
Research Article
A Geometric Modeling and Computing Method for
Direct Kinematic Analysis of 6-4 Stewart Platforms

Ying Zhang ,1 Xin Liu ,2 ShiminWei ,1 YaobingWang,2 Xiaodong Zhang,2

Pei Zhang,2 and Changchun Liang2

1School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Beijing Institute of Spacecraft System Engineering, Beijing Key Laboratory of
Intelligent Space Robotic System Technology and Applications, Beijing 100094, China

Correspondence should be addressed to Ying Zhang; graduate yingzh@bupt.edu.cn

Received 1 August 2017; Accepted 28 January 2018; Published 26 February 2018

Academic Editor: Fazal M. Mahomed

Copyright © 2018 Ying Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A geometric modeling and solution procedure for direct kinematic analysis of 6-4 Stewart platforms with any link parameters is
proposed based on conformal geometric algebra (CGA). Firstly, the positions of the two single spherical joints on the moving
platform are formulated by the intersection, dissection, and dual of the basic entities under the frame of CGA. Secondly, a
coordinate-invariant equation is derived via CGA operation in the positions of the other two pairwise spherical joints. Thirdly,
the other five equations are formulated in terms of geometric constraints. Fourthly, a 32-degree univariate polynomial equation is
reduced from a constructed 7 by 7 matrix which is relatively small in size by using a Gröbner-Sylvester hybrid method. Finally, a
numerical example is employed to verify the solution procedure. The novelty of the paper lies in that (1) the formulation is concise
and coordinate-invariant and has intrinsic geometric intuition due to the use of CGA and (2) the size of the resultant matrix is
smaller than those existed.

1. Introduction

The Stewart platform [1] is a fully parallel, six-degree-of-free-
dom manipulator that generally consists of a base platform,
a moving platform, and six limbs connected to each other in
parallel. Stewart platforms have been successfully used in a
wide variety of fields and industries, ranging from astronomy
to flight simulators and are becoming increasingly popular
in the machine-tool industry [2]. From the 1980s, Stewart
platforms have attracted wide interests from researchers and
engineers due to their advantages of simplicity, high stiffness,
large load capacity, quick dynamic response, and excellent
accuracy.

The direct kinematic analysis of Stewart platforms has
been considered a challenging problem,which leads naturally
to a system of highly nonlinear algebraic equations with mul-
tiple solutions. There are two main approaches to solve these
equations: numerical schemes and closed-form solutions. A
closed-form solution provides more information about the
geometric and kinematic behavior over a numerical solution,

and the closed-form univariate polynomial equation has sig-
nificant theoretical values as it is fundamental to many other
kinematic problems. Hence obtaining a closed-form solu-
tion to the direct kinematic analysis is clearly preferred in
most cases.

In this paper, we will revisit the direct kinematic analysis
of 6-4 Stewart platforms, four of which meet the platform
pairwise, while the remaining two meet both base and plat-
form singly. Numerous researchers [3–6] have worked on this
problem. Hunt (1983) [3] wrongly stated that the maximum
number of assembly modes for the problem was 24 by geo-
metrical proof. Innocenti (1995) [4] derived a suitable set of
five closure equations and solved the problem by a specifically
developed elimination scheme, that is, a constructed 10 by 10
matrix. The number of the solutions is 36 in view of resultant
form; however, the numerical result leads to a 32-degree poly-
nomial equation in a single variable. Liao et al. (1995) [5] for-
mulated this problem based on the vector method from
equivalent mechanisms and obtained all the 32 solutions by
constructed 10 by 10 resultant matrix.The solution procedure
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is complex due to numerous vector computations. Zhang et
al. (2012) [6] also modeled this problem based on the trila-
teration method and vector method from equivalent mech-
anisms and the solution procedure is the same as [5]. It
is concluded from the above-mentioned literature that the
modeling and the solution procedure either are formulated
algebraically from the equivalent mechanisms or require
resultant elimination. The size of the constructed resultant
matrix is all 10 by 10.

Conformal geometric algebra (CGA) [7–10] is a relatively
new mathematical tool for geometric representation and
computation. Essentially, CGA represents various geometric
entities of points, spheres, lines, planes, circles, and point
pairs in a systematical hierarchy of multiple grades. More
importantly, CGA provides direct algebraic operations on
these geometric entities which typically lead to simple, com-
pact, coordinate-invariant formulations and enables com-
plicated symbolic geometric computations. The above-men-
tioned properties are two superior characteristics of CGA.
Hence it is very efficient for geometric modeling and com-
putation for kinematic problem of mechanisms and robotics.
In recent decades, CGA has been mostly applied to solve
the inverse kinematics problem of the serial mechanisms [11–
14] via CGA operation of the geometric entities. In addition,
Tanev [15, 16], Kim et al. [17], and Huo et al. [18] employed
CGA to study the singularity analysis of PMs. Huo et al. [18]
and Li et al. [19] proposed a mobility analysis approach for
PMs based on geometric algebra. Zhang et al. [20, 21] andWei
et al. [22] applied CGA to solve the direct kinematics of paral-
lel mechanisms.

In this paper, we will formulate the direct kinematic anal-
ysis problem of 6-4 Stewart platform using CGA and then
construct a 7 by 7 resultant using Gröbner-Sylvester hybrid
method [23, 24] which finally leads to a 32-degree univariate
polynomial equation without extraneous roots. The derived
coordinate-invariant equation is also applicable to other
Stewart platforms or parallel mechanisms whose number of
spherical joints on the moving platform is equal to 4.

The rest of the paper is organized as follows: In Section 2,
the fundamentals of CGA are introduced. In Section 3, the
geometric modeling for the direct kinematic analysis of 6-
4 Stewart platforms is formulated based on CGA. Section 4
proposes the elimination procedure and finally reduces a 32-
degree univariate polynomial equation from a constructed 7
by7matrix byGröbner-Sylvester hybridmethod. In Section 5,
a numerical example is provided to verify our solution
procedure. Finally, conclusions and future work will be given
in Section 6.

2. Fundamentals of Conformal
Geometric Algebra

In geometric algebra, the fundamental algebraic operators are
the inner product (A ⋅ B), the outer product (A ∧ B), and the
geometric product (AB = A ⋅ B + A ∧ B).

The 5-dimensional (5D) CGA G4,1 is derived from a 3D
Euclidean spaceG3 and a 2DMinkowski spaceG1,1. CGA has
five orthonormal basis vectors given by {e1, e2, e3, e+, e−}with
the following properties:

e1
2 = e2

2 = e3
2 = e+

2 = −e−2 = 1,
e𝑖 ⋅ e𝑗 = 0 (𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, 2, 3, +, −) ,
e𝑖 ∧ e𝑗 = −e𝑗 ∧ e𝑖 (𝑖, 𝑗 = 1, 2, 3, +, −) ,

(1)

where {e1, e2, e3} are the three orthonormal basis vectors in
the Euclidean space and {e+, e−} are the two orthogonal basis
vectors in Minkowski space.

In addition, two null bases can now be introduced by the
vectors

e0 = 1
2 (e− − e+) ,

e∞ = e+ + e−,
(2)

with the properties

e20 = e2∞ = 0,
e∞ ⋅ e0 = −1, (3)

where e0 is the conformal origin and e∞ is the conformal in-
finity.

Blades are the basic computational elements and the basic
geometric entities of the geometric algebra. The grade of a
blade is simply the number of linearly independent vectors
that are “wedged” together. The 5D CGA consists of blades
with grades 0, 1, 2, 3, 4, and 5. A linear combination of the𝑘-blades is called a k-vector, and a linear combination of
blades with different grades is called amultivector.The blades
with the maximum grade in CGA, that is, 5-blades, are called
pseudoscalars and denoted by IC(e∞0123, IC2 = −1).

According to (1)–(3), the inner (⋅) and outer (∧) products
of two 1-vectors u, k are defined as

u ⋅ k = 1
2 (uk + ku) ,

u ∧ k = 1
2 (uk − ku) .

(4)

As extension, the inner product of an 𝑟-blade u1 ∧ ⋅ ⋅ ⋅ ∧u𝑟
with an 𝑠-blade k1 ∧ ⋅ ⋅ ⋅ ∧ k𝑠 can be defined recursively by

(u1 ∧ ⋅ ⋅ ⋅ ∧ u𝑟) ⋅ (k1 ∧ ⋅ ⋅ ⋅ ∧ k𝑠)

= {{{
((u1 ∧ ⋅ ⋅ ⋅ ∧ u𝑟) ⋅ k1) ⋅ (k2 ∧ ⋅ ⋅ ⋅ ∧ k𝑠) if 𝑟 ≥ 𝑠
(u1 ∧ ⋅ ⋅ ⋅ ∧ u𝑟−1) ⋅ (u𝑟 ⋅ (k1 ∧ ⋅ ⋅ ⋅ ∧ k𝑠)) if 𝑟 < 𝑠

(5)

with

(u1 ∧ ⋅ ⋅ ⋅ ∧ u𝑟) ⋅ k1 =
𝑟∑
𝑖=1

(−1)𝑟−𝑖 u1 ∧ ⋅ ⋅ ⋅ ∧ u𝑖−1

∧ (u𝑖 ⋅ k1) ∧ u𝑖+1 ∧ ⋅ ⋅ ⋅ ∧ u𝑟,
u𝑟 ⋅ (k1 ∧ ⋅ ⋅ ⋅ ∧ k𝑠) =

𝑠∑
𝑖=1

(−1)𝑖−1 k1 ∧ ⋅ ⋅ ⋅ ∧ k𝑖−1

∧ (u𝑟 ⋅ k𝑖) ∧ k𝑖+1 ∧ ⋅ ⋅ ⋅ ∧ k𝑠.

(6)
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We define the dual X∗of a multivector X by

X∗ = XIC
−1 = −XIC, (7)

where IC−1 is the inverse of IC and is equal to −IC.
CGA provides the representation of primitive geometric

entities for intuitive expression.The primitive geometric enti-
ties in CGA consist of spheres, points, lines, planes, circles,
and point pairs. The representation of the geometric entities
with respect to the inner product null space (IPNS) and the
one with respect to the outer product null space are, respec-
tively, listed in Table 1. These two representations are dual to
each other and therefore can be converted by dual operator. In
Table 1, the small bold character represents the point or vector
in the Euclidean space, while the bold underlined character
represents the basic geometric entity in the conformal space.
For more information, please refer to [9, 10].

According to (1)–(3), the inner product between two
conformal points P1,P2 is calculated as

P1 ⋅ P2 = (p1 + 1
2p12e∞ + e0) ⋅ (p2 + 1

2p22e∞ + e0)
= −1

2 (p1 − p2)2 = −1
2𝑑212,

(8)

where 𝑑12 denotes the Euclidean distance between the two
points.

From (8), we have P ⋅ P = 0.
In the next section, we will formulate the direct kinemat-

ics of 6-4 Stewart platforms via CGAoperation and derive the
univariate polynomial equation.

3. Geometric Modeling for Direct Kinematics
of 6-4 Stewart Platforms Based on CGA

A 6-4 Stewart platform A1A2A3A4A5A6-B1B2B3B4, shown
in Figure 1, has six SPS (S: spherical joint, P: prismatic joint)
legs, four of which meet the moving platform pairwise, while
the remaining two meet both the base and the moving
platform singly. The six limb lengths 𝑙𝑖 (𝑖 = 1, 2, . . . , 6)
provided by P-joint in every limb are six inputs to control
the position and orientation of the moving platform. For the
general 6-4 Stewart platforms, the six S-joints on the base and
the four S-joints on the moving platform are not restricted
to lie in a plane, respectively. Let a𝑖 (𝑖 = 1, 2, . . . , 6) and
b𝑖 (𝑖 = 1, 2, 3, 4) denote the coordinates of the center of the
S-joints A𝑖 and B𝑖 in the Euclidean space, respectively; let𝑟𝑖 (𝑖 = 1, 2, . . . , 6)denote the distance of the two S-jointsB𝑖 on
the moving platform, where the coordinates b𝑖 (𝑖 = 1, 2, 3, 4)
are unknown. Next, we will formulate the two single S-
joints B3 and B4 on the moving platform by the intersection,
dissection, and dual of the basic geometric entities under the
frame of CGA.

3.1. The CGA Representation of the Positions of Two Spherical
Joints B3 and B4. As seen from Figure 1, in the tetrahedron
B1B2B3A5, the S-joint B3 must be located on a sphere S1 of
radius 𝑟2 with its center at point B1, a sphere S2 of the radius
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Figure 1: The geometric model of a 6-4 Stewart platform.

𝑟1 with the center at point B2, and a sphere S3 of the radius𝑙5 with the center at point A5. Thus, the actual locus of point
B3 must be located on the intersection of the three spheres
S1, S2, and S3. From the knowledge of geometry, it is known
that the locus of this intersection will be a point pair B𝑏3.
And therefore, according to Table 1, the point pair B𝑏3 can be
formulated in CGA as

B𝑏3 = S1 ∧ S2 ∧ S3, (9)

where the three spheres S1, S2, and S3 can be represented in
CGA as

S1 = S𝐵1𝐵3 = B1 − 1
2𝑟22e∞,

S2 = S𝐵2𝐵3 = B2 − 1
2𝑟12e∞,

S3 = S𝐴5𝐵3 = A5 − 1
2 𝑙52e∞.

(10)

According to Table 1, the three centers of S-joints B1, B2,
and A5 can be represented in CGA as

B1 = b1 + 1
2b12e∞ + e0,

B2 = b2 + 1
2b22e∞ + e0,

A5 = a5 + 1
2a52e∞ + e0.

(11)

According to (7), the dual B∗𝑏3 of the point pair B𝑏3 is rep-
resented as

B∗𝑏3 = Bb3I𝐶
−1 = −Bb3I𝐶. (12)

Point B3 is dissected from the dual of the point pair B∗𝑏3
in the conformal space as [21, 22]

B3 = T𝑏2𝐴var
± √𝐵var𝐴var

T𝑏1, (13)
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Table 1: List of conformal geometric entities.

Entity Representation Grade Dual representation Grade
Point P = p + 1

2p2e∞ + e0 1 P∗ = S1 ∧ S2 ∧ S3 ∧ S4 4

Sphere S = p + 1
2 (p2 − 𝜌2) e∞ + e0 1 S∗ = P1 ∧ P2 ∧ P3 ∧ P4 4

Plane 𝜋 = n + 𝑑e∞ 1 𝜋
∗ = e∞ ∧ P1 ∧ P2 ∧ P3 4

Line L = 𝜋1 ∧ 𝜋2 2 L∗ = e∞ ∧ P1 ∧ P2 3
Circle C = S1 ∧ S2 2 C∗ = P1 ∧ P2 ∧ P3 3
Point pair Pp = S1 ∧ S2 ∧ S3 3 P∗p = P1 ∧ P2 2

where T𝑏1 = e∞ ⋅ B∗𝑏3, T𝑏2 = T𝑏1 ⋅ B∗𝑏3, 𝐴var = T𝑏1 ⋅ T𝑏1,
and 𝐵var = B∗𝑏3 ⋅ B∗𝑏3. Please note that the expression of point
B3 in (13) is in its standard and normalized form; that is, the
magnitude is equal to 1.

For the S-joint B4 on the moving platform, it can be seen
fromFigure 1 that, in the pentahedronB1B2B3B3A6, pointB4
is the intersection point of four spheres S4, S5, S6, and S7, that
is, the sphere S4 of the radius 𝑟4 with its center at point B1,
the sphere S5 of the radius 𝑟5 with the center at point B2,
the sphere S6 of the radius 𝑙6 with the center at point A6,
and the sphere S7 of the radius 𝑟6 with the center at point
B3. Therefore according to Table 1, the dual of point B4 is
represented in CGA as

B∗4 = S4 ∧ S5 ∧ S6 ∧ S7, (14)

where the four spheres S4, S5, S6, and S7 can be represented
in CGA as

S4 = S𝐵1𝐵4 = B1 − 1
2𝑟42e∞,

S5 = S𝐵2𝐵4 = B2 − 1
2𝑟52e∞,

S6 = S𝐴6𝐵4 = A6 − 1
2 𝑙62e∞,

S7 = S𝐵3𝐵4 = B3 − 1
2𝑟62e∞.

(15)

According to Table 1, the centers of S-joint A6 can be
represented in CGA as A6 = a6 + (1/2)a62e∞ + e0.

Point B4 is reduced from (7) and (14) as

B4 = B∗4 I𝐶
−1 = −B∗4 I𝐶 = −S7 ⋅ B∗𝑏4, (16)

where B∗𝑏4 = −(S4 ∧ S5 ∧ S6)I𝐶 and is dual to the point pair
B𝑏4, which is generated by the intersection of three spheres
S4, S5, and S6.

Please note the expression of pointB4 is not in its standard
and normalized form; that is, the magnitude is not equal to
1 and we can obtain its standard and normalized form by
dividing (16) using its magnitude (−e∞ ⋅ B4).
3.2. The Derivation of the Coordinate-Invariant Polynomial
Equation. According to (8), we can readily obtain

B4 ⋅ B4 = 0 ⇐⇒
(−S7 ⋅ B∗𝑏4) ⋅ (−S7 ⋅ B∗𝑏4) = 0. (17)

However, due to the volume sign of the tetrahedron
B1B2B3B4, it will lead to the symmetric extraneous roots
with respect to the plane B1B2B3 if we obtain the coordinate-
invariant equation only from (17). In order to avoid the
extraneous roots, we will use its volume of the tetrahedron
B1B2B3B4 to geometrically model the direct kinematics of 6-
4 Stewart platforms.

The volume of the tetrahedron B1B2B3B4 is expressed in
CGA as [7]

𝑉 = − (e∞ ∧ B1 ∧ B2 ∧ B3 ∧ B4) I𝐶, (18)

where𝑉 is a known scalar and in fact𝑉 is six times the volume
of the tetrahedron B1B2B3B4. When four points B𝑖 (𝑖 =1, 2, 3, 4) on themoving platform lie in the same plane,𝑉 = 0;
if not, 𝑉 may be positive or negative depending on point B4
locating above or below the plane B1B2B3.

Multiplying both sides of (18) with a scalar 𝑉0 = −(e∞ ∧
A6 ∧ B1 ∧ B2 ∧ B3)I𝐶 and then expanding it according to (5),
we obtain

𝑉 ∗ 𝑉0 = − (B3 ⋅ A6) 𝑆0 + 𝐶var, (19)

where

𝑉0 = − (e∞ ∧ A6 ∧ B1 ∧ B2 ∧ B3) I𝐶 = −B3 ⋅ (e∞
∧ A6 ∧ B1 ∧ B2) I𝐶,

𝐶var = −𝑆1 − (B1 ⋅ A6) 𝑆2 + (B2 ⋅ A6) 𝑆3 − 1
2 𝑙62𝑆4,

𝑉2 = 1
4 (−𝑟12𝑟22𝑟32 − 𝑟14𝑟42 + 𝑟12𝑟22𝑟42 + 𝑟12𝑟32𝑟42

− 𝑟12𝑟44 + 𝑟12𝑟22𝑟52 − 𝑟24𝑟52 + 𝑟22𝑟32𝑟52
+ 𝑟12𝑟42𝑟52 + 𝑟22𝑟42𝑟52 − 𝑟32𝑟42𝑟52 − 𝑟22𝑟54
+ 𝑟12𝑟32𝑟62 + 𝑟22𝑟32𝑟62 − 𝑟34𝑟62 − 𝑟32𝑟64
+ 𝑟12𝑟42𝑟62 − 𝑟22𝑟42𝑟62 + 𝑟32𝑟42𝑟62 − 𝑟12𝑟52𝑟62
+ 𝑟22𝑟52𝑟62 + 𝑟32𝑟52𝑟62) ,

𝑆0 = 1
4 (−𝑟12𝑟32 − 𝑟22𝑟32 + 𝑟34 − 𝑟12𝑟42 + 𝑟22𝑟42

− 𝑟32𝑟42 + 𝑟12𝑟52 − 𝑟22𝑟52 − 𝑟32𝑟52 + 2𝑟32𝑟62) ,
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𝑆1 = 1
8 (−2𝑟12𝑟22𝑟32 − 𝑟14𝑟42 + 𝑟12𝑟22𝑟42 + 𝑟12𝑟32𝑟42

+ 𝑟12𝑟22𝑟52 − 𝑟24𝑟52 + 𝑟22𝑟32𝑟52 + 𝑟12𝑟32𝑟62
+ 𝑟22𝑟32𝑟62 − 𝑟34𝑟62) ,

𝑆2 = 1
4 (𝑟14 − 𝑟12𝑟22 − 𝑟12𝑟32 + 2𝑟12𝑟42 − 𝑟12𝑟52

− 𝑟22𝑟52 + 𝑟32𝑟52 − 𝑟12𝑟62 + 𝑟22𝑟62 − 𝑟32𝑟62) ,
𝑆3 = 1

4 (𝑟12𝑟22 − 𝑟24 + 𝑟22𝑟32 + 𝑟12𝑟42 + 𝑟22𝑟42
− 𝑟32𝑟42 − 2𝑟22𝑟52 − 𝑟12𝑟62 + 𝑟22𝑟62 + 𝑟32𝑟62) ,

𝑆4 = 1
4 (𝑟14 − 2𝑟12𝑟22 + 𝑟24 − 2𝑟12𝑟32 − 2𝑟22𝑟32 + 𝑟34) .

(20)

By transposing and combining the terms in (19), we have

B3 ⋅ N = 𝐶var, (21)

where N = −𝑉 ∗ (𝑒 ∧ A6 ∧ B1 ∧ B2)I𝐶 + 𝑆0 ∗ A6.
Substituting (13) into (21) and then expanding (21), we

have

±√𝐵var (T𝑏1 ⋅N)
𝐴var

= 𝐶var − (T𝑏2 ⋅N)
𝐴var

. (22)

Taking the square of both sides of (22) and combining
terms, we obtain

((T𝑏2 ⋅ N)2 − 𝐵var (T𝑏1 ⋅ N)2)
𝐴2var − 2𝐶var (T𝑏2 ⋅ N)

𝐴var

+ 𝐶2var = 0.
(23)

Simplifying (23) by using (1)–(5) and taking only the
numerator, we have

𝐸var − 𝐵var𝐷var − 2𝐶var (T𝑏2 ⋅ N) + 𝐴var𝐶2var = 0, (24)

where (T𝑏2 ⋅ N)2 − 𝐵var(T𝑏1 ⋅ N)2 = 𝐴var(𝐸var − 𝐵var𝐷var),𝐷var = N ⋅ N, and 𝐸var = (B∗𝑏3 ∧ N) ⋅ (B∗𝑏3 ∧ N). The detailed
expansion of the term (T𝑏2 ⋅ N)2 − 𝐵var(T𝑏1 ⋅ N)2 is given in
the appendix.

The derivation of (24) is coordinate-invariant due to the
use of CGA, and (24) depends on only the design parameters,
the inputs, and the positions of points B1 and B2.

3.3. The Derivation of the Other Five Constraint Equations.
Equation (24) is the first constraint equation in the positions
of two pairwise S-joints B1 and B2 on the moving platform.

According to the limb length and (8), the other five constraint
equations can be formulated as

B1 ⋅ A1 = −1
2 𝑙12, (25)

B1 ⋅ A2 = −1
2 𝑙22, (26)

B2 ⋅ A3 = −1
2 𝑙32, (27)

B2 ⋅ A4 = −1
2 𝑙42, (28)

B1 ⋅ B2 = −1
2𝑟32. (29)

Equations (24)–(29) are the six constraint equations for
direct kinematics of 6-4 Stewart platforms. In next section,
we will derive a univariate high-degree polynomial equation
for this problem by using Gröbner-Sylvester hybrid method
[23, 24].

4. Solution Procedure

4.1. An Univariate Equation by Using the Gröbner-Sylvester
Hybrid Method. In this section, the main aim is to obtain the
univariate high-degree polynomial equation, from which the
solutions of direct kinematics of 6-4 Stewart platforms can
be obtained. In order to get the position of the four S-joints
on the moving platform, first of all, we attach a reference
coordinate frameO-𝑋𝑌𝑍with its originO anywhere, and let
a𝑖 (𝑎𝑥𝑖, 𝑎𝑦𝑖, 𝑎𝑧𝑖)T (𝑖 = 1, . . . , 6) denote the coordinate of the S-
joint A𝑖 and b𝑖 (𝑏𝑥𝑖, 𝑏𝑦𝑖, 𝑏𝑧𝑖)T (𝑖 = 1, . . . , 4) denote the coordi-
nate of the S-joint B𝑖 in the reference frame. And therefore,
(24)–(29) are six constraint equations in variables 𝑏𝑥1, 𝑏𝑦1,𝑏𝑧1, 𝑏𝑥2, 𝑏𝑦2, 𝑏𝑧2.

For (24)–(29), changing the exponent of the three vari-
ables 𝑏𝑥1, 𝑏𝑦1, and 𝑏𝑧1 four times the original one and using the
Gröbner basis theory under the degree reverse lexicographic
term ordering with 𝑏4𝑥1 > 𝑏4𝑦1 > 𝑏4𝑧1 > 𝑏𝑥2 > 𝑏𝑦2 > 𝑏𝑧2 yield
aGröbner basis with 15 polynomials with the suppressed vari-
able 𝑏𝑧2 as follows:

𝑔𝑏1 = 𝑔1 (1, 𝑏𝑥2, 𝑏𝑦2) ,
𝑔𝑏2 = 𝑔2 (1, 𝑏𝑦2, 𝑏2𝑦2) ,
𝑔𝑏3 = 𝑔3 (1, 𝑏𝑥1, 𝑏𝑧1) ,
𝑔𝑏4 = 𝑔4 (1, 𝑏𝑧1, 𝑏𝑦2, 𝑏𝑦1𝑏𝑦2, 𝑏𝑦2𝑏𝑧1) ,
𝑔𝑏6 = 𝑔6 (1, 𝑏2𝑦1, 𝑏𝑧1, 𝑏2𝑧1) ,
𝑔𝑏11 = 𝑔11 (1, 𝑏𝑦1, 𝑏𝑧1, 𝑏𝑦2, 𝑏𝑦1𝑏𝑧1, 𝑏𝑦2𝑏𝑧1, 𝑏2𝑧1, 𝑏𝑦1𝑏2𝑧1) ,
𝑔𝑏14 = 𝑔14 (1, 𝑏𝑦1, 𝑏𝑧1, 𝑏𝑦2, 𝑏𝑦1𝑏𝑧1, 𝑏𝑦2𝑏𝑧1, 𝑏2𝑧1, 𝑏3𝑧1) ,
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Table 2: Input data.

𝑂-𝑋-𝑌-𝑍 A1 A2 A3 A4 A5 A6
𝑎𝑖𝑥 0 5 −2 −3 6 −3
𝑎𝑖𝑦 0 0 4 −1 −2 5
𝑎𝑖𝑧 0 1 −1 1 2 −1
The distances 𝑟𝑖 between the S-joints
B𝑖

𝑟1 = 2√6, 𝑟2 = 1, 𝑟3 = √21, 𝑟4 = √69, 𝑟5 = 4, 𝑟6 = 6√2
The lengths of six limbs 𝑙𝑖 𝑙1 = 5.74, 𝑙2 = 3.32, 𝑙3 = 4.58, 𝑙4 = 5.39, 𝑙5 = 4.69, 𝑙6 = 4.58

𝑔𝑏15 = 𝑔15 (1, 𝑏𝑦1, 𝑏𝑧1, 𝑏𝑦2, 𝑏𝑦1𝑏𝑧1, 𝑏𝑦2𝑏𝑧1, 𝑏2𝑧1, 𝑏𝑦2𝑏2𝑧1) ,
𝑔𝑏𝑖 = 𝑔𝑖 (1, 𝑏𝑦1, 𝑏𝑧1, 𝑏𝑦2, 𝑏𝑦1𝑏𝑧1, 𝑏𝑦2𝑏𝑧1, 𝑏2𝑧1)

(𝑖 = 5, 7–10, 12, 13) ,
(30)

where 𝑔𝑖(1, 𝑏𝑦1, . . .) (𝑖 = 1, 2, . . . , 15) means the polynomial
of the product terms in the bracket, of which the coefficients
are comprised of products of power in the variable 𝑏𝑧2 and
real constants depending on the link parameters and inputs
only.

By analyzing the bases in (30), we will notice that in𝑔𝑏𝑖 (𝑖 = 1–4, 6, 11, 14, 15), the product terms underlined
only exist in their own bases, and their coefficients are real
constants depending on the link parameters and inputs only.
And therefore when we set up the matrix form equation,
we only need other 7 polynomials to construct the following
equation due to no effect on the solution procedure after
deleting 𝑔𝑏𝑖 (𝑖 = 1–4, 6, 11, 14, 15):

G (1, 𝑏𝑦1, 𝑏𝑧1, 𝑏𝑦2, 𝑏𝑦1𝑏𝑧1, 𝑏𝑦2𝑏𝑧1, 𝑏2𝑧1)T = 0, (31)

where G is a 7 by 7 matrix, of which the elements are
polynomials in 𝑏𝑧2.

The vanishing of the determinant of the coefficientmatrix
G gives necessary condition for polynomials (30) to have
common solutions; that is, (24)–(29) have common solutions,
so we can get an equation in 𝑏𝑧2:

|G| = 0, (32)

where |G| is the determinant of the matrix G.
By expanding each element of the matrix G, we can get

the degrees in 𝑏𝑧2 as shown below:

[[[[[[[[[[[[[[
[

2 1 2 2 × 1 ×
9 8 4 5 0 0 0
9 8 5 4 0 0 0
9 8 4 4 1 0 0
9 8 4 4 0 0 1
10 8 4 4 0 0 0
9 9 4 4 0 0 0

]]]]]]]]]]]]]]
]

. (33)

Therefore expanding (32), we can obtain an equation of
the highest degree 1 + 5 + 5 + 1 + 1 + 10 + 9 = 32 in 𝑏𝑧2 as
follows:

32∑
𝑖=0

𝑐𝑖𝑏𝑖𝑧2 = 0, (34)

where 𝑐𝑖 are real constants depending on the link parameters
and inputs only.

4.2. Back Substitution. Solving (34), all the 32 solutions for𝑏𝑧2 can be gotten. In (31), we choose any 6 of 7 equations and
substitute the 32 solutions of 𝑏𝑧2 into the linear system; using
the Cramer’s rule, we can obtain the corresponding values of𝑏𝑦1, 𝑏𝑧1, and 𝑏𝑦2 by solving the system linearly. And substitute
the 32 solutions of 𝑏𝑧2 into 𝑔𝑏1 and 𝑔𝑏3, we can obtain the
values of 𝑏𝑥1 and 𝑏𝑥2, respectively. Now the coordinates of two
S-joints B1 and B2 are all obtained.

For the coordinates of S-jointB3, it cannot be determined
only in terms of (13) after substituting the coordinates of two
S-joint B1 and B2. The choice of the positive or negative sign
can be obtained from the ratio of two terms 𝐶var − (T𝑏2 ⋅
N)/𝐴var and√𝐵var(T𝑏1 ⋅N)/𝐴var. If the ratio is equal to 1, we
choose the positive sign and vice versa. If both the two terms
are equal to 0, we choose the sign depending on whether the
term 𝐵var equals 0. If the term 𝐵var equals 0, we can choose
any sign and it will reduce to the same results. If the term 𝐵var
is not equal to 0, we determine the sign by making sure that
the value of (−𝑒∞ ⋅ B4) is not equal to 0. After we choose the
right sign in (13), we can obtain the coordinates of point B3.
The coordinates of the S-joint B4 can be obtained from (16)
by dividing its magnitude (−e∞ ⋅ B4) after substituting the
coordinates of the joints B1, B2, and B3.

5. Numerical Example

In order to validate the solution procedure, the link parame-
ters and inputs of the numerical example are given in Table 2
and are the same as [6]. Due to the space limitation, the real
solutions are only given in Table 3. The computation time of
the closed-form solution is just about 0.3 s in Mathematica
11.0 running on a PC with Intel Core i7-6700 CPU@ 3.4GHz
and 8GB RAM.The approach is very efficient.

6. Conclusion

The paper has proposed a CGA-based formulation and
solution procedure for the direct kinematic analysis of 6-4
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Table 3: Ten real solutions.

𝑖 B1 B2 B3 B4

1
𝑋 3.9672 1.6694 3.2853 −1.2546
𝑌 0.4233 1.6113 0.5543 0.9734
𝑍 4.1267 0.3440 4.8464 −2.3100

2
𝑋 3.9844 0.0656 4.0347 −3.9222
𝑌 0.8633 2.9776 0.9909 3.2402
𝑍 4.0407 2.9579 5.0312 3.1266

3
𝑋 3.9990 −0.0514 3.9757 −4.0473
𝑌 1.1023 3.0297 1.0191 2.8821
𝑍 3.9674 3.0296 4.9636 2.9236

4
𝑋 4.0646 −0.2895 4.5438 −3.1386
𝑌 1.7833 3.1288 2.3513 5.9173
𝑍 3.6396 3.1583 2.9704 3.4851

5
𝑋 4.1190 1.6609 4.9908 −0.2122
𝑌 2.1540 1.3125 2.4709 2.5765
𝑍 3.3678 −0.1071 2.9944 −3.7077

6
𝑋 4.6080 0.4144 4.8572 −3.4566
𝑌 3.2959 2.8064 2.3558 1.8759
𝑍 0.9226 2.7044 0.6897 2.3178

7
𝑋 5.2094 1.6165 5.3389 −2.2620
𝑌 1.2109 1.7665 0.2194 1.2649
𝑍 −2.0842 0.7055 −2.0784 1.5457

8
𝑋 5.2173 1.6477 5.8529 0.0286
𝑌 −1.1033 1.2742 −0.3823 3.7367
𝑍 −2.1238 −0.5095 −2.3997 2.1950

9
𝑋 5.2341 0.9164 5.1481 −2.3352
𝑌 −0.8230 0.7105 −1.7370 1.8885
𝑍 −2.2078 −2.2846 −2.6045 −4.2944

10
𝑋 5.2535 0.7010 5.5092 −2.9281
𝑌 0.1857 0.64471 0.9000 0.4219
𝑍 −2.3051 −2.5567 −1.6533 −0.8893

Stewart platforms with any link parameters. Thanks to the
intuitiveness of CGA, the representations of the positions of
two single spherical joints have explicit geometric meaning.
A coordinate-invariant polynomial equation was derived via
CGA operation and it is feasible to other Stewart platforms
or parallel mechanisms whose number of spherical joints on
the moving platform is equal to 4.The univariate polynomial
equation has been derived by constructing a 7 by 7 resultant
matrix which is more compact and smaller than those
published in the literature. Compared with the previous
methods in the literature, the main contribution of the paper
lies in that the formulation has geometric meaning due to the
intuitiveness of CGA and, in addition, the size of the matrix
is smaller than those existed. In future, we will extend this
approach to the direct kinematics of other Stewart platforms
or complicated parallel mechanisms.

Appendix

Derivation of the Term (T𝑏2 ⋅N)2 − 𝐵var(T𝑏1 ⋅N)2
The expansion of (T𝑏2 ⋅ N)2 − 𝐵var(T𝑏1 ⋅ N)2 is expressed as

(T𝑏2 ⋅ N)2 − 𝐵var (T𝑏1 ⋅ N)2
= (T𝑏2 ∧N) ⋅ (T𝑏2 ∧ N) + (T𝑏2 ⋅ T𝑏2) (N ⋅ N)

− 𝐵var (T𝑏1 ⋅ N)2
= ((T𝑏1 ⋅ B∗𝑏3) ∧ N) ⋅ ((T𝑏1 ⋅ B∗𝑏3) ∧N)

− 𝐵var (T𝑏1 ⋅ N)2 + (T𝑏2 ⋅ T𝑏2) (N ⋅ N)
= (T𝑏1 ⋅ (B∗𝑏3 ∧N) − (T𝑏1 ⋅ N)B∗𝑏3)

⋅ (T𝑏1 ⋅ (B∗𝑏3 ∧N) − (T𝑏1 ⋅ N)B∗𝑏3)
− 𝐵var (T𝑏1 ⋅ N)2 − 𝐴var𝐵var (N ⋅ N)

= (T𝑏1 ⋅ (B∗𝑏3 ∧N)) ⋅ (T𝑏1 ⋅ (B∗𝑏3 ∧ N))
+ (T𝑏1 ⋅ N)2 (B∗𝑏3 ⋅ B∗𝑏3)
− 2 (T𝑏1 ⋅ N) (T𝑏1 ⋅ (B∗𝑏3 ∧N)) ⋅ B∗𝑏3
− 𝐵var (T𝑏1 ⋅ N)2 − 𝐴var𝐵var (N ⋅ N)

= (T𝑏1 ⋅ T𝑏1) (B∗𝑏3 ∧N) ⋅ (B∗𝑏3 ∧N)
+ 𝐵var (T𝑏1 ⋅ N)2 − 𝐵var (T𝑏1 ⋅N)2
− 𝐴var𝐵var (N ⋅N)
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= 𝐴var ((B∗𝑏3 ∧N) ⋅ (B∗𝑏3 ∧N) − 𝐵var (N ⋅ N))
= 𝐴var (𝐸var − 𝐵var𝐷var) ,

(A.1)

where𝐷var = N ⋅ N, and 𝐸var = (B∗𝑏3 ∧N) ⋅ (B∗𝑏3 ∧ N).
During the process of expansion, we use the following

expressions:

(T𝑏2 ∧N) ⋅ (T𝑏2 ∧N)
= − (T𝑏2 ⋅ T𝑏2) (N ⋅ N) + (T𝑏2 ⋅ N)2 ,

T𝑏1 ⋅ (B∗𝑏3 ∧ N) = (T𝑏1 ⋅ B∗𝑏3) ∧N + (T𝑏1 ⋅N)B∗𝑏3,
T𝑏2 ⋅ T𝑏2 = (T𝑏1 ⋅ B∗𝑏3) ⋅ (T𝑏1 ⋅ B∗𝑏3)

= − (T𝑏1 ⋅ T𝑏1) (B∗𝑏3 ⋅ B∗𝑏3) = −𝐴var (B∗𝑏3 ⋅ B∗𝑏3)
= −𝐴var𝐵var,

(T𝑏1 ∧ (B∗𝑏3 ∧ N)) ⋅ (T𝑏1 ∧ (B∗𝑏3 ∧ N))
= − (T𝑏1 ⋅ T𝑏1) (B∗𝑏3 ∧N) ⋅ (B∗𝑏3 ∧N)

+ (T𝑏1 ⋅ (B∗𝑏3 ∧ N)) ⋅ (T𝑏1 ⋅ (B∗𝑏3 ∧ N))

(A.2)

and according to T𝑏1 ∧ B∗𝑏3 = 0, we obtain
(T𝑏1 ⋅ (B∗𝑏3 ∧ N)) ⋅ (T𝑏1 ⋅ (B∗𝑏3 ∧N)) = (T𝑏1 ⋅ T𝑏1)

⋅ (B∗𝑏3 ∧ N) ⋅ (B∗𝑏3 ∧N) ,
(T𝑏1 ⋅ (B∗𝑏3 ∧ N)) ⋅ B∗𝑏3 = 0,
∵ T𝑏1 = (B31 − B32) ,
B∗𝑏3 = (B31 ∧ B32) ,
∴ (T𝑏1 ⋅ (B∗𝑏3 ∧ N)) ⋅ B∗𝑏3 = ((B31 − B32)

⋅ (B31 ∧ B32 ∧N)) ⋅ (B31 ∧ B32)
= (− (B31 ⋅ B32) (B31 ∧N)
+ (B31 ⋅ N) (B31 ∧ B32) − (B31 ⋅ B32) (B32 ∧N)
− (B32 ⋅ N) (B31 ∧ B32)) ⋅ (B31 ∧ B32)
= (− (B31 ⋅ B32)2 (B31 ⋅N)
+ (B31 ⋅ N) (B31 ⋅ B32)2 + (B31 ⋅ B32)2 (B32 ⋅ N)
− (B32 ⋅ N) (B31 ⋅ B32)2) = 0.

(A.3)
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