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Under investigation in this paper is a generalized MKdV equation, which describes the propagation of shallow water in fluid
mechanics. In this paper, we have derived the exact solutions for the generalized MKdV equation including the bright soliton,
dark soliton, two-peak bright soliton, two-peak dark soliton, shock soliton and periodic wave solution via Exp-function method.
By figures and symbolic computations, we have discussed the propagation characteristics of those solitons under different values
of those coefficients in the generalized MKdV equation. The method constructing soliton solutions in this paper may be useful for
the investigations on the other nonlinear mathematical physics model and the conclusions of this paper can give theory support
for the study of dynamic features of models in the shallow water.

1. Introduction

Nonlinear science studies nonlinear phenomena of theworld,
which is cross-disciplinary [1–4]. In fact, any science, whether
natural science or social science, has its own nonlinear
phenomena and problems. To study these phenomena and
problems,many branches of nonlinear science have been pro-
moted to be built and developed [5–7]. Obviously, most of the
phenomena are not linear in the natural sciences and engi-
neering practice; thus many problems cannot be researched
and solved by the linear methods, which makes the study
of nonlinear science very significant. Actually, nonlinear
science, which mainly consists of soliton, chaos, and fractal
[3, 4, 7], is not the simple superposition and comprehensive
of these nonlinear branches but a comprehensive subject to
study the various communist rules in nonlinear phenomena.
With the rapid development of nonlinear science, the study of
exact solutions of nonlinear evolution equations has attracted
much attention of many mathematicians and physicists.

In 1834, the solitary wave phenomenon was observed
by Huang et al. [8] and Russell [9]. Later, people named the
isolation water peak, which kept moving with constant shape
and speed on the surface of the water, as a solitary wave [8].
The discovery of a solitary wave turned people into a new
field in the study of the waves of the convection. In 1895,
Holland’s Professor Kortewrg and his disciples Vries derived
the famous KdV equation from the research of shallow water

wave motion [10]. The analysis to the KdV equation has
improved to recover inverse scattering method, on which
people expanded the new research directions of algebra and
geometry [8]:

𝑢
𝑡
± 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

= 0. (1)

MKdV equation plays an important role in describing the
plasmas and phonon in anharmonic lattice. In the nineteen
fifties, physicist Fermi, Pasta, and Ulam made a famous FPU
experiment, connecting the 64 particles by nonlinear spring,
thereby forming a nonlinear vibrating string. Although the
FPU experiment did not gain the solutions of solitary wave, it
will expand the study of the solitary wave to the field outside
the mechanics [11]. Later, Fermi et al. studied the nonlinear
vibration problem of FPU model and obtained the solitary
wave solutions [11], which is the right answer for the question
of FPU. It is the first time to find solitary wave solutions in
the field outside mechanics after the solution was found in
the KdV equation, which give rise to the scientists’ interest in
researching the solitary wave phenomenon. In 1965, Zabusky
and Kruskal studied solitary waves in plasma [12]; they
found that the waveform does not change nature before and
after collision of nonlinear solitary waves, which is similar
to particle collisions, so Zabusky and Kruskal named the
solitary wave with the impact properties of collisions as
soliton [12]. Soliton concept is an important milepost on
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the history of the development of the soliton theory.The next
few decades, the soliton theory had a rapid development
and penetrated into many areas, such as fluid mechanics,
nonlinear optical fiber communication, plasma physics, fluid
physics, chemistry, life science, and marine science [13–15].

Recently many new approaches to nonlinear wave equa-
tions have been proposed, such as Tanh-function method
[16–18], F-expansion method [19], Jacobian elliptic func-
tion method [20], Darboux transformation method [21–26],
adomian method [27–29], variational approach [30], and
homotopy perturbationmethod [31]. All methodsmentioned
above have their limitations in their applications. We will
apply Exp-functionmethod to a generalizedMKdV equation
to gain exact solutions:

𝑢
𝑡
+ 𝛼𝑢
2
𝑢
𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

= 0, (2)

where 𝛼 and 𝛽 are real parameters. When 𝑢(𝑥, 𝑡) = 𝑐 (𝑐 is a
constant) as 𝑡 → ±∞, solitons can be obtained.

This paper will be organized as follows. In Section 2,
the basic idea of Exp-function method is introduced. In
Section 3, carrying on calculating and illustrating by the
mathematical software MATHEMATIC, we will solve the
solitary wave solutions of (2) based on the Exp-function
method. In Section 4, we will obtain shock soliton, bright
soliton, two-peak bright soliton, dark soliton, two-peak dark
soliton, and periodic wave solutions and analyze the dynamic
features of soliton solutions by using somefigures. Finally, our
conclusions will be addressed in Section 5.

2. Basic Idea of Exp-Function Method

In order to illustrate the basic idea of the suggested method,
we consider firstly the following general partial differential
equation:

𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑡
, 𝑢
𝑥𝑥
, . . .) = 0. (3)

We aim at its exact solutions, so we introduce a complex
variable, 𝜉, defined as

𝜉 = 𝑘𝑥 + 𝜔𝑡, (4)

where 𝜔 and 𝑘 are constants unknown to be further
determined. Therefore we can convert (3) into an ordinary
differential equation with respect to 𝜉:

𝐹 (𝑢, 𝑢
𝜉
, 𝑢
𝜉𝜉
, . . .) = 0. (5)

Very simple and straightforward, the Exp-functionmethod is
based on the assumption that traveling wave solutions can be
expressed in the following form:

𝑢 (𝜉) =

∑
𝑐

𝑛=−𝑑
𝑎
𝑛
exp (𝑛𝜉)

∑
𝑝

𝑚=−𝑞
𝑏
𝑚
exp (𝑚𝜉)

, (6)

where 𝑐, 𝑑, 𝑝, and 𝑞 are positive integers which are unknown
to be further determined and 𝑎

𝑛
and 𝑏
𝑚
are unknown con-

stants.
We suppose that 𝑢(𝜉) which is the solution of (5) can be

expressed as

𝑢 (𝜉) =

𝑎
𝑐
exp (𝑐𝜉) + ⋅ ⋅ ⋅ + 𝑎

−𝑑
exp (−𝑑𝜉)

𝑏
𝑝
exp (𝑝𝜉) + ⋅ ⋅ ⋅ + 𝑏

−𝑞
exp (−𝑞𝜉)

. (7)

To determine the values of 𝑐 and 𝑝, we balance the linear
term of highest order in (5) with the highest order nonlinear
term. Similarly we balance the lowest orders to confirm 𝑑 and
𝑞. For simplicity, we set some particular values for 𝑐, 𝑝, 𝑑, and
𝑞 and then change the left side of (5) into the polynomial of
exp(𝑛𝜉). Equating the coefficients of exp(𝑛𝜉) to be zero results
in a set of algebraic equations. Then solving the algebraic
system with symbolic computation system, we can gain the
solution. Substituting it into (3), we have the general form of
the exact solution expressed as the form of exp(𝑛𝜉). Taking
the form of the solutions into consideration, we can have
more extensive solutions via Exp-function method.

3. Solving Generalized MKdV Equation via
Exp-Function Method

Now we consider the follwing equation [32, 33]:

𝑢
𝑡
+ 𝑢
2
𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0. (8)

This equation is called modified KdV equation, which arises
in the process of understanding the role of nonlinear dis-
persion and in the formation of structures like liquid drops.
The KdV equation is one of the most familiar models for
solitons and the foundation which studies other equations.
Developing upon this foundation, the isolated theories are
treated as the milestone of mathematics physical method.
During researching the isolated theories, the remarkable
application should be laser shooting practice and fiber-optic
communication.

For researching the variety of the solutions for the
modified KdV equation, we carry on the MKdV equation to
expand. Thus, we have

𝑢
𝑡
+ 𝛼𝑢
2
𝑢
𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

= 0, (9)

where 𝛼 and 𝛽 are real parameters. In the following, we con-
sider (9).

Introduce a complex variable, 𝜂, defined as

𝑢 = 𝑢 (𝜂) ,

𝜂 = 𝑘𝑥 + 𝜔𝑡.

(10)

By (10), (9) becomes

𝜔𝑢

+ 𝛼𝑘𝑢

2
𝑢

+ 𝛽𝑘
3
𝑢

= 0, (11)

which denotes the differential with respect to 𝜂.
The Exp-function method is based on the assumption

that traveling wave solutions can be expressed in the follow-
ing form:

𝑢 (𝜂) =

∑
𝑑

𝑛=−𝑐
𝑎
𝑛
exp (𝑛𝜂)

∑
𝑞

𝑚=−𝑝
𝑏
𝑚
exp (𝑚𝜂)

, (12)

where 𝑐, 𝑑, 𝑝, and 𝑞 are positive integers unknown to be
further determined and 𝑎

𝑛
and 𝑏
𝑚
are unknown constants.

We suppose that the solution of (11) can be expressed as

𝑢 (𝜂) =

𝑎
𝑐
exp (𝑐𝜂) + ⋅ ⋅ ⋅ + 𝑎

−𝑑
exp (−𝑑𝜂)

𝑏
𝑝
exp (𝑝𝜂) + ⋅ ⋅ ⋅ + 𝑏

−𝑞
exp (−𝑞𝜂)

. (13)
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To determine values of 𝑐 and 𝑝, we balance the linear term of
highest order in (11) with the highest order nonlinear term.
By simple calculation, we have

𝑢

=

𝑐
1
exp [(7𝑝 + 𝑐) 𝜂] + ⋅ ⋅ ⋅
𝑐
2
exp [8𝑝𝜂] + ⋅ ⋅ ⋅

,

𝑢
2
𝑢

=

𝑐
3
exp [(𝑝 + 3𝑐) 𝜂] + ⋅ ⋅ ⋅
𝑐
4
exp [4𝑝𝜂] + ⋅ ⋅ ⋅

=

𝑐
3
exp [(5𝑝 + 3𝑐) 𝜂] + ⋅ ⋅ ⋅
𝑐
4
exp [8𝑝𝜂] + ⋅ ⋅ ⋅

,

(14)

where 𝑐
𝑖
(𝑖 = 1, 2, 3, 4) are coefficients only for simplicity.

Balancing highest order of exponential function in (14),
we have

5𝑝 + 𝑐 = 7𝑝 + 𝑐, (15)

which leads to the result

𝑝 = 𝑐. (16)

Similarly tomake sure of the values of 𝑑 and 𝑞, we balance the
linear term of lowest order in (11):

𝑢

=

⋅ ⋅ ⋅ + 𝑑
1
exp [− (7𝑞 + 𝑑) 𝜂]

⋅ ⋅ ⋅ + 𝑑
2
exp [−8𝑞𝜂]

,

𝑢
2
𝑢

=

⋅ ⋅ ⋅ + 𝑑
3
exp [− (𝑞 + 3𝑑) 𝜂]

⋅ ⋅ ⋅ + 𝑑
4
exp [−8𝑞𝜂]

=

⋅ ⋅ ⋅ + 𝑑
3
exp [− (5𝑞 + 3𝑑) 𝜂]

⋅ ⋅ ⋅ + 𝑑
4
exp [−8𝑞𝜂]

,

(17)

where 𝑑
𝑖
(𝑖 = 1, 2, 3, 4) are determined to be coefficients only

for simplicity.
Balancing lowest order of exponential function in (17), we

have

− (7𝑞 + 𝑑) = − (5𝑞 + 3𝑑) , (18)

which leads to the result

𝑞 = 𝑑. (19)

For simplicity, we set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1, so (13) reduces
to

𝑢 (𝜂) =

𝑎
1
exp (𝜂) + 𝑎

0
+ 𝑎
−1
exp (−𝜂)

exp (𝜂) + 𝑏
0
+ 𝑏
−1
exp (−𝜂)

. (20)

Substituting (20) into (11), and by the help of Mathematica,
we have

1

𝐴

[𝐶
3
exp (3𝜂) + 𝐶

2
exp (2𝜂)

+ 𝐶
1
exp (𝜂) + 𝐶

0
+ 𝐶
−1
exp (−𝜂)

+ 𝐶
−2
exp (−2𝜂) + 𝐶

−3
exp (−3𝜂)] = 0,

(21)

where

𝐴 = (𝑏
−1
+ 𝑒
2𝜂
+ 𝑏
0
𝑒
𝜂
)

4

,

𝐶
3
= (ℎ + 𝑘𝛼𝑎

2

1
) (−𝑎
0
+ 𝑎
1
𝑏
0
) ,

𝐶
2
= − 2𝑘𝛼𝑎

2

0
𝑎
1
− 2𝑎
−1
(3𝑘
3
𝛽 + ℎ + 𝑘𝛼𝑎

2

1
)

+ 2𝑎
0
(3𝑘
3
𝛽 − ℎ + 𝑘𝛼𝑎

2

1
) 𝑏
0

+ 2𝑎
1
[(3𝑘
3
𝛽 + ℎ + 𝑘𝛼𝑎

2

1
) 𝑏
−1
+ (−3𝑘

3
𝛽 + ℎ) 𝑏

2

0
] ,

𝐶
1
= 𝑎
0
[−𝑘𝛼 (𝑎

2

0
+ 6𝑎
−1
𝑎
1
)

+ (24𝑘
3
𝛽 − ℎ + 5𝑘𝛼𝑎

2

1
) 𝑏
−1
]

− ℎ𝑏
2

0
(𝑎
0
− 𝑎
1
𝑏
0
)

+ {𝑎
−1
(−5ℎ + 𝑘𝛼𝑎

2

1
)

+ 𝑎
1
[𝑘𝛼𝑎
2

0
+ 6 (−4𝑘

3
𝛽 + ℎ) 𝑏

−1
]} 𝑏
0
,

𝐶
0
= − 4 (𝑎

−1
− 𝑎
1
𝑏
−1
)

× [𝑘𝛼 (𝑎
2

0
+ 𝑎
−1
𝑎
1
) − (9𝑘

3
𝛽 − ℎ) 𝑏

−1
+ ℎ𝑏
2

0
] ,

𝐶
−1
= 𝑎
−1
{6𝑘𝛼𝑎

0
𝑎
1
𝑏
−1

+ [−𝑘𝛼𝑎
2

0
+ 6 (4𝑘

3
𝛽 − ℎ) 𝑏

−1
− ℎ𝑏
2

0
] 𝑏
0
}

− 𝑘𝛼𝑎
2

−1
(5𝑎
0
+ 𝑎
1
𝑏
0
)

+ 𝑏
−1
{𝑘𝛼𝑎
3

0
+ 5ℎ𝑎

1
𝑏
−1
𝑏
0

+𝑎
0
[(−24𝑘

3
𝛽 + ℎ) 𝑏

−1
+ ℎ𝑏
2

0
]} ,

𝐶
−2
= 2𝑏
2

−1
(𝑎
−1
− 𝑎
1
𝑏
−1
) (3𝑘
3
𝛽 + ℎ)

+ 2𝑏
0
𝑏
−1
(𝑎
−1
𝑏
0
− 𝑎
0
𝑏
−1
) (−3𝑘

3
𝛽 + ℎ)

− 2𝑘𝛼𝑎
−1

× [𝑎
−1
(𝑎
−1
+ 𝑎
0
𝑏
0
) − 𝑏
−1
(𝑎
2

0
+ 𝑎
1
𝑎
−1
)] ,

𝐶
−3
= − (𝑘𝛼𝑎

2

−1
+ ℎ𝑏
2

−1
) (−𝑎
0
𝑏
−1
+ 𝑎
−1
𝑏
0
) ,

(22)

with ℎ = 𝑘3𝛽 + 𝜔.
Equating the coefficients of exp(𝑛𝜂) to be zero, we have

𝐶
3
= 0, 𝐶

2
= 0, 𝐶

1
= 0, 𝐶

0
= 0,

𝐶
−3
= 0, 𝐶

−2
= 0, 𝐶

−1
= 0.

(23)

Solving (23), simultaneously, we obtain

𝜔 = −𝑘
3
𝛽 − 𝑘𝛼𝑎

2

1
, 𝑎

−1
=

3𝑘
2
𝛽𝑏
2

0
+ 2𝛼𝑎

2

1
𝑏
2

0

8𝛼𝑎
1

,

𝑎
0
=

3𝑘
2
𝛽𝑏
0
+ 𝛼𝑎
2

1
𝑏
0

𝛼𝑎
1

, 𝑏
−1
=

3𝑘
2
𝛽𝑏
2

0
+ 2𝛼𝑎

2

1
𝑏
2

0

8𝛼𝑎
2

1

.

(24)
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Substituting (24) into (20) results in a compact-like solution,
which reads

𝑢 (𝑥, 𝑡) = 𝑎
1
(1 +

24𝑦𝑘
2
𝛽𝑏
0

3𝑘
2
𝛽𝑏
2

0
+ 2𝛼𝑎

2

1
(2𝑦 + 𝑏

0
)
2
) , (25)

where 𝑎
1
, 𝑏
0
, 𝛼, 𝛽, and 𝑘 are real parameters and 𝑦 =

𝑒
𝑘𝑥+𝑡(−𝑘

3
𝛽−𝑘𝛼𝑎

2

1
). Besides, the obtained solution equation (25)

is a generalized soliton solution of (9).
In case, 𝑘 is an imaginary parameter, the obtained soliton

solution can be converted into the periodic solution or
compact-like solution. We write

𝑘 = 𝑖𝐾, (26)

where𝐾 is a real parameter.
Use the transformations

exp(𝑘𝑥 + √𝑘2 + 6𝑎
1
+ 1𝑘𝑡)

= cos(𝐾𝑥 + √−𝐾2 + 6𝑎
1
+ 1𝐾𝑡)

+ 𝑖 sin(𝐾𝑥 + √−𝐾2 + 6𝑎
1
+ 1𝐾𝑡) ,

exp(−𝑘𝑥 − √𝑘2 + 6𝑎
1
+ 1𝑘𝑡)

= cos(𝐾𝑥 + √−𝐾2 + 6𝑎
1
+ 1𝐾𝑡)

− 𝑖 sin(𝐾𝑥 + √−𝐾2 + 6𝑎
1
+ 1𝐾𝑡) .

(27)

Equation (25) becomes

𝑢 (𝑥, 𝑡)

= 𝑎
1
(1 + ( − 24𝐾

2
𝛽 (cos (𝑦

1
) + 𝑖 sin (𝑦

1
)) 𝑏
0

× ( − 3𝐾
2
𝛽𝑏
2

0
+ 2𝛼𝑎

2

1

× (2 (cos (𝑦
1
) + 𝑖 sin (𝑦

1
)) + 𝑏
0
)
2

)

−1

)) ,

(28)

where 𝑎
1
, 𝑏
0
, 𝛼, 𝛽, and 𝐾 are real parameters and 𝑦

1
= 𝐾𝑥 −

(𝛼𝐾𝑎
2

1
− 𝛽𝐾
3
)𝑡. Simplifying the above formula, we have

𝑢 (𝑥, 𝑡) = 𝑎
1
+

−3𝐾
2
𝑏
0
𝛽/𝛼𝑎
1

𝑏
0
+ (1 + 𝜌) cos (𝑦

1
) + 𝑖 (1 − 𝜌) sin (𝑦

1
)

,

(29)

where 𝑎
1
, 𝑏
0
, 𝛼, 𝛽, and 𝐾 are real parameters and 𝜌 =

𝑏
2

0
(−3𝛽𝐾

2
+ 2𝛼𝑎

2

1
)/8𝛼𝑎

2

1
.

If we search for a periodic solution or compact-like
solution, the imaginary part in the denominator of (29) must
be zero, which requires that

1 − 𝜌 = 1 −

𝑏
2

0
(−3𝛽𝐾

2
+ 2𝛼𝑎

2

1
)

8𝛼𝑎
2

1

= 0. (30)

Solving 𝑏
0
from (30), we obtain

𝑏
0
= ±√

8𝛼𝑎
2

1

−3𝛽𝐾
2
+ 2𝛼𝑎

2

1

. (31)

Substituting (31) into (29) results in a compact-like solution,
which reads

𝑢 (𝑥, 𝑡)

= 𝑎
1
−

6√2𝐾
2
𝛽𝑔

2√2𝛼𝑎
1
𝑔 ± cos (𝑦

1
) (−𝛼𝑎

1
+ 𝑔
2
(3𝐾
2
𝛽 − 2𝛼𝑎

2

1
))

,

(32)

where 𝑎
1
and 𝐾 are free parameters, and 𝑦

1
= 𝐾𝑥 − (𝛼𝐾𝑎

2

1
−

𝛽𝐾
3
)𝑡, 𝑔 = √𝛼𝑎

2

1
/(−3𝐾

2
𝛽 + 2𝛼𝑎

2

1
), and it requires that

𝛼𝑎
2

1
/(−3𝐾

2
𝛽 + 2𝛼𝑎

2

1
) > 0.

4. Discussing the Forms of the Solutions

In the above, we gain two cases of solution equations (25) and
(32). In order to get the richness of solutions of (9), we have
these two cases discussed in the following.

4.1. The Solutions from (25). Through discussions, we obtain
the following results.

4.1.1. When 𝛼= 0 and 𝛽= 1. when 𝛼 = 0 and 𝛽 = 1, (9)
becomes 𝑢

𝑡
+ 𝑢
𝑥𝑥𝑥

= 0. Then we can obtain shock solitons.
The solution formula is shown as follows:

𝑢 (𝑥, 𝑡) = 𝑎
1
(1 +

8𝑒
−𝑘
3
𝑡+𝑘𝑥

𝑏
0

)

= 𝑎
1
+

8𝑎
1
cosh (𝑘3𝑡 − 𝑘𝑥)

𝑏
0

−

8𝑎
1
sinh (𝑘3𝑡 − 𝑘𝑥)

𝑏
0

,

(33)

where 𝑎
1
, 𝑏
0
, and 𝑘 are real parameters.

Case 1 (when 𝑎
1
= 1, 𝑏
0
= 2, 𝑘 = 3). Consider

𝑢
1
(𝑥, 𝑡) = 1 + 4𝑒

−27𝑡+3𝑥

= 1 + 4 cosh (27𝑡 − 3𝑥) − 4 sinh (27𝑡 − 3𝑥) .
(34)

Description is as shown in Figure 1(a).

Case 2 (when 𝑎
1
= 3, 𝑏
0
= −2, and 𝑘 = 4). Consider

𝑢
2
(𝑥, 𝑡) = 3 (1 − 4𝑒

−64𝑡+4𝑥
)

= 3 − 12 cosh (64𝑡 − 4𝑥) + 12 sinh (64𝑡 − 4𝑥) .
(35)

Description is as shown in Figure 1(b).
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Figure 1: Evolution of the solutions of (25). (a) Shock soliton: parameters are 𝛼 = 0, 𝛽 = 1, 𝑎
1
= 1, 𝑏

0
= 2, and 𝑘 = 3. (b) A shock soliton in

collision with a dark soliton: parameters are 𝛼 = 0, 𝛽 = 1, 𝑎
1
= 3, 𝑏

0
= −2, and 𝑘 = 4.

4.1.2. When 𝛼= 1 and 𝛽= 1. when 𝛼 = 1 and 𝛽 = 1, (9)
becomes 𝑢

𝑡
+ 𝑢
2
𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0. Then we can obtain one-peak
bright solitons. The solution formula is shown as follows:
𝑢 (𝑥, 𝑡)

= 𝑎
1
(1 +

24𝑒
𝑦
𝑘
2
𝑏
0

3𝑘
2
𝑏
2

0
+ 2𝑎
2

1
(2𝑒
𝑦
+ 𝑏
0
)
2
)

= 𝑎
1
(1 +

24𝑘
2
(cosh (𝑦) + sinh (𝑦)) 𝑏

0

3𝑘
2
𝑏
2

0
+ 2𝑎
2

1
(2 cosh (𝑦) + 2 sinh (𝑦) + 𝑏

0
)
2
) ,

(36)

where 𝑎
1
, 𝑏
0
, and 𝑘 are real parameters and 𝑦 = 𝑘𝑥 + 𝑡(−𝑘3 −

𝑘𝑎
2

1
).

Case 3 (when 𝑎
1
= 1, 𝑏
0
= 2, and 𝑘 = 2). Consider

𝑢
3
(𝑥, 𝑡)

= 1 +

192𝑒
−10𝑡+2𝑥

48 + 2(2 + 2𝑒
−10𝑡+2𝑥

)
2

= 1 +

192 (cosh (10𝑡 − 2𝑥) − sinh (10𝑡 − 2𝑥))
48 + 2(2 + 2 cosh (10𝑡 − 2𝑥) − 2 sinh (10𝑡 − 2𝑥))2

.

(37)
Description is as shown in Figure 2(a).

Case 4 (when 𝑎
1
= 1, 𝑏
0
= −1, and 𝑘 = −3). Consider

𝑢
4
(𝑥, 𝑡)

= 1 −

216𝑒
30𝑡−3𝑥

27 + 2(−1 + 2𝑒
30𝑡−3𝑥

)
2

= 1 −

216 (cosh (30𝑡 − 3𝑥) + sinh (30𝑡 − 3𝑥))
27 + 2(−1 + 2 cosh (30𝑡 − 3𝑥) + 2 sinh (30𝑡 − 3𝑥))2

.

(38)
Description is as shown in Figure 2(b).

4.1.3. When 𝛼= 1 and 𝛽=−1. when 𝛼 = 1 and 𝛽 = −1, (9)
becomes 𝑢

𝑡
+ 𝑢
2
𝑢
𝑥
− 𝑢
𝑥𝑥𝑥

= 0. Then we can obtain bright
solitons and dark solitons. The solution formula is shown as
follows:

𝑢 (𝑥, 𝑡)

= 𝑎
1
(1 −

24𝑒
𝑦
𝑘
2
𝑏
0

−3𝑘
2
𝑏
2

0
+ 2𝑎
2

1
(2𝑒
𝑦
+ 𝑏
0
)
2
)

= 𝑎
1
(1 −

24𝑘
2
(cosh (𝑦) + sinh (𝑦)) 𝑏

0

−3𝑘
2
𝑏
2

0
+ 2𝑎
2

1
(2 cosh (𝑦) + 2 sinh (𝑦) + 𝑏

0
)
2
) ,

(39)

where 𝑎
1
, 𝑏
0
, and 𝑘 are real parameters and𝑦 = 𝑘𝑥+𝑡(𝑘3−𝑘𝑎2

1
).

Case 5 (when 𝑎
1
= −5, 𝑏

0
= −2, and 𝑘 = 3). Consider

𝑢
5
(𝑥, 𝑡)

= −5(1 +

432𝑒
−48𝑡+3𝑥

−108 + 50(−2 + 2𝑒
−48𝑡+3𝑥

)
2
)

= −5 (1 + (432 (cosh (48𝑡 − 3𝑥) + sinh (48𝑡 − 3𝑥))

× ( − 108 + 50 ( − 2 + 2 cosh (48𝑡 − 3𝑥)

−2 sinh (48𝑡 − 3𝑥))2)
−1

)) .

(40)

Description is as shown in Figure 3(a).

Case 6 (when 𝑎
1
= 3, 𝑏
0
= −1, and 𝑘 = 4). Consider

𝑢
7
(𝑥, 𝑡)

= 3(1 +

384𝑒
28𝑡+4𝑥

−48 + 18(−1 + 2𝑒
28𝑡+4𝑥

)
2
)
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Figure 2: Evolution of the solutions of (25). (a) Bright soliton: parameters are 𝛼 = 1, 𝛽 = 1, 𝑎
1
= 1, 𝑏

0
= 2, and 𝑘 = 2. (b) A bright soliton in

collision with two dark solitons: parameters are 𝛼 = 1, 𝛽 = 1, 𝑎
1
= 1, 𝑏

0
= −1, and 𝑘 = −3.
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Figure 3: Evolution of the solutions of (25). (a) Two-peak bright soliton: parameters are 𝛼 = 1, 𝛽 = −1, 𝑎
1
= −5, 𝑏

0
= −2, and 𝑘 = 3. (b) A

bright soliton in collision with a dark soliton: parameters are 𝛼 = 1, 𝛽 = −1, 𝑎
1
= 3, 𝑏

0
= −1, and 𝑘 = 4.
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Figure 4: Evolution of the solutions of (25). (a) Dark soliton: parameters are 𝛼 = 1, 𝛽 = −1, 𝑎
1
= −5, 𝑏

0
= 2, and 𝑘 = −3. (b) Two-peak dark

soliton: parameters are 𝛼 = 1, 𝛽 = −1, 𝑎
1
= −5, 𝑏

0
= 3, and 𝑘 = 4.
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= 3 (1 + (384 (cosh (28𝑡 + 4𝑥) + sinh (28𝑡 + 4𝑥))

× ( − 48 + 18 ( − 1 + 2 cosh (28𝑡 + 4𝑥)

+2 sinh (28𝑡 + 4𝑥))2)
−1

)) .

(41)

Description is as shown in Figure 3(b).

Case 7 (when 𝑎
1
= −5, 𝑏

0
= 2, and 𝑘 = −3). Consider

𝑢
6
(𝑥, 𝑡)

= −5(1 −

432𝑒
48𝑡−3𝑥

−108 + 50(2 + 2𝑒
48𝑡−3𝑥

)
2
)

= −5 (1 − (432 (cosh (48𝑡 − 3𝑥) + sinh (48𝑡 − 3𝑥))

× ( − 108 − 50 (2 + 2 cosh (48𝑡 − 3𝑥)

+2 sinh (48𝑡 − 3𝑥))2)
−1

)) .

(42)

Description is as shown in Figure 4(a).

Case 8 (when 𝑎
1
= −5, 𝑏

0
= 3, and 𝑘 = 4). Consider

𝑢
8
(𝑥, 𝑡)

= −5(1 −

1152𝑒
−36𝑡+4𝑥

−432 + 50(3 + 2𝑒
−36𝑡+4𝑥

)
2
)

= −5 (1 − (1152 (cosh (36𝑡 − 4𝑥) − sinh (36𝑡 − 4𝑥))

× ( − 432 + 50 (3 + 2 cosh (36𝑡 − 4𝑥)

−2 sinh (36𝑡 − 4𝑥))2)
−1

)) .

(43)

Description is as shown in Figure 4(b).

4.2. The Solutions from (32). Based on the form of (32), if we
set 𝛼 = 0 and 𝛽 = 0 at the same time, the solution should be
zero.Therefore, it is not significative to study and analyse. So,
in the following, we consider 𝛼 and 𝛽 under the circumstance
that 𝛼 = 0 and 𝛽 = 0 are not zero in the meantime.

When 𝛼 = 1 and 𝛽 = 1, (9) becomes 𝑢
𝑡
+ 𝑢
2
𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

=

0. Then we can obtain periodic wave solutions. The solution
formula is shown as follows:

𝑢 (𝑥, 𝑡) = 𝑎
1
−

6√2𝐾
2
𝑔

2√2𝑎
1
𝑔 ± cos (𝑦) (−𝑎

1
+ 𝑔
2
(3𝐾
2
− 2𝑎
2

1
))

,

(44)

where 𝑦 = 𝐾𝑥 − (𝐾𝑎2
1
− 𝐾
3
)𝑡 and 𝑔 = √𝑎2

1
/(−3𝐾

2
+ 2𝑎
2

1
).

0.1

−0.1

0.3

−0.3

11

0

x t

u

Figure 5: Evolution of the solutions of (32). Periodic wave solution:
parameters are 𝛼 = 1, 𝛽 = 1, 𝑎

1
= 5, and 𝐾 = −2.

To illustrate the analysis, we obtain the following results.

Case 9 (when 𝑎
1
= 5, 𝐾 = −2). Consider

𝑢
9
(𝑥, 𝑡) = 5 −

24

√19 (10/√19 + 6 cos (2 (21𝑡 − 𝑥)))
. (45)

Description is as shown in Figure 5.

5. Conclusions

In this paper, ourmain attention has been focused on seeking
the soliton solutions of (9) via Exp-function method. By
applying Exp-function method, we have obtained shock
soliton, bright soliton, two-peak bright soliton, dark soli-
ton, two-peak dark soliton, and periodic wave solution. In
addition, with figures and symbolic computations, we have
described the propagation characteristics of those solitons
under different values of those coefficients in the generalized
MKdV equation. Furthermore, the problem solving process
and the algorithm, by the help of Mathematica, can be easily
extended to all kinds of nonlinear equations.
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