂 − 1)

𝑛

∏

𝑗=1

(𝛾
𝑈

𝑗

)
1/𝑛

)

−1

]

]

}

}

}

.

(68)

When applying the IVHFHSW (IVHFHSWA and
IVHFHSWG) operators for decision making, the key issue
is to determine the associated weights. Different approaches
have been suggested for obtaining the associated weight
vector [31, 32]. The most common of them is the one
based on the use of a linguistic quantifier [4, 32, 33], 𝑄,
which is a regular increasing monotonic (RIM) function
𝑄 : [0, 1] → [0, 1] that satisfies 𝑄(0) = 0, 𝑄(1) = 1, and
𝑄(𝑥) ≥ 𝑄(𝑦) if 𝑥 > 𝑦, where𝑄 is substituted with a linguistic
quantifier. In the quantifier-guided aggregation process,
the decision makers provide a decision strategy with a
linguistic quantifier that indicates the portion of the criteria
they feel is necessary for a good solution, such as “many”
or “most.” The formal decision strategy is that “𝑄 criteria
must be satisfied by an acceptable alternative.” Yager [32]
recommended obtaining the descending orders associated
weights based on a linguistic quantifier as follows:

𝑤
𝑖

= 𝑄(
𝑖

𝑛
) − 𝑄(

𝑖 − 1

𝑛
) , 𝑖 = 1, . . . , 𝑛, (69)

where 𝑄 is a linguistic quantifier and the simplest and most
common one is defined as

𝑄 (𝑟) = 𝑟
𝛼

, 𝛼 ≥ 0, 𝑟 ∈ [0, 1] , (70)
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Table 2: Guideline to select linguistic quantifiers and equivalent 𝛼
values.

ID Linguistic quantifier Parameter
1 All (max) 𝛼 → ∞: (1000)
2 Most 𝛼 = 5

3 Many 𝛼 = 2

4 Half (weighted averaging) 𝛼 = 1

5 Some 𝛼 = 0.5

6 Few 𝛼 = 0.2

7 At least one (min) 𝛼 → 0: (0.001)

in which 𝛼 is a parameter indicating the decision strategies
(rules); its changes represent a continuum of different deci-
sion strategies between the two extreme cases of requiring
“all” and “at least one” of the criteria to be satisfied.The com-
mon decision strategies and their corresponding parameter 𝛼
are listed in Table 2 [4, 33].

Based on linguistic quantifier 𝑄, the decision makers
provide a decision strategy with a linguistic quantifier that
indicates the portion of the criteria they feel is necessary for
a good solution.

4. Approach for Selecting Shale Gas Areas
Based on the IVHFHSWA Operator

The following assumptions or notations are used to rep-
resent the MCDM problems with interval-valued hesitant

fuzzy information. Let {𝐴
1

, 𝐴
2

, . . . , 𝐴
𝑚

} be a discrete set
of alternatives and let {𝐶

1

, 𝐶
2

, . . . , 𝐶
𝑛

} be the set of criteria
and its relative weight vector is 𝜔 = (𝜔

1

, 𝜔
2

, . . . , 𝜔
𝑛

).
Decision makers provide interval values for the alternative
𝐴

𝑖

under the criteria𝐶
𝑗

with anonymity. To avoid performing
information aggregation and to directly reflect the differences
of the opinions of different experts, these interval values are
considered as an interval-valued hesitant fuzzy element ℎ̃

𝑖𝑗

and formed the decision matrix (ℎ̃
𝑖𝑗

)
𝑚×𝑛

.
In the following, we apply the IVHFHSWA (IVHFH-

SWG) operator to multiple criteria decision making based
on interval-valued hesitant fuzzy information. The method
involves the following steps.

Step 1. Determine the associatedweights by utilizing (69) and
(70) as

𝑤
𝑗

= (
𝑗

𝑛
)

𝛼

− (
𝑗 − 1

𝑛
)

𝛼

, 𝑗 = 1, . . . , 𝑛. (71)

Step 2. Rank the criteria values against alternatives by the rel-
ative possibility degrees, (17), and then assign the associated
weights as

𝑃 (ℎ̃
𝑖𝑗

) =

∑
𝑛

𝑘=1

max
{

{

{

1 −max(
(1/#ℎ̃

𝑖𝑘

)∑
𝛾

𝑖𝑘

∈

̃

ℎ

𝑖𝑘

𝛾
𝑈

𝑖𝑘

− (1/#ℎ̃
𝑖𝑗

)∑
𝛾

𝑖𝑗

∈

̃

ℎ

𝑖𝑗

𝛾
𝐿

𝑖𝑗

(1/#ℎ̃
𝑖𝑗

)∑
𝛾

𝑖𝑗

∈

̃

ℎ

𝑖𝑗

(𝛾
𝑈

𝑖𝑗

− 𝛾
𝐿

𝑖𝑗

) + (1/#ℎ̃
𝑖𝑘

)∑
𝛾

𝑖𝑘

∈

̃

ℎ

𝑖𝑘

(𝛾
𝑈

𝑖𝑘

− 𝛾
𝐿

𝑖𝑘

)

, 0) , 0

}

}

}

+ (𝑛/2) − 1

𝑛 (𝑛 − 1)
,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛.

(72)

Step 3. Utilize the IVHFHSWA operator, (34), as

ℎ̃
𝑖

= IVHFSWA
Hamacher

(ℎ̃
𝑖1

, ℎ̃
𝑖2

, . . . , ℎ̃
𝑖𝑛

) = (

⨁
𝑛

𝑗=1

𝜔
𝑗

ℎ̃
𝑖𝑗

𝑤
𝜌(𝑗)

∑
𝑛

𝑗=1

𝜔
𝑗

𝑤
𝜌(𝑗)

) ,

𝑖 = 1, 2, . . . , 𝑚.

(73)

Or the IVHFHSWG operator, (51), as

ℎ̃
𝑖

= IVHFSWG
Hamacher

(ℎ̃
𝑖1

, ℎ̃
𝑖2

, . . . , ℎ̃
𝑖𝑛

) =

𝑛

⨂

𝑗=1

ℎ̃
𝜔

𝑗

𝑤

𝜌(𝑗)

/∑

𝑛

𝑗=1

𝜔

𝑗

𝑤

𝜌(𝑗)

𝑖𝑗

,

𝑖 = 1, 2, . . . , 𝑚

(74)

to aggregate decision information of ℎ̃
𝑖𝑗

(𝑖 = 1, 2, . . . , 𝑚, 𝑗 =

1, 2, . . . , 𝑛) and obtain the IVHFEs ℎ̃
𝑖

(𝑖 = 1, 2 . . . , 𝑚) for the
alternatives 𝐴

𝑖

(𝑖 = 1, 2, . . . , 𝑚).

Step 4. Compute the relative possibility degrees 𝑃(ℎ̃
𝑖

)(𝑖 =

1, 2, . . . , 𝑚) of the IVHFEs ℎ̃
𝑖

(𝑖 = 1, 2, . . . , 𝑚) by utilizing (17)
as

𝑃 (ℎ̃
𝑖

) =

∑
𝑚

𝑘=1

max
{

{

{

1 −max(
(1/#ℎ̃

𝑘

)∑
𝛾

𝑘

∈

̃

ℎ

𝑘

𝛾
𝑈

𝑘

− (1/#ℎ̃
𝑖

)∑
𝛾

𝑖

∈

̃

ℎ

𝑖

𝛾
𝐿

𝑖

(1/#ℎ̃
𝑖

)∑
𝛾

𝑖

∈

̃

ℎ

𝑖

(𝛾
𝑈

𝑖

− 𝛾
𝐿

𝑖

) + (1/#ℎ̃
𝑘

)∑
𝛾

𝑘

∈

̃

ℎ

𝑘

(𝛾
𝑈

𝑘

− 𝛾
𝐿

𝑘

)

, 0) , 0

}

}

}

+ (𝑚/2) − 1

𝑚 (𝑚 − 1)
,

𝑖 = 1, 2, . . . , 𝑚.

(75)
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Table 3: IVHF decision matrix.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

{[0.4, 0.6], [0.8, 0.9]} {[0.5, 0.7]} {[0.6, 0.8]} {[0.3, 0.4], [0.4, 0.5], [0.5, 0.6]}

𝐴
2

{[0.7, 0.8]} {[0.4, 0.6]} {[0.5, 0.7], [0.8, 0.9]} {[0.3, 0.6], [0.7, 0.9]}

𝐴
3

{[0.3, 0.4], [0.6, 0.8]} {[0.3, 0.4], [0.6, 0.7]} {[0.6, 0.8]} {[0.2, 0.3], [0.5, 0.7]}

𝐴
4

{[0.4, 0.5]} {[0.2, 0.3], [0.4, 0.5]} {[0.5, 0.6], [0.7, 0.8]} {[0.3, 0.5]}

𝐴
5

{[0.6, 0.7], [0.8, 0.9]} {[0.3, 0.5]} {[0.7, 0.8]} {[0.3, 0.4], [0.5, 0.7]}

Step 5. Rank all the alternatives 𝐴
𝑖

(𝑖 = 1, 2, . . . , 𝑚) and
select the best one(s) according to 𝑃(ℎ̃

𝑖

)(𝑖 = 1, 2, . . . , 𝑚) in
descending order.

Step 6. End.

5. Numerical Example

With the increase of energy consumption, conventional
natural gas resources are gradually reducing and getting
increasingly difficult to develop. Due to the shale gas with
the advantages of great resource potential and low carbon
emissions, shale gas has recently been the focus of exploration
in many countries and the development of shale gas becomes
the strategic choice of China [35, 36]. It is well known that
the evaluation and selection of the areas are fundamental in
the process of shale gas development. In order to preliminary
select a best area from the five potential shale gas areas in
South China: the Hunan area, the Sichuan area, the Yunnan
area, the Guizhou area, and the Guangxi area, denoted as
𝑥
𝑖

(𝑖 = 1, 2, 3, 4, 5), respectively. The policy makers from
government agencies, environmental organizations, local
communities, and so forth serve as the decision makers.
The evaluation criteria is based on the SWOT perspectives
[37] and they are summarized as follows (adopted from
[36]): strengths (𝐶

1

), which consists of abundant resource
reserves, great development potential, high environmental
benefits, and long lifetime for exploitation; weaknesses (𝐶

2

),
which can be divided into lack of funds, lack of key tech-
nologies, prominent water treatment problems, and serious
environmental risks; opportunities (𝐶

3

), which involve huge
potential market, policy support, increased investment and
financing channels, plentiful foreign development experi-
ence, and deepened international cooperation; threats (𝐶

4

),
which can include unconfirmed resource potential, imper-
fect policy system, unsound management system, deficient
investment mechanism, poor infrastructure, and the relative
weight vector of the criteria which is 𝜔 = (𝜔

1

, 𝜔
2

, 𝜔
3

, 𝜔
4

) =

(0.1, 0.3, 0.2, 0.4). Given the experts who make such an eval-
uation have different backgrounds and levels of knowledge,
skills, experience, personality, and so forth, this could lead to
a difference in the evaluation information. To clearly reflect
the differences of the opinions of different experts, the data
of evaluation information are represented by the IVHFEs and
listed in Table 3.

Below we apply the proposed approach to the selection of
shale gas areas.

Step 1. Determine the associated weights by (71), where the
term “many” is selected as a linguistic quantifier. The results
are listed as follows:

𝑤
1

= (
1

4
)

2

− (
0

4
)

2

= 0.06,

𝑤
2

= (
2

4
)

2

− (
1

4
)

2

= 0.19,

𝑤
3

= (
3

4
)

2

− (
2

4
)

2

= 0.31,

𝑤
4

= (
4

4
)

2

− (
3

4
)

2

= 0.44.

(76)

Step 2. Rank the criteria values against each alternative by
(72), and then assign the associated weights according to the
rankings. The results are listed in Table 4.

Step 3. Utilize (73) and suppose that 𝜂 = 1 to aggregate
decision information of ℎ̃

𝑖𝑗

(𝑖 = 1, 2, 3, 4, 5, 𝑗 = 1, 2, 3, 4) and
obtain the IVHFEs ℎ̃

𝑖

(𝑖 = 1, 2, 3, 4, 5) for the alternatives
𝐴

𝑖

(𝑖 = 1, 2, 3, 4, 5).
Consider

ℎ̃
1

= IVHFSWA
Hamacher

(ℎ̃
11

, ℎ̃
12

, ℎ̃
13

, ℎ̃
14

)

= {[0.385, 0.540] , [0.441, 0.591] ,

[0.499, 0.643] , [0.419, 0.572],

[0.473, 0.620] , [0.528, 0.670]},

ℎ̃
2

= IVHFSWA
Hamacher

(ℎ̃
21

, ℎ̃
22

, ℎ̃
23

, ℎ̃
24

)

= {[0.382, 0.619] , [0.559, 0.779] ,

[0.441, 0.665] , [0.606, 0.808]},

ℎ̃
3

= IVHFSWA
Hamacher

(ℎ̃
31

, ℎ̃
32

, ℎ̃
33

, ℎ̃
34

)

= {[0.256, 0.366] , [0.435, 0.612] ,

[0.363, 0.478] , [0.526, 0.691],

[0.277, 0.400] , [0.454, 0.637],

[0.383, 0.509] , [0.543, 0.712]},
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Table 4: Rankings and the assigned associated weights of criteria values against alternatives.

Rankings of criteria values against alternatives 𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

ℎ̃
13

> ℎ̃
11

> ℎ̃
12

> ℎ̃
14

0.19 0.31 0.06 0.44
𝐴

2

ℎ̃
21

> ℎ̃
23

> ℎ̃
24

> ℎ̃
22

0.06 0.44 0.19 0.31
𝐴

3

ℎ̃
33

> ℎ̃
31

> ℎ̃
32

> ℎ̃
34

0.19 0.31 0.06 0.44
𝐴

4

ℎ̃
43

> ℎ̃
41

> ℎ̃
44

> ℎ̃
42

0.19 0.44 0.06 0.31
𝐴

5

ℎ̃
51

= ℎ̃
53

> ℎ̃
54

> ℎ̃
52

0.125 0.44 0.125 0.31

Table 5: Score values obtained by the IVHFHSWA operator with different values of 𝜂.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

1 [0.4611, 0.6115] [0.5042, 0.722] [0.4108, 0.5582] [0.3254, 0.4703] [0.4156, 0.5836]
2 [0.4575, 0.6060] [0.4968, 0.7181] [0.4048, 0.5506] [0.3224, 0.4673] [0.4074, 0.5776]
3 [0.4558, 0.6035] [0.4932, 0.7164] [0.4014, 0.5469] [0.3207, 0.4657] [0.4033, 0.5749]
4 [0.4548, 0.6021] [0.4911, 0.7155] [0.3993, 0.5447] [0.3197, 0.4648] [0.4009, 0.5734]
5 [0.4541, 0.6012] [0.4897, 0.7149] [0.3978, 0.5432] [0.3190, 0.4641] [0.3992, 0.5725]
6 [0.4536, 0.6005] [0.4887, 0.7145] [0.3966, 0.5421] [0.3184, 0.4637] [0.3981, 0.5718]
7 [0.4532, 0.6000] [0.4879, 0.7142] [0.3958, 0.5413] [0.3180, 0.4633] [0.3972, 0.5713]
8 [0.4529, 0.5997] [0.4874, 0.7140] [0.3951, 0.5407] [0.3177, 0.4630] [0.3965, 0.5709]
9 [0.4526, 0.5994] [0.4869, 0.7139] [0.3945, 0.5402] [0.3174, 0.4628] [0.3959, 0.5706]
10 [0.4525, 0.5991] [0.4865, 0.7137] [0.3941, 0.5398] [0.3172, 0.4626] [0.3955, 0.5704]

ℎ̃
4

= IVHFSWA
Hamacher

(ℎ̃
41

, ℎ̃
42

, ℎ̃
43

, ℎ̃
44

)

= {[0.271, 0.418] , [0.283, 0.431] ,

[0.362, 0.504] , [0.373, 0.516]},

ℎ̃
5

= IVHFSWA
Hamacher

(ℎ̃
51

, ℎ̃
52

, ℎ̃
53

, ℎ̃
54

)

= {[0.358, 0.507] , [0.443, 0.632] ,

[0.372, 0.525] , [0.456, 0.646]}.

(77)

Step 4. Compute the relative possibility degrees 𝑃(ℎ̃
𝑖

)(𝑖 =

1, 2, . . . , 5) of the IVHFEs ℎ̃
𝑖

(𝑖 = 1, 2, . . . , 5).

𝑃 (ℎ̃
1

) = 0.229, 𝑃 (ℎ̃
2

) = 0.267, 𝑃 (ℎ̃
3

) = 0.185,

𝑃 (ℎ̃
4

) = 0.122, 𝑃 (ℎ̃
5

) = 0.197.

(78)

Step 5. Rank all the alternatives𝐴
𝑖

(𝑖 = 1, 2, . . . , 𝑚) according
to 𝑃(ℎ̃

𝑖

)(𝑖 = 1, 2, . . . , 𝑚) in descending order. The ranking
results are 𝐴

2

≻ 𝐴
1

≻ 𝐴
5

≻ 𝐴
3

≻ 𝐴
4

, and the most
prospective shale gas area is 𝐴

2

(Sichuan).

Step 6. End.

Furthermore, we use the IVHFHSWG operator to the
same decision problem, we can obtain the ranking results that
consist with the ones above, which are validate each other.

6. Comparative Analysis

6.1. Performance Analysis of the IVHFHSWAOperator. From
the definition of IVHFHSWA operator, we know that the
IVHFHSWAoperator provides awide class of interval-valued
hesitant fuzzy aggregation operators via the parameters 𝜂.
To understand the performance of aggregation in depth, we
adopt the parameter 𝜂 = 1 to 10 for the numerical example
above.When the 𝜂 takes the different values, the scores values
are obtained based on IVHFHSWA operator as shown in
Table 5 and represented graphically in Figure 1.

From Table 5, it is obvious that the score values derived
by using the IVHFHSWA operator are nonincreasing with
respect to 𝜂, which implies that decision makers can utilize
their preferences to give the preferred values of 𝜂 according
to practical decision situations. On the basis of the score
values, we can obtain the precisely ranking results of the
alternatives by computing their relative possibility degrees.
Moreover, from Figure 1, we find that the ranking results
of the alternatives are the same when the values of 𝜂 are
different in the example, and the consistent ranking results
demonstrate the stability of the proposed operators.

6.2. Comparison With Other Operators. Similar to the
IVHFHSWA operator, in order to integrate simultaneously



Mathematical Problems in Engineering 23

Table 6: Score values obtained by the IVHFHSWA, IVHFHWA, and IVHFHOWA operator.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

IVHFSWA [0.4611, 0.6115] [0.5042, 0.7222] [0.4108, 0.5582] [0.3254, 0.4703] [0.4156, 0.5836]
IVHFWA [0.5045, 0.6744] [0.5496, 0.7500] [0.4582, 0.6232] [0.3882, 0.5290] [0.4940, 0.6455]
IVHFOWA [0.4999, 0.6588] [0.5254, 0.7284] [0.4312, 0.5847] [0.3455, 0.4781] [0.4651, 0.6258]

0.75

0.705
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Figure 1: Score values obtained by the IVHFHSWA operator with different values of 𝜂.

the relative weights and the associated weights into averaging
operator, Chen et al. [11] have developed an interval-valued
hesitant fuzzy hybrid averaging (IVHFHA) operator based
on the hybrid weighted aggregation [37] operator, which is
defined as follows:

IVHFHA (ℎ̃
1

, ℎ̃
2

, . . . , ℎ̃
𝑛

)

=

𝑛

⨁

𝑗=1

𝑤
𝑗

̇̃
ℎ
𝜎(𝑗)

= ⋃

̇

𝛾̃

𝜎(𝑗)

∈

̇

̃

ℎ

𝜎(𝑗)

,𝑗=1,...,𝑛

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − ̇̃𝛾
𝐿

𝜎(𝑗)
)

𝑤

𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − ̇̃𝛾
𝑈

𝜎(𝑗)
)

𝑤

𝑗

]

]

}

}

}

,

(79)

where ̇̃
ℎ
𝜎(𝑗)

is the 𝑗th largest of ̇̃
ℎ
𝑗

= 𝑛𝜔
𝑗

ℎ̃
𝑗

(𝑗 = 1, 2, . . . , 𝑛).
However, the HWA operator has proven that it does not
satisfy boundary, idempotent, and so forth [4, 38]. Moreover,
the computation of IVHFHWA operator is simpler than
the ones of IVHFHA operator. When using the IVHFHA
operator, we have to first calculate ̇̃

ℎ
𝑗

= 𝑛𝜔
𝑗

ℎ̃
𝑗

and com-

pare them, and then calculate 𝑤
𝑗

̇̃
ℎ
𝜎(𝑗)

, after which, we will

compute the aggregation values with ⊕
𝑛

𝑗=1

𝑤
𝑗

̇̃
ℎ
𝜎(𝑗)

. Since the
computation with interval-valued hesitant fuzzy sets is very
complex, the results derived via the IVHFHA operator are
hard to be obtained. As for the IVHFHSWA operator, the
operation of the relative weights and the ones of associated
weights in IVHFHWA operator are synchronized, which
is in the mathematical form as 𝜔

𝑗

𝑤
𝜌(𝑗)

. Since both 𝜔
𝑗

and 𝑤
𝜌(𝑗)

are crisp numbers, we only need to calculate
(⊕

𝑛

𝑗=1

𝜔
𝑗

ℎ̃
𝑗

𝑤
𝜌(𝑗)

)/(∑
𝑛

𝑗=1

𝜔
𝑗

𝑤
𝜌(𝑗)

), which makes the IVHFH-
SWA operator easier to calculate than the IVHFHA operator.
Furthermore, the IVHFHWA operator can provide more
special cases by selecting different values of parameter 𝜂,
which can provide more choices for the decision makers
and considerably enhance or deteriorate the performance of
aggregation and thus is more general and more flexible.

To show the advantage of IVHFHSWA operator against
the VHFHWA and IVHFHOWA operators, we use again the
IVHFHSWA, IVHFHWA, and IVHFHOWA operators to the
numerical example above; here we take 𝜂 = 1 as example,
and their final scores are listed in Table 6 and represented
graphically in Figure 2.

From Table 6 and Figure 2, it is clear that despite the
score values obtained by the IVHFHSWA, IVHFHWA, and
IVHFHOWA operators are different; it is clear that despite
the score values of the alternatives obtained by the IVHFH-
SWA, IVHFHWA, and IVHFHOWA operators are different;
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Figure 2: Score values obtained by the IVHFHSWA, IVHFHWA,
and IVHFHOWA operator.

the ranking results of the alternatives derived from them
are the same; that is, 𝐴

2

≻ 𝐴
1

≻ 𝐴
5

≻ 𝐴
3

≻ 𝐴
4

.
The reasons about the difference of score values is intuitive
that, as discussed above, the IVHFHWA operator focuses
solely on the relative weights and ignores the associated
weights, while the IVHFHOWA operator focuses only on
the associated weights and ignores the relative weights. The
IVHFHSWA operator comprehensively considers both the
associated weights and the relative weights. Hence, the results
derived by IVHFHSWA operator are more feasible and
effective. On the other hand, the identical ranking results
imply that the IVHFHSWA, IVHFHWA, and IVHFHOWA
operators all are effective.

Finally, our interval-valued hesitant fuzzy aggrega-
tion (IVHFHWA, IVHFHOWA, IVHFHSWA, IVHFHWG,
IVHFHOWG, and IVHFHSWG) operators can also be
applied to deal with the situations when the interval-valued
hesitant fuzzy sets are reduced to hesitant fuzzy sets. In
contrast, the existing hesitant fuzzy aggregation operators
(HFWA, HFOWA, HFHA, HFWG, HFOWG, and HFHG)
cannot be applied to deal with the interval-valued hesitant
fuzzy situation. In other words, our interval-valued hesitant
fuzzy aggregation operators have much wider applications
than the existing hesitant fuzzy aggregation operators.

7. Conclusion

In this paper, we first introduce the Hamacher operations
of interval-valued hesitant fuzzy sets and developed some
interval-valued hesitant fuzzy Hamacher operators, includ-
ing the interval-valued hesitant fuzzy Hamacher weighted
averaging (IVHFHWA)operator and interval-valued hesitant
fuzzy Hamacher ordered weighted averaging (IVHFHOWA)
operator. The prominent advantages of the developed opera-
tors are that they provide a family of interval-valued hesitant
fuzzy aggregation operators that include the existing interval-
valued hesitant fuzzy operators and interval-valued hesitant
fuzzy Einstein operators as special cases and then provide
more choices for the decision makers. Then, we proposed an
interval-valued hesitant fuzzyHamacher synergetic weighted
averaging operator to generalize further the IVHFHWA

and IVHFHOWA operator. Some essential properties of
the proposed operators are studied and their special cases are
discussed. Based on the IVHFHSWA operator, we develop
a practical approach to multiple criteria decision making
with interval-valued hesitant fuzzy information. Finally, an
illustrative example for selecting the shale gas areas is used to
illustrate the proposed approach and a comparative analysis is
performed with other approaches to highlight the distinctive
advantages of the proposed operators.
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