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Abstract. This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy
to combat the expected data-movement bottleneck in future high performance computing architectures. We show that, for the
codes and simulations we tested, compression levels of 3–5X can be applied without causing significant changes to important
physical quantities.

Rather than applying signal processing error metrics, we utilize physics-based metrics appropriate for each code to assess
the impact of compression. We evaluate three different simulation codes: a Lagrangian shock-hydrodynamics code, an Eulerian
higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. We compress
relevant quantities after each time-step to approximate the effects of tightly coupled compression and study the compression
rates to estimate memory and disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be
carefully considered in the context of the underlying physics being modeled.
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1. Introduction

Data movement on future Exascale (1018 floating
point operations per second) systems is expected to
consume a substantial portion of their power budget
[15]. At the same time, a large number of applications
will be limited by memory bandwidth rather than pro-
cessor performance [21,26]. These two factors mean
that the “data movement bottleneck” on future systems
will make it difficult to fully exploit Exascale HPC re-
sources. This paper examines whether compression has
the potential to be used effectively in physics simula-
tions to mitigate these effects by reducing data size and
therefore bandwidth requirements. We investigate the
effects of compression on simulation results, a neces-
sary first step before studying the kinds of algorithms
and hardware implementations that would make com-
pression feasible on future HPC resources.

1This paper received a nomination for the Best Paper Award at the
SC2013 conference and is published here with permission of ACM.

*Corresponding author. E-mail: dlaney@llnl.gov.

In this paper we make a distinction between two
possible uses of compression: “disk compression” and
“memory compression”. In “disk compression”, ar-
rays are compressed before they are written to disk; in
“memory compression”, arrays are compressed while
stored in off-chip memory and decompressed when
they are loaded into on-chip cache for computation.
We focus mainly on memory compression in this pa-
per, approximating its effects by compressing and de-
compressing simulation state at the end of every cycle.
Acceptable disk compression ratios will be at least as
high as acceptable memory compression ratios.

1.1. Lossless vs. lossy compression

Compression provides the opportunity to trade off
additional computation in exchange for reduced band-
width. While lossless compression would enable this
trade-off without modifying simulation results, loss-
less compression ratios are modest for the codes we
consider and thus will only have modest impact on
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memory bandwidth requirements at Exascale. For ex-
ample, we show in Section 5.2 that data from LLNL’s
pF3D code can only be losslessly compressed by a fac-
tor of 1.29X by fpzip, one of the floating point com-
pression schemes used in this paper. Therefore, to have
a significant impact on the memory or disk bandwidth
requirements of simulations, lossy compression meth-
ods are necessary.

The main challenge when applying lossy compres-
sion is assessing its effect on simulation accuracy.
Lossy compression is commonly used for photographs
and videos where errors need only meet human per-
ceptual requirements. Key-frames in videos periodi-
cally reset the error to zero. The physics codes we
consider solve time-dependent differential equations
where errors may accumulate over time. The changes
in the solution due to the use of compression may grow
more rapidly if compression errors at one time step are
strongly correlated with errors at the next time step.
The changes due to the use of compression are thus
likely to be functions of both the compression ratio and
the error characteristics of the compression algorithm.

The fact that lossy compression may change simu-
lation results is not necessarily a showstopper – many
decisions made in setting up a simulation also change
the answer. For example, scientists may choose a mesh
resolution based on a trade-off between more accurate
answers and the computational cost of the simulation.
Computational scientists usually make these choices
based on the desired accuracy of various integral phys-
ical quantities, not by comparing per-grid-point differ-
ences like the mean square error between two proposed
simulations. We propose using the same integral phys-
ical quantities to assess the impact of compression.

1.2. Approach

In our approach, the code developer runs test prob-
lems with and without compression and evaluates key
physical quantities. The results can be used to select
the best compression algorithm and the proper com-
pression level. We evaluate the impact of compres-
sion on three different simulation codes: LULESH,
a shock hydrodynamics mini-app; Miranda, a hydro-
dynamics code for large turbulence simulations; and
pF3D, which simulates the interaction of a high in-
tensity laser and a plasma (ionized gas). These codes
provide three different regimes in which to assess the
effects of compression: LULESH is a single-physics
code that models a stable problem; Miranda is also
a single-physics code, but uses higher-order methods

and models unstable flows that can be sensitive to nu-
merical errors. Finally, pF3D is a multi-physics code
that couples two different physics models.

For each simulation code, we present a high-level
discussion that should be accessible to a general HPC
audience and discuss relevant physical metrics. We
then present the effect of increasing compression ra-
tios on these metrics. This paper shows that, in the sim-
ulation codes we examined, 3–5X compression ratios
can be applied without causing a significant change in
the physical quantities that are of most interest for the
simulation.

2. Prior art

Numerical compression has a rich history dating
back to the 1960s. The compression research commu-
nity has understandably focused on compression of
consumer speech, audio, images, and video, given the
ubiquity of such media. However, media compression
techniques, which tend to be lossy, are inappropriate
for a universal numerical encoder because the quality
metrics for media compression are determined by lim-
itations of human hearing and vision, not by the accu-
racy requirements of numerical computations.

Prior work on compressing scientific data has mostly
focused on lossless compression [2,8,9,20,27], in part
due to a poor understanding of the effects of lossy com-
pression on the simulation results. However, lossless
compression typically achieves less than a 2X reduc-
tion on floats and even lower compression ratios on
doubles, greatly limiting its impact on data movement.

Lossy compression for scientific and medical data
has historically been applied to data sets to reduce
their size for post-processing and visualization. Mu-
raki et al. [24] pioneered the application of wavelet
transforms to volumetric data for visualization ap-
plications, thresholding wavelet coefficients to ob-
tain approximate representations and applying non-
orthogonal wavelets to medical images [25]. More re-
cently, Woodring et al. [35] explored the use of wavelet
compression in JPEG2000 to enable scientists to trade
off data quality for reduced data size. Their approach
targeted reduced disk I/O time in visualization applica-
tions and faster transfers of data from remote systems
to local assets. As an alternative to transform coding,
compressive sensing [4,7] has the potential to rapidly
reduce a stream of numerical data to any user-specified
size, but requires significant back-end complexity to
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recover (an approximation of) the original signal with
no direct control over accuracy.

ISABELA [16] has been proposed as a data reduc-
tion approach for HPC applications, particularly tar-
geted at data deemed effectively incompressible due
to randomness or noise. The data is partitioned into
blocks and the data in each block is sorted by value.
Splines are fitted to the resulting monotonic data using
a relatively small number of knots. Temporal patterns
are leveraged to further increase compression ratios.
The approach has several advantages for disk compres-
sion, particularly since the method does not require
global communication and can be run in-situ. Lehmann
et al. [18] present a modified version of ISABELA
suited to compressing flow simulations in porous me-
dia.

To the best of our knowledge, prior lossy compres-
sion techniques have not been considered within the
context of memory compression, in which the simu-
lation state itself is compressed. The simulations pre-
sented in this paper operate repeatedly on data that has
been previously compressed, leading to the possibility
of amplification of compression-induced differences.
In the next section we discuss compression algorithms
in this context, and motivate our choice to use predic-
tive coders in our experiments.

3. Compression algorithms

In most physics simulations, the low order bits of
floating point numbers are effectively random. The
presence of these random bits prevents lossless meth-
ods from achieving high compression rates. If some of
the low order bits of floating point numbers can be re-
moved (or approximated) without a significant impact
on physics answers, we can achieve greater compres-
sion at the expense of lost information. We believe a
compression method suitable for in-memory compres-
sion should be able to run in both lossless and lossy
modes, and to be amenable to implementation in hard-
ware with minimal resources and power consumption.

We classify lossy compression schemes into three
broad categories: general lossless schemes like gzip
and bzip2, transform coding approaches such as those
based on wavelet or discrete cosine bases, and pre-
dictive coding schemes like the two methods we ap-
ply in this paper. We do not consider general lossless
compression methods in this paper as they are lim-
ited in the compression rates that can be achieved and
tend to be less effective for floating point data. Al-

though transform coding is traditionally used for lossy
compression, these methods have two main draw-
backs: First, bit-for-bit lossless compression with these
schemes can be difficult to achieve due to the sub-
tleties of floating-point arithmetic, including rounding
modes and error, catastrophic cancellation, order-of-
evaluation dependence, extended precision, etc. Sec-
ond, hardware implementations for the in-memory use-
case are likely to use too many resources to be practi-
cal.

For these reasons, and for speed, we focus on predic-
tive coding approaches, in which each floating-point
number is predicted based on a trend of recently en-
coded values. The prediction residual (difference be-
tween actual and predicted value) tends to be small
and can generally be encoded using fewer bits than
the original floating-point value. The number of re-
cent values is generally quite small for a 1D predictor
and therefore a hardware implementation can be quite
compact. Typically, a lossless compression scheme is
then used to compress the residuals so that the over-
all approach is bit-for-bit lossless. Lossy compression
can be achieved by ignoring low order bits of the input
values, resulting in smaller residuals and higher com-
pression rates. For example, applying lossless com-
pression after zeroing the bottom 32 bits of a dou-
ble precision number usually produces total compres-
sion ratios around 3–4X. Finally, the errors introduced
by predictive schemes are independent of neighbor-
ing values, usually being the result of truncation or
rounding which occur already in fixed precision float-
ing point computations, whereas the errors introduced
in transform coding (e.g., Gibbs ringing) have spatial
extent and exhibit spatial correlations.

In this paper we study two compression algorithms
designed for floating-point data: Samplify’s APAX
(APplication AXceleration) encoder [30,31] and the
fpzip [19,20] compressor developed at LLNL. The
APAX algorithm has previously been applied to climate
data [10], computed tomography X-ray samples [33],
and a variety of integer and floating-point datasets [32].
We describe these two compressors in parallel to high-
light their similarities and differences.

3.1. The fpzip and APAX compressors

When used for lossy compression, APAX and fpzip
both begin by quantizing the value f to be encoded,
in effect reducing its precision. Quantization in APAX
involves converting a block of N consecutive values
(usually N = 256) to a signed integer representation,



144 D. Laney et al. / Assessing the effects of data compression in simulations using physically motivated metrics

which can be thought of as aligning the floating-point
values in a block to a common largest exponent. If ex-
ponent differences are large, this uniform quantization
step may result in some loss of precision for the small-
est (in magnitude) values in the block. After exponent
alignment, each signed value is treated as a 32-bit in-
teger f̂ . For (64-bit) double-precision data, this im-
plies that the bottom 32 bits of the significand are dis-
carded. This design decision was motivated by perfor-
mance reasons – by modifying APAX to use 64-bit inte-
ger arithmetic, such truncation could be avoided, pos-
sibly at the expense of slower compression. APAX then
quantizes the integer f̂ uniformly to f̄ = round(f̂/q),
where q is a quantization level either specified by the
user or computed adaptively by APAX to meet a target
coding rate.

fpzip delays the integer conversion and leaves the
values in their floating-point representation, quantizing
the significand instead. fpzip restricts q to be an inte-
ger power of two, which effectively leads to truncation
of the significand by discarding (zeroing) some fixed
number of least significant bits. Setting q = 1 guar-
antees entirely lossless compression. This non-uniform
quantization allows the relative error to be bounded
in fpzip, whereas within each APAX block the abso-
lute error is bounded. Quantization is the only poten-
tial source of loss in both compressors.

Following quantization, each value is predicted as
a linear combination of recently encoded values. Both
compressors rely on polynomial interpolation for pre-
diction, with fixed integer polynomial coefficients.
APAX uses univariate Lagrange polynomials of degree
0 and 1, allowing linear polynomials (or any function

with ∂2f̄
∂x2 = 0) to be reproduced. That is, the unknown

value f̄ [x] is predicted in terms of the n previous,
known values by solving

∑n
i=0(−1)i

(n
i

)
f̄ [x− i] = 0.

The “best” polynomial degree n − 1 is chosen locally
by monitoring its effect on compression.

fpzip exploits correlations in more than one dimen-
sion using the Lorenzo predictor [11], which over a
3D domain reproduces trivariate quadratic polynomi-

als (or any function for which ∂3f
∂x ∂y ∂z = 0). In 3D this

predictor solves
∑

i,j,k∈{0,1}(−1)i+j+kf [x− i, y− j,
z − k] = 0 for f [x, y, z], and thus requires buffer-
ing a whole 2D “slice” from the 3D domain. Note that
this predictor uses only additions and subtractions of
known values.

Given the true floating-point value f and its predic-
tion p, fpzip converts f and p to integers f̄ and p̄ via
a monotonic mapping that treats the binary floating-

point number as a sign-magnitude integer. This step
is not needed in APAX, where the integer conversion
occurs earlier. Both compressors then compute an in-
teger residual r̄ = f̄ − p̄ = s(2e + d) with sign
s ∈ {−1, 0,+1}, exponent e, and e-bit difference
d ∈ {0, . . . , 2e − 1}. The bits of d generally exhibit
no correlation and are transmitted verbatim. However,
the sequence of “signed exponents” ẽ = s(e + 1)
tends to be highly correlated (if not necessarily peaked
around zero). APAX exploits spatial correlations by en-
coding differences between consecutive exponents in
small groups. fpzip, on the other hand, models the non-
uniform distribution of exponents and encodes each ẽ
independently using a fast entropy coder.

4. Simulation and validation methods

4.1. LULESH

LULESH is a shock-hydrodynamics mini- applica-
tion developed for use in evaluation of current and
future computer systems and proposed programming
models [12–14]. LULESH solves the Sedov blast wave
test problem – a point explosion surrounded by an ini-
tially uniform surrounding gas. The gas consists of one
material and is modeled in three dimensions using a
Lagrangian (moving mesh) formulation. The point en-
ergy source for the explosion is approximated by ini-
tializing the zone at the origin with a large initial en-
ergy. Figure 1 depicts two key features of the simula-
tion – the deformation of mesh elements and the shock
wave.

LULESH solves the inviscid compressible Navier–
Stokes equations in the Lagrangian formulation.
A staggered mesh approximation [34] with single point
quadrature for element-centered thermodynamic quan-
tities such as density and pressure is utilized. Kine-
matic variables such as position and velocity are de-
fined at mesh nodes. The Sedov problem presents an
interesting use case for compression, as most field val-
ues vary slowly over most of the domain, but change
quickly and abruptly near the shock.

For the Sedov problem, the two key physics require-
ments are that the blast wave should be spherical, and
the shock radius versus time should match the analytic
solution. In this paper we evaluate the symmetry of the
shock by comparing the field values as a function of
radius for various compression levels and methods, to
the results obtained with a double precision simulation
with no compression. We assess physical accuracy by
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Fig. 1. An overview of the LULESH shock-hydrodynamics simulation. (left) Density field showing the shock wave and mesh deformation.
(right) Scatter plot of density vs. radial displacement from the origin for every element in the mesh. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/SPR-140386.)

estimating shock position as the distance to the cen-
troid of the element with maximal density, and com-
paring that value between runs with and without com-
pression. Although this measure is not the most sophis-
ticated way to assess shock position, it is simple and
can be consistently applied across LULESH runs at
varying mesh resolutions. Finally, we measured differ-
ences in internal energy between compression and non-
compression runs to validate that compression was not
violating the expected behavior of the LULESH sim-
ulation as represented by full double precision runs at
different mesh resolutions.

4.2. pF3D

The National Ignition Facility (hereafter NIF [22,
23]) is an NNSA experimental facility that houses the
world’s most powerful laser. One of the key goals of
the NIF is to compress a target filled with deuterium
and tritium to a temperature and density high enough
that fusion ignition occurs.

The intensity of NIF beams exceeds 1015 W/cm2 in
the brightest spots. When intensities are this high, it is
possible for the laser to couple to fluctuations in the
plasma density and backscatter a significant fraction of
the laser light. pF3D [1,17,28] is a multi-physics code
that simulates interactions between laser beams and the
plasma in NIF experiments. pF3D is used to evaluate
proposed target designs and to pick the ones with ac-
ceptably low levels of backscatter.

pF3D zones are roughly the size of the laser wave-
length (0.35 µm) while the plasmas of interest are sev-
eral mm across. Simulations of the full path of a single
laser beam require 50 billion or more zones. Simula-
tions of five interacting beams may require more than
a trillion zones. pF3D has been used to run simulations

Fig. 2. The figure shows the intensity of the laser beam in a pF3D
simulation as it enters the hohlraum. The hohlraum is a can-like ob-
ject with the fusion target at its center. The intensity increases as
the color changes from blue to green to red. The bright spots em-
bedded in a lower intensity background are a design feature of NIF
beams. (The colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140386.)

with 64k or more cores on IBM Blue Gene/L, IBM
Blue Gene/P, and Cray XE-6 systems. Work is under-
way to run a million core simulation on an IBM Blue
Gene/Q system.

Figure 2 shows the intensity pattern of the laser
beam as it enters the target in a NIF experiment. The
bright spots are referred to as speckles. Speckles are
narrow transverse to the laser propagation direction
and extend for many laser wavelengths in the propaga-
tion direction. The laser is designed so that the speck-
les in the beam move around in time. The plasma tem-
perature and density respond to the intensity averaged
over time, so they see a smooth beam.

Backscattered light can be generated in the brightest
speckles and grows in strength faster than the speck-
les move. The laser light will refract when there is a
density gradient. Speckles are long enough that a small
change in density can shift a speckle sideways by a sig-
nificant fraction of its width.



146 D. Laney et al. / Assessing the effects of data compression in simulations using physically motivated metrics

Fig. 3. Density fields are shown from a Miranda simulation of the
Rayleigh–Taylor instability at (from top to bottom) t/τ = 1, 2.5,
10, 20.

The locations of the speckles are extremely sensi-
tive. For example, the fused multiply-add instruction of
the PowerPC processor (with internal registers that are
longer than 64 bits) produces results sufficiently differ-
ent from x86_64 processors to cause speckles to move
sideways by a zone or more. Compiler optimizations
that change the order in which summations are carried
out also cause speckles to move.

As a result of this high sensitivity to such small vari-
ations, validation of new versions of pF3D relies on
comparisons of the total transmitted and reflected light
as a function of time (the total light is insensitive to
the exact placement of speckles) and on intensity his-
tograms. This paper uses the same physics-based vali-
dation methods to assess the impact of lossy compres-
sion on pF3D.

4.3. Miranda

Miranda [3,6] is a Navier–Stokes code used to sim-
ulate a range of hydrodynamic problems with higher-
order accuracy. It uses spectral methods or compact
differencing to resolve turbulent structures with mini-
mal dissipation. Dissipation is added at high wavenum-
bers through the use of artificial fluid properties [5],

which act as a large-eddy simulation (LES) subgrid
model. Miranda has run simulations using over 64k
cores on Blue Gene/L systems.

The Miranda test problem simulates the growth of
the Rayleigh–Taylor instability (RTI). Simulations of
the RTI typically start with small-scale perturbations
on the interface separating two fluids of different den-
sities. The high density fluid is on top of the low den-
sity fluid – an unstable situation. The perturbation am-
plitudes grow, neighboring perturbations merge, and,
eventually, turbulent mixing occurs. This inverse cas-
cade of scales, from the initial short wavelength per-
turbation to large wavelengths at late times, requires
high-order accuracy to ensure relevant features are not
removed through dissipative numerics or influenced by
the amplification of numerical noise.

The test problem is physically unstable to all pertur-
bation wavelengths. Filtering is employed to damp the
growth of modes with short wavelengths. The damp-
ing is quite strong at a wavelength of 2 zones, but
drops quickly as the wavelength increases. An impor-
tant point to remember when investigating compres-
sion schemes is that the physics will amplify numer-
ical perturbations introduced by compression as well
as deliberately imposed perturbations. This means that
the wavelength spectrum and step-to-step coherence of
the perturbations produced by compression matter, in
addition to the compression ratio.

The incompressible simulations shown here are ini-
tialized with narrowband Gaussian perturbation spec-
tra peaked at 8 grid cells per wavelength (λ0) and an
RMS amplitude of 0.1 grid cells. This allows the insta-
bility to begin in its linear stage. The two fluids have
densities of ρ1 = 1 and ρ2 = 3, and gravitational
acceleration of g = 1, providing a time scaling of
τ =

√
λ/Ag, where A = (ρ2 − ρ1)/(ρ2 + ρ1) = 0.5 is

the Atwood number. Density fields from a 5122×1024
run using 1024 processors are shown in Fig. 3. In the
top two images, at t/τ = 1 and 2.5, the perturbations –
just barely noticeable in the first image – are growing
independently at an exponential rate. By t/τ = 10,
shown in the third image, perturbations have merged,
producing larger scales and mixed fluid. At t/τ = 20,
shown in the lower image, the layer has entered into an
apparent turbulent state.

An important quantity in assessing RTI simulations
is the mixing layer thickness, h, which is expected to
behave as ḣ2 = 4αAgh when the layer reaches a self-
similar state at late times. Another important charac-
teristic at late times is the spectrum of perturbations as
a function of spatial frequency. These physically moti-
vated quantities will be used to assess the differences
between compressed and uncompressed simulations.
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5. Results

This section presents results on the acceptable level
of compression in the LULESH, Miranda and pF3D
test problems. Simulations with and without compres-
sion are compared using the physics metrics mentioned
in the earlier discussion. Simulations may be sensitive
to the details of how compression is performed. As a
result, the acceptable level of compression for a given
test problem may differ between different compression
algorithms.

The codes have been modified so that they compress
and decompress variables at the end of each time step.
This procedure approximates “memory compression”,
which, if actually in place between the memory and
the cache, would occur several times per time step. We
also ran a Miranda test where the compression function
was called at the lower frequency of checkpoint dumps
to approximate “disk compression”.

We report the minimum, maximum, and average
compression ratios over all domains. The minimum
compression ratio is the most important measure when
using “memory compression”. The process with the
lowest compression ratio will have the hardest time fit-
ting in the available memory, and it will spend the most
time reading and writing memory. All three of these
codes use a bulk synchronous programming model, so
the slowest process controls the performance. Efficient
parallel I/O packages have performance that is depen-
dent on the total number of bytes written, not on the
number contributed by each process. With an I/O pack-
age of this sort, the average compression ratio is the
important quantity.

5.1. LULESH

We explore the effects of compression on the accu-
racy of the LULESH Sedov blast wave simulation by
investigating the interaction between compression and
mesh resolution, and whether accumulation of errors
occurs in longer running simulations. We performed
two studies: in the first study we varied the mesh res-
olution and ran fpzip over a full range of precisions, to
t = 0.01. We kept the total energy in the problem con-
stant by scaling the initial energy density of the zone
at the origin with mesh resolution. In the second study,
we ran with both APAX and fpzip on a 1053 mesh to
time t = 0.05 at a small set of target compression
rates (APAX) or precisions (fpzip). In the second study
the energy at t = 0 was adjusted so that the shock
wave traversed nearly to the boundary. We measured
the shock position in a manner similar to Tasker et al.
[29]. Figure 4(left) shows density vs. radius for all el-
ements in a 1053 simulation, with the shock position
taken as the radius at the maximum density value in the
plot.

In the first study, we ran a series of simulations with
fpzip at precisions from 24 to 64 bits in steps of 4 bits
on several mesh resolutions. Figure 4(middle) shows
that the shock position is stable down to 28 bits of pre-
cision, and that the differences are smaller than those
caused by changing the mesh resolution of this un-
converged problem. Figure 4(right) shows that the root
mean square (hereafter RMS) error varies with com-
pression rate and does not exhibit the abrupt transition
between 28 and 24 bits seen in the middle plot. Com-
pression results were largely independent of mesh res-
olution in this study. Our assessment is that with re-

Fig. 4. (left) Density plotted against radius at t = 0.02, for fpzip precision values of 24 and 64 bits, and a 1053 mesh size. When retaining only
24 bits of precision, a significant amount of energy is lost, causing the shock to be delayed. (middle) Shock position as a function of mesh size
and fpzip precision. Variations in shock position between 28 and 64 bit fpzip are smaller than the variation at fixed compression between 453

and 1203 mesh resolutions. (right) The root mean square error of nodal positions varies smoothly with fpzip precision rather than exhibiting the
abrupt transition seen in the middle plot. The dependence on mesh resolution is weak. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140386.)
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Fig. 5. (left) A zoom in of the density field at the shock in a 1053

mesh at full precision. (right) The shock at 24 bits of precision,
showing that a significant amount of noise is introduced, although
this noise is symmetric. In both images, blue indicates low density,
and red indicates the highest density. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-140386.)

spect to shock position the LULESH Sedov simulation
has correct behavior down to 48 bits, and that in several
aspects precisions as low as 32 bits are sufficient. We
confirmed this assessment by measuring internal en-
ergy loss in longer-running simulations as we present
below.

In the second study we ran simulations at 1053 res-
olution to t = 0.05 (4304 time steps), in order to as-
sess whether there was error accumulation over time
due to many applications of compression. This study
showed that the shock position was accurately captured
at fpzip precisions down to 32 bits, and APAX rates up
to 4X. The plot in Fig. 4(left) shows density vs. ra-
dius for fpzip precisions of 24 and 64 bits (lossless),
showing a failure mode when the precision is too low.
The shock radius is smaller than in the higher preci-
sion runs, indicating that energy has been lost and the
shock is trailing the full-precision solution. Figure 5
shows zoomed in views of the density field at the two
precisions, showing that the shock is no longer spher-
ical. We note that fpzip may introduce a bias as it first
discards significand bits, effectively rounding towards
zero. However, we found that at high compression rates
APAX also loses energy, presumably due to the scal-
ing process it uses to convert floating point values into
32-bit integers before compressing them.

Table 1 shows the compression ratios and final in-
ternal energy change achieved for LULESH runs us-
ing both fpzip and APAX compression for the second
study. We see that over a fairly large range of compres-
sion rates and precisions that minimal energy is lost.
The 4X APAX run showed good agreement with inter-
nal energy and shock position but seeded non-physical
noise in the nodal positions ahead of the shock, so we
did not deem that a total ‘pass’, nor a total ‘fail’. The
Sedov problem is stable, and it appears that this noise

Table 1

This table shows the compression ratios achieved for the LULESH
runs for mesh size 1053

Compressor Ratio Energy Result

fpzip 64-bit 2.0/2.5/7.3 0.0 pass

fpzip 48-bit 2.8/3.7/9.7 −1 × 10−6% pass

fpzip 32-bit 3.8/6.5/14.7 −0.07% pass

fpzip 24-bit N/A N/A fail

APAX 2X 2.4/3.1/19.2 +6 × 10−6% pass

APAX 3X 3.0/3.5/19.2 −0.002% pass

APAX 4X 4.0/4.5/19.0 −0.01% see text

Notes: The ‘Ratio’ column shows the minimum, mean and maximum
compression ratios for all fields in the problem. The value for mean
compression is the ratio between the storage required for all fields,
divided by the total compressed size of all fields. The ‘Energy’ col-
umn records the percent of internal energy lost (or gained), with re-
spect to the full precision run. The compression algorithm and set-
ting for each run is shown and is labeled by whether it passes the
physics criteria.

in nodal positions in front of the shock does not impact
the shock position adversely, at least up to the time we
ended the simulation.

A limitation of our results is that the Sedov problem
is a simple test case. The requirements of simulations
involving more complicated geometries and multiple
materials may have more restrictive requirements with
respect to lossy compression. In addition, LULESH is
a mini-app and contains fields whose sole purpose is
to reproduce data movement patterns in larger codes.
Since these fields are unit-valued and do not impact
simulation results we do not include them in our com-
pression ratio data. Finally, LULESH does not con-
verge to a shock position cleanly, and up to mesh res-
olutions of 1753 the shock position continued to vary
slightly while keeping total energy constant.

5.2. pF3D

The pF3D test problem simulates the propagation of
a laser beam through a plasma. The plasma is divided
into 1× 2× 36 equal domains – one for each of the 72
MPI processes. There are a total of 256 × 1024 × 756
zones, each of which is 2 × 2 × 2 wavelengths in size.
Some of the laser light is absorbed, some is backscat-
tered by Stimulated Brillouin Scattering (SBS), and
some reaches the exit plane. When compression levels
are high, some of the laser energy is “eaten by numeri-
cal gremlins”. The total amount of laser energy reach-
ing the exit plane and the total amount of SBS crossing
the entrance plane are key integral measures of what
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Fig. 6. The figure shows a histogram of the amount of laser energy
per bin as a function of the laser intensity. The beam has crossed the
full extent of the plasma. The x-axis is scaled so that 1.0 is the peak
intensity of the laser on the entrance plane. The black curve is from
a run using 24-bit fpzip, the blue curve is from a run using 32-bit
fpzip, and the green curve is from a run using uncompressed double
precision variables. The blue and green curves overlay one another.
The curves for runs using APAX compression are very similar and
are not shown to avoid visual clutter. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-140386.)

happens in a simulation. A more detailed metric is the
amount of laser energy as a function of laser intensity.

Figure 6 shows a histogram of the amount of laser
energy per bin as a function of the laser intensity. The
histogram is made after the laser has crossed the full
extent of the plasma, so energy has been lost due to
absorption, backscattered light, and numerical effects.
The x-axis is scaled so that 1.0 is the peak intensity of
the laser on the entrance plane. All of the pF3D simu-
lations used double precision arithmetic. The blue (32-
bit fpzip) and green (lossless fpzip) curves are effec-
tively identical. The black curve (24-bit fpzip) is sig-
nificantly lower at all but the lowest intensities and in-
dicates that compression has led to the loss of laser en-
ergy. Compression is applied to the electric field of the
laser, but the laser energy depends on the square of the
field. A compression scheme that preserves the inte-
gral of the electric field can still significantly alter the
laser energy. The compression scheme may also alter
the direction in which portions of the laser beam travel.
Laser energy propagating at an angle to the z-axis will
travel a greater distance and suffer more absorption be-
fore reaching the exit plane.

Figure 7 shows a histogram of the amount of
backscattered energy per bin as a function of the in-
tensity at the entrance plane. The x-axis is scaled so

Fig. 7. The figure shows a histogram of the amount of backscattered
energy per bin as a function of the laser intensity. The histogram
is made at the entrance plane where the backscattered light is at its
maximum. The x-axis is scaled so that 1.0 is the peak intensity of
the laser on the entrance plane. The black curve is from a 24-bit
fpzip run, the blue curve is from a 32-bit fpzip run, and the green
curve is from a run without compression. The blue and green curves
overlay one another. (The colors are visible in the online version of
the article; http://dx.doi.org/10.3233/SPR-140386.)

that 1.0 is the peak intensity of the laser on the en-
trance plane. The blue (32-bit fpzip) and green (un-
compressed) curves are effectively identical. The black
curve (24-bit fpzip) has significantly lower energy at
all intensities, a natural consequence of the reduced
laser energy reaching the back of the simulation. APAX
curves for compression levels that pass are very similar
to the green and blue curves.

Table 2 shows the compression ratios achieved for
the pF3D runs. The 64-bit fpzip run used lossless
compression and only achieved a 23% reduction in
data size. The 48-bit and 32-bit fpzip runs passed the
physics criteria while the 24-bit fpzip run failed due to
too much loss of energy in the transmitted laser light.
The simulations using APAX compression passed the
physics criteria up to 6X compression but failed at 7X
due to too much increase in the transmitted laser light.
We also ran pF3D with float (32-bit) precision and no
compression. This run passed the physics criteria and
could be thought of as achieving 2X compression. The
run with 48-bit fpzip also achieved roughly 2X com-
pression, but had higher precision than the run using
float precision.

5.3. Miranda

To compare the effects of lossy compression on the
development of the RTI, simulations with various lev-
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Table 2

This table shows the compression ratios achieved for the pF3D runs

Compressor Ratio Energy Result

fpzip 64-bit 1.27/1.29/1.32 0 pass

fpzip 48-bit 1.86/1.91/1.97 0 pass

fpzip 32-bit 3.46/3.66/3.89 −0.2% pass

fpzip 24-bit 5.89/6.57/7.37 −37% fail

APAX 2X 2.19/2.22/2.26 0 pass

APAX 3X 3.03/3.03/3.09 0 pass

APAX 4X 4.06/4.06/4.14 0.1% pass

APAX 5X 5.06/5.07/5.16 0.9% pass

APAX 6X 6.09/6.09/6.20 1.2% pass

APAX 7X 7.10/7.11/7.22 10.7% fail

Notes: The ‘Ratio’ column contains minimum, mean and maximum
compression rates. Each run is characterized as passing or failing the
physics criteria, or crashing. The ‘Energy’ column shows the percent
difference in the backscattered energy relative to the uncompressed
run.

els of compression were run on 5122×1024 grids us-
ing 1024 processors. After each time step, the density
and the three components of velocity are compressed
and decompressed using fpzip or APAX. This results
in ∼10,000 lossy compression steps over the course of
the simulation.

In the case of fpzip, the compression step truncates
the 64-bit data to either 48, 40, or 32 bits. Larger com-
pression rates are achieved (∼4X) in regions where
the flow field is relatively uniform (lossless compres-
sion is applied after the numbers are truncated). To test
the effect of compressed checkpoint files, an additional
test was run calling the 32-bit compression step every
500th time step, resulting in 16 compress/decompress
calls over the course of the simulation. In contrast,
APAX was used in three simulations with 2X, 4X and
5X compression at each time step.

Images of the mixing layer at the end of the simu-
lation (t/τ = 22) are shown in Fig. 8 from the 64-bit
case (left) and the APAX 5X case (right). While there
are differences between the two images, the quanti-
tative metrics presented below show that the integral
quantities and the turbulence state are nearly identical.

The thickness of the mixing layer, h, is plotted in
Fig. 9 as the lower group of lines. The reference sim-
ulation (64-bit) is plotted in black while the 40- and
32-bit fpzip compression cases (called each time step)
are plotted in blue and red, respectively. The APAX 5X
case is plotted as a green dashed line. The other four
cases considered are all plotted in gray, since their dif-
ferences with each other and with the 64-bit curve are
minor. The simulations were stopped once the domi-
nant wavelength approached the size of the simulation

Fig. 8. Density field at the end of the simulation from the reference
(64-bit) run (left) and the APAX 5X case (right), which have nearly
the same mixing-layer thickness and turbulence characteristics.

Fig. 9. Mixing layer thickness (lower curves) and growth rate of
the mixing layer (upper curves) from a reference (64-bit) calcula-
tion (black), an fpzip 32-bit compression case (red), an fpzip 40-bit
compression case (blue) and an APAX 5X case (green dashed). The
grey curves include a 48-bit fpzip case, a 32-bit fpzip case where
compression is applied every 500th step, and APAX with 2X and
4X compression at every time step. Small differences are observable
in the 32- and 40-bit fpzip cases. The 32-bit fpzip case crashed at
t/τ = 14. (The colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140386.)

domain. The 32-bit fpzip case is the only one that failed
outright, as it crashed at t/τ ≈ 14 when it became nu-
merically unstable. The other cases, and even the 32-
bit fpzip case before crashing, differed little from the
reference simulation. At the time the 32-bit fpzip case
crashed, its mixing-layer thickness was 2.4% larger
than the reference simulation. The 32-bit fpzip case
where compression was only applied every 500th time
step ran without issue and differed by 0.38% in mixing-
layer thickness at the end of the simulation (t/τ = 22).

The growth rates are also shown in Fig. 9 as the up-
per set of lines with the same color scheme. At early
times, when the layer is growing exponentially, there
are no differences between the seven curves. Once
nonlinear growth begins, after t/τ > 3, small dif-
ferences are noticeable. These differences are minor
and all cases show the expected ḣ ∝ t self-similar
growth beyond t/τ > 6. Near the end of the sim-
ulation the fpzip 40-bit case and the APAX 5X case
had 5–7% smaller growth rates, resulting in 1.9% and
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Table 3

This table shows the compression ratios achieved for selected Mi-
randa runs

Compressor Ratio Loss Thick. Result

fpzip 48-bit 1.8/3.3/4.6 5.9E−12 0.07% pass

fpzip 40-bit 2.3/4.3/6.3 1.7E−09 1.9% pass

fpzip 32-bit 3.2/4.5/6.5 4.1E−07 N/A crash

APAX 2X 2.1/2.3/2.6 3.3E−10 0.007% pass

APAX 4X 4.0/4.1/4.3 3.6E−06 0.19% pass

APAX 5X 5.1/5.3/5.4 4.7E−05 0.49% pass

Notes: The ‘Ratio’ column shows the minimum, mean and maximum
compression rate over the simulation domain. The ‘Loss’ column re-
ports the time average of the RMS difference due to lossy compres-
sion divided by the mean density. The ‘Thick.’ column shows the
percent difference in mixing-layer thickness at the end of the sim-
ulation. Each run is characterized as passing or failing the physics
criteria or crashing.

0.49% smaller mixing-layer thickness, respectively.
Since these growth rates are systematically smaller,
rather than simply having different random fluctuations
like the other cases (gray curves), it is likely that the
mixing-layer thickness difference will compound and
become unacceptable if the simulation were run later
in time (requiring a larger initial domain). The differ-
ences in mixing-layer thickness at the end of the simu-
lation are listed in Table 3.

The two-dimensional energy spectrum from the
plane centered within the mixing layer is shown in
Fig. 10 at t/τ = 22 for both the vertical velocity
(solid) and the density (dashed) (the 32-bit case is not
shown, as it did not reach this time). These spectra
show the amount of energy contained in the various
length scales within the problem. Most of the energy
is in the large wavelengths (low wavenumbers). At the
smallest scales (high wavenumbers) the energy is re-
moved through viscous dissipation. In-between these
scales is a power-law region, which, if the flow is tur-
bulent, has a −5/3 slope. Aside from small fluctua-
tions, the curves are nearly identical and all exhibit a
−5/3 power-law for over a decade in wavenumbers,
signifying turbulent behavior.

To further investigate why the fpzip 32-bit case
crashed, Fig. 11 shows density spectra at t/τ = 14.
The top set of curves show the energy spectra of the
density field at the center of the mixing layer from
all of the cases considered. At this location the spec-
tra are all nearly identical, showing the beginnings of
a power-law range and a dissipation region at high
wavenumbers caused by Miranda’s LES filtering. The
lower set of curves show the spectra from three sim-

Fig. 10. Energy spectrum of vertical velocity (solid) and density
(dashed) at the mid-plane of the mixing layer at t/τ = 22. All
cases are shown except the 32-bit fpzip case, which did not reach
this time. The spectra are very similar and feature a k−5/3 iner-
tial range. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140386.)

Fig. 11. Energy spectrum of density at the mid-plane of the mixing
layer (top set of curves) and at a distance −2h from the mixing layer
(bottom set of curves) at t/τ = 14. The 32-bit fpzip case exhibits
high wavenumber features that cause the problem to become numer-
ically unstable. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140386.)

ulations, taken from a plane located a distance −2h
from the center of the mixing layer, where the flow
field is relatively quiescent. The APAX 4X case pro-
duced a greater loss of precision than the fpzip 32-bit
case, which is reflected in its larger energy level in
this region. In the fpzip 32-bit case, however, a bump
can be seen in the high wavenumber region that corre-
sponds to approximately 5 grid cells per wavelength.
This scale is large enough to remain after Miranda’s
filtering routines. This spectrum also shows an up-turn
at the highest wavenumber portion of the spectrum.
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Fig. 12. The compression ratio for an fpzip 48-bit compression run
is shown. The three curves represent the maximum, minimum and
mean compression rate among the 1024 processes.

It is these features that accumulate and interact with
Miranda’s numerics that cause the problem to crash.
This shows that precision is not the only factor to con-
sider when choosing a compression scheme for “mem-
ory compression” – one must also consider, or test,
how compression will interact with the code’s numer-
ics.

The compression rate varied over the course of the
simulation, within different regions of the simulation
domain, and for the different fields being compressed.
In the APAX 5X case, for example, the three velocity
fields were all compressed to 5–5.5X, while the density
field started out at 14X compression in regions far from
the mixing layer, and then reduced to ∼5X compres-
sion later in time. The rates were averaged across time
and fields and are reported in Table 3. Also reported
in this table is the loss that compression introduced at
each time step. This is defined as the RMS difference
in the density field after compression was applied and
normalized by the mean density. This loss criterion was
evaluated in the center of the mixing layer. As noted
in the table, all of the runs passed the physics criteria
except for the 32-bit fpzip run.

The fpzip compression rate varied over the course of
the simulation and at different regions within the sim-
ulation domain. Figure 12 shows the compression rate
of all fields from a 1024 processor RTI simulation us-
ing Miranda and compressed with fpzip in 48-bit mode
on each time step. The compression rate begins at ∼2.2
in processors near the mixing layer and at ∼4.5 in pro-
cessors farther away. Over time the minimum compres-
sion rate decreases, reaching a floor in some processes
at 1.7X. Over the course of the simulation, an average
compression rate of 3.3X was achieved.

Figure 13 shows the compression rate of one of
the velocity components from a 1024 processor RTI

Fig. 13. The compression ratio for a 2X APAX compression run
is shown. The three curves represent the maximum, minimum and
mean compression rate among the 1024 processes.

simulation using Miranda and APAX 2X compression
on each time-step. The average compression rate is
slightly above 2X due to the fact that the APAX coder
converts all float values into a 32-bit signed integer rep-
resentation before quantization. The minimum com-
pression ratio never falls below 2.0 on any processor.
A fixed rate compression scheme may be important for
memory limited applications, in which a strict lower
bound on compression rate is required.

6. Discussion and future work

Disk compression can have a positive impact on per-
formance today. For example, the bandwidth per core
to the parallel file system on Cielo, a Cray XE-6 at
Los Alamos National Laboratory, is roughly 1 MB/s
for pF3D when 1k to 64k cores write simultaneously.
Lossy compression algorithms have a throughput of
roughly 200 MB/s, so the time spent compressing data
would be small compared to the time spent writing it to
disk. Thus the total time spent writing to disk would be
reduced by roughly the compression ratio. For check-
pointing, file formats such as HDF5 already provide
support for lossless compression, and APAX is avail-
able as a compression filter for HDF5. The flexibility
of libraries make it straightforward to also add support
for other lossy compression schemes.

Memory compression will not help performance
on current multi-core systems because memory band-
width per core (roughly 8.6 GB/s on an Intel Sandy
Bridge) is significantly higher than software compres-
sion rates. An interesting possibility is to put compres-
sion in on-chip logic. The APAX compression algo-
rithm can achieve throughputs of 2.5 to 8 GB/s while
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using between 0.1 and 0.4 mm2 in 28 mm CMOS
and increasing the power consumption of a chip by
less than one percent. This rate is close enough to the
memory bandwidth per core that memory compres-
sion might increase overall application performance.
We expect that hardware compression schemes will be
required to make “memory compression” a generally
useful approach.

To take full advantage of memory compression, it
would be necessary to not only compress and decom-
press the simulation state at the end of each cycle, but
to also insert compression into all reads and writes
to and from main memory, possibly storing local-
ized views of uncompressed simulation state in scratch
memory or cache. To realize this scenario, we envi-
sion having to partition the data arrays into bite-size
compressed chunks that can be processed and evolved
mostly independently. We see such a restructuring of
inner loops in the simulation code, possibly assisted by
semi-automated techniques, as future work. In partic-
ular, a separate study is needed to assess the impact of
data blocking and more frequent compression on accu-
racy and speed.

Another avenue for future work is the development
of models to predict the effects of lossy compres-
sion. In our current approach, the simulation is run re-
peatedly with increasing compression ratios and cor-
responding errors to determine the failure point below
which compression is deemed “safe”. Analogous to
how it is possible to analyze the impact mesh resolu-
tion has on accuracy, we require models to predict how
quantization and variable-precision arithmetic influ-
ences the simulation state and error growth over time.
The APAX Profiler [32] has been used successfully to
predict acceptable compression rates for other media
by analyzing the intrinsic noise level relative to the sig-
nal strength. However, such tools do not account for
the potential cascading effects of compression-induced
errors that grow over time, nor how these errors corre-
late with physics-based metrics.

7. Conclusions

The LULESH study indicates that a broad range of
compression parameters are valid for this run. The Se-
dov blast wave problem is a stable problem, and we
expect that for unstable flows higher precision settings
may be required. We noted that APAX and fpzip were
similar in their performance, indicating that compres-
sion schemes with either fixed rate or fixed precision

modes are viable. We found that with APAX, the per-
block scaling of values did lead to unphysical noise
in the nodal positions in front of the shock wave at a
requested compression rate of 4X. In future work, it
would be interesting to thread the compression calls
through the LULESH solver at the point when each
field value is updated, as this would be closer to how
memory compression would occur in practice.

The Miranda run with 32-bit fpzip failed when com-
pressed at every time step but passed when run at
the much lower frequency required for “disk compres-
sion”. This run had a compression rate of 4.5X, only
slightly higher than the successful 40-bit fpzip and
APAX 4X runs. We showed that fpzip generates high
wavenumber features in the density spectrum, and that
these interact with the numerics in Miranda to cause
the problem to crash. With the APAX compressor, Mi-
randa successfully ran with compression rates of 5.3X,
and we showed that it did not exhibit the high fre-
quency features. A key result is that the details of how
compression algorithms quantize and round can be im-
portant factors in overall results when compression is
integrated with numerical algorithms.

A pF3D run with 32-bit fpzip (average compression
ratio 3.66X) had low errors while a 24-bit fpzip run
(average compression ratio 6.57X) failed. The pF3D
simulations using APAX passed the physics criteria
at compression ratios up to 6X. These results show
that the onset of failure occurs across a fairly narrow
range of compression ratios and can depend on inter-
actions between the compressor and the code’s numer-
ics.

This paper has examined the impact of lossy com-
pression on three physics simulation codes – LULESH,
Miranda, and pF3D. All three codes can be run with a
lossy compression ratio of 3X or greater when using a
frequency suitable for “memory compression”. Lossy
compression is also a viable approach to reducing the
impact of limited disk bandwidth for all three codes.
To our knowledge, this is the first study of the effects of
applying lossy compression to the physics state of sim-
ulations as a strategy for mitigating the data movement
bottleneck expected on future systems.
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