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PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming
at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic
fuzzy neural network (D-FNN) is adopted to establish the PVC stripping process model based on the actual process operation
datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-
input-single-output (SISO) subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature). Finally,
the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the
effectiveness of the proposed integrated intelligent control method.

1. Introduction

With VCM as a raw material, the suspension method to
produce polyvinyl chloride (PVC) resin is a kind of typical
intermittent chemical production process [1]. The traditional
polymerization monomer conversion ratio is controlled to
the scope 85%–90%. Unreacted vinyl chloride monomer is
recovered by self-pressure, and 1%-2% of the monomers
are still remained in PVC slurry. In the production, vinyl
chloride monomer must be getting a further removal and
recovery due to its some toxicity. The removal of residual
vinyl chloride in polyvinyl chloride can improve the qual-
ity of polyvinyl chloride, reduce the cost of production,
and solve the problem of environmental pollution caused
in plastic processing and usage. At present, the stripping
technique is very effective among all the removal methods
of redundant VCM monomers in PVC slurry [2]. Now the
research on the control methods in PVC industry mostly
is in the stage of polymerization and distillation, where
many advanced control techniques, such as neural network,
fuzzy control, expert system, and predictive control methods,
have been widely used [3–5]. Li [3] proposed a BP neural

network decoupling controller applied to the temperature
control of rectifying column. The simulation results show
that the algorithm has strong robustness. Xiao et al. [4]
established steady-state optimizationmodel of expanded bed
energy consumption and designed feedback control system
of multivariable state based on artificial neural network for
the drying process of fluidized bed, effectively removing the
decoupling association between the variables and achieving
the dynamic optimization control of bed temperature. The
actual operation results show that this system has strong
robustness and achieve the minimum energy consumption
control indicators of expanded bed. Khairiyah et al. [5]
proposed the predictive control system based on neural
network applied to the control of the rectifying tower, which
makes the system have a smaller overshoot and shorter
response time.

However, the research on the advanced control methods
for the PVC stripping process is lack. The stripping process
has characteristics of highly nonlinear, strong coupling, and
time varying. It is difficult to establish a precise mathematical
model and achieve good control effect by using traditional
control methods.
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Dynamic fuzzy neural network (DFNN) is a hybrid
model of fuzzy theory and neural network method, whose
function is equivalent to the TSK fuzzy system [6–10]. Based
on the problem complexity and precision demand, D-FNN
model can be constructed combining the systemprior knowl-
edge. An improved fuzzy neural network modeling method
[11] was proposed to realize the soft sensor of molten index
in the polymerization process, in which a hybrid learning
method based on LM algorithm and a steepest descend
method to train the network parameters exist. Simulation
results show that the model has the merits of being not
sensitive to initial values, fast convergence velocity, and high
forecasting precision. The particle swarm algorithm (PSO)
is adopted to optimize the parameters of the fuzzy neural
network to set up a soft-sensor model of acrylonitrile yield
[12]. Li and Lee [13] proposed an interval type-2 fuzzy system
integrated with an observer-based hierarchical fuzzy neural
controller, which can greatly reduce the number of adjusted
parameters. Wu et al. proposed the maximum likelihood
estimators used in nonparametricmaximum likelihood fuzzy
neural networks (MFNNs) for nonlinear regression problems
and simple weight updating rules based on gradient descent
and iteratively reweighted least squares (IRLS) will be derived
[14]. Nasr and Chtourou [15] proposed a self-organizing
map-based initialization for hybrid training based on a two-
stage learning approach for feedforward neural networks.The
weights between input and hidden layers are firstly adjusted
byKohonen algorithmwith fuzzy neighborhood, whereas the
weights connecting hidden and output layers are adjusted
using gradient descent method. Hung-Ching proposed an
adaptive self-constructing fuzzy neural network (ASCFNN)
controller for a real inverted pendulum system, where the
Mahalanobis distance (M-distance) method in the structure
learning is also employed to determine if the fuzzy rules are
generated/eliminated or not [16]. D-FNN is also successfully
applied in many fields, such as function approximation,
permanent-magnet synchronousmotor drive control [17, 18].

In this paper, the D-FNN model of the PVC strip-
ping process has been established firstly. Then the neural
network decoupling modules and BP neural network PID
controller are applied in the stripping temperature control.
The effectiveness of the proposed intelligent control strategy
is verified by the simulation experiments. The paper is
organized as follows. In Section 2, the technique flowchart of
PVC stripping process is introduced. The stripping process
model based on dynamic fuzzy neural networks is presented
in Section 3. In Section 4, the neural network decoupling
controller of stripping process is summarized. In Section 5,
simulation results are introduced in detail. Finally, the con-
clusion illustrates the last part.

2. Technique Flowchart of
PVC Stripping Process

In the polymerization reaction process of vinyl chloride,
according to the different techniques and resin grades, the
polymerization conversion rate of vinyl chloride is generally
controlled within the scope of (80%, 90%). Even the unre-
acted monomer is disposed by the autoclave recovery and

precipitated groove blowing, and there still remains small
amount of vinyl chloride monomer in resin products, which
will influence the products quality and increase the hazards
when using the produced plastic. In addition, vinyl chloride
emission into atmosphere per year not only causes a huge
waste of raw materials, but also causes serious environment
pollution. Currently, among all the approaches to the removal
of excess VCM monomer in PVC slurry, the stripping
technique is very effective.

Firstly, the stripping mechanism of PVC slurry is intro-
duced in detail. In the PVC suspension to be stripping treated
in the off chute of PVC polymerization, the mass fraction of
PVC is about 25%–30%, the VCM is 2%–4%, and the rest is
water. The mass approximation allocation ratio of VCM in
gassed is about 1 : 1000 : 100. Because of the different amount
distribution of VCM in the three phases, the slurry itself has
the characteristic of the diffused concentration gradient. In
PVC slurry, the VCM in the solid PVC either by parsing
or by spreading must pass through the film layer to a low
concentration of VCM in water for spreading through the
pores in PVC particles. Moreover, the solubility of VCM in
water changes within the variation of temperature. In differ-
ent temperature, when theVCM inwater reaches to solubility,
the part which diffused from PVC into water will break the
static pressure of the liquidwater layer and diffuse into the gas
phase. With the above mechanism, the heat exchange makes
the slurry’s temperature increase so that the VCM will be
parsed.

There are two main tower stripping devices. What we
research in this paper is the sieve wear weir plate stripper.The
stripping technique of the PVC slurry is shown in Figure 1.

After the polymerization reaction, the PVC slurry is
threw into the top of stripper from the polymerization
vessel through the inlet slurry pump. But before entering the
stripper, they need to carry through the heat exchange with
the slurry stripped from the bottom of stripper and then go
into the top of stripper. PVC slurry sprinkles evenly on the
tray by sprinklers and flow from the top to bottom along
the strays from the first layer stray. The low pressure steam
enters from the stripper bottom, rises through the orifice of
the tray from the bottom to top, and countercurrent contacts
with the declining PVC slurry at each plate for heat and mass
transfer. Finally, it will resolve internal vinyl chloride and the
residue in the surface of the resin particles. Steam and parsed
vinyl chloride gas are discharged from the top of the stripper.
After the condensation by overhead condenser, it enters
into the condensate sink, then separates condensate, and
controls the level of condensate sink. The excess condensate
will be discharged to the centrifuge mother liquor water
recovery unit, and the separate vinyl chloride gas will be
recovered to vinyl chloride gas cabinets. The key parameters
influencing the PVC stripping process can mainly include
temperature, steam, slurry flow rate, and pressure. Table 1
gives the parameters values in the PVC stripper controller of
a certain type resin.

Through the analysis of PVC stripping process, it has the
characteristics of strong nonlinear and coupling. Because of
lack of effective mathematical model and strong coupling
between the variables, it is difficult to achieve satisfactory
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Table 1: Parameters of PVC string tower.

Parameter Scope Alarm value Normal scope Real value

Temperature in tower top 0–150∘C Upper limit: 110∘C
Lower limit: 70∘C 80–105∘C 85∘C

Temperature in tower bottom 0–150∘C Upper limit: 130∘C
Lower limit: 100∘C 105–113∘C 107∘C

Pressure in tower top 0-0.1MPa Upper limit: 0.08MPa
Lower limit: 0.02MPa 0.03–0.06MPa 0.03MPa

Pressure difference in tower 0–60MPa Upper limit: 30MPa
Lower limit: 5MPa 10–25MPa 15MPa

Steam flow rate 0–4000 kg/h Upper limit: 3500 kg/h
Lower limit: 1000 kg/h 1500–3000 kg/h 2200 kg/h

Inlet slurry flow rate 0–80m3/h Upper limit: 70m3/h
Lower limit: 15m3/h 35–50m3/h 40–45m3/h

Steam pressure in tower 0–0.6MPa Upper limit: 0.5MPa
Lower limit: 0.15MPa 0.35–0.4MPa 0.38MPa

Condenser
Flushing water

Antifoaming agents

Stripping tower

Filter

To centrifuge

Steam
Saturated steam

To wastewater
disposal basin

Cold water

To gasometer
hot water

Heat
exchanger

Slurry pump

Discharging pump

Pressure
differential

Figure 1: Flow diagram of PVC stripping process.

control effect. The integrated model and hybrid intelligent
control strategies based on neural network technology are put
forward for the PVC stripping process in this paper.

The data used for modeling all derived from the history
data recorded in the operating process of PVC stripping
tower. Each data sample includes the following elements:
top tower temperature, bottom tower temperature, top tower
pressure, tower differential pressure, slurry flow rate, and
steam flow rate. According to the analysis of stripping tech-
nique, the key factors which influence vinyl chloride removed
from PVC are the top tower temperature and the bottom
tower temperature. So there are twomainly important control
factors, which are the steam flow rate and the slurry flow rate
during the process regulation. Therefore, the D-FNN model
is built in which the steam flow rate and slurry flow rate are
the input variables, and the top tower temperature and the
bottom tower temperature are the output variables.

3. Stripping Process Modelling Based on
Dynamic Fuzzy Neural Networks

According to the analysis of the stripping process, the change-
able slurry flow or the steam flow rate not only influences
the top tower temperature but also the bottom tower tem-
perature. Consequently, the coupling exists in the PVC
stripping process.The coupling objectmodel needs to be built
and the stripping process needs to be decoupled. Suppose
the dynamic system model is described as the following
nonlinear equation:

𝑦 (𝑘) = 𝑓 [𝑦 (𝑘 − 1) , . . . , 𝑦 (𝑘 − 𝑛
𝑎
) , 𝑢
1
(𝑘) , . . . , 𝑢

1
(𝑘 − 𝑛

𝑏
),

𝑢
2
(𝑘) , . . . , 𝑢

2
(𝑘 − 𝑛

𝑏
)] ,

(1)



4 Mathematical Problems in Engineering

PVC stripping process

Dynamic fuzzy neural
network

u1(k)

ym(k)

e(k)

y(k)
u2(k)

−

+

Figure 2: Modeling of stripping process based on D-FNN.

where 𝑦 is the top tower temperature or bottom tower
temperature, 𝑢

1
is the steam flow rate, 𝑢

2
is the slurry flow

rate, and 𝑘 is the sample time (20 s).
TheD-FNN control strategy of the PVC stripping process

is put forward shown in Figure 2, whose inputs variables
are the steam flow rate and the slurry flow rate and output
variables are the top tower temperature and the bottom tower
temperature.

3.1. Structure of D-FNN. The structure diagram of D-FNN
[19–23] is shown in Figure 3. In Figure 3, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑟
is

the input linguistic variables, y is the system output, MF
𝑖𝑗

represents the jth membership function of the ith input
variable,𝑅

𝑗
is the jth fuzzy rule,𝑁

𝑗
is the jth normalized node,

𝑤
𝑗
is the connection weight of the jth rule, and u refers to the

numbers of the system rules. Then each layer of the D-FNN
is described in detail.

Layer 1 is the input layer, whose each node represents an
input linguistic variable.

Layer 2 is the membership function layer, whose each
node represents a membership function (MF) defined in the
followed Gaussian function:

𝜇
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a possible IF-part of fuzzy rules. For the jth rule 𝑅
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Figure 3: Structure diagram of D-FNN.

Layer 5 is the output layer, whose each node is an output
variable, a summation of input signals described as follows:

𝑦 (𝐾) =

𝑢

∑

𝑘=1

𝑤
𝑘
⋅ 𝜓
𝑘
, (5)

where y is the output variable and 𝑤
𝑘
is the weight of the kth

rule.
For the TSK model, it can be represented as follows:

𝑤
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Then (2)–(5) are fed into (5) to obtain
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3.2. LearningAlgorithmofD-FNN. Eachnode in layer 3 of the
D-FNN represents an RBF unit or the IF-part for fuzzy rules.
If the number of fuzzy rules is required to be identified, theD-
FNN structure is not predefined. So a new learning algorithm
for the D-FNN is adopted to automatically determine the
fuzzy rules satisfying the required system performances.

3.2.1. Rule Generation Criteria. If there are only few rules, the
system cannot fully represent the input-output state space.
But if there are toomany rules, the system can be unnecessar-
ily complicated, and the generic ability ofD-FNNcan become
worse because of the greatly increased calculation burden.
So the system errors are the principal elements to determine
whether the new rules can be added.
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The error criterion can be described as follows. For the ith
observation point (𝑋

𝑖
, 𝑡
𝑖
), where 𝑋

𝑖
is the input vector and 𝑡

𝑖

is the desired output, compute the overall D-FNN output 𝑦
𝑖

according to (7). Define the error as follows:
𝑒𝑖
 =

𝑡𝑖 − 𝑦𝑖
 . (8)

If the following condition is satisfied, a new rule should
be added. In (9), 𝑘

𝑒
is determined according to the desired

accuracy of the D-FNN:
𝑒𝑖
 > 𝑘𝑒. (9)

3.2.2. Accommodation Boundary. Gaussian function has
good locality characteristic because its output is monotonic
decreasing along with the increasing distance between the
output and the centers. When the membership function of
input variables is described by Gaussian function, the whole
input space is divided by a series of Gaussian function. If a
new sample is located in some Gaussian function, that is to
say within accommodation boundary, the new sample can be
represented by the existed Gaussian function, without new
Gaussian unit produced by D-FNN.

The accommodation boundary criterion is described as
follows. For the ith observation point (𝑋

𝑖
, 𝑡
𝑖
), calculate the

distance 𝑑
𝑖
(𝑗) between the observation 𝑋

𝑖
and the center 𝐶

𝑗

of the existed RBF units by

𝑑
𝑖
(𝑗) =


𝑋
𝑖
− 𝐶
𝑗


, 𝑗 = 1, 2, . . . , 𝑢. (10)

Find the minimum distance by (11). If 𝑑min > 𝑘
𝑑
, a new

fuzzy rule should be added. Otherwise, the observation 𝑋
𝑖

can be represented by the nearest existed RBF unit. Here, 𝑘
𝑑

is the effective radius of the accommodation boundary

𝑑min = arg min (𝑑
𝑖
(𝑗)) . (11)

3.2.3. Hierarchical Learning Strategy. The concept of hier-
archical learning is that the accommodation boundary of
each RBF unit is not fixed but adjusted dynamically in the
following style. Firstly, the accommodation boundaries are
set larger for achieving rough but global learning. Then, they
are gradually reduced for fine adjustment. Inspired by this
idea, a simple method based on monotonically decreasing
function is proposed to reduce both the effective radius of
each RBF unit and error index gradually [22]. To be more
specific, the discussed above 𝑘

𝑒
and 𝑘
𝑑
are not constant.They

are changeable according to the following equations:

𝑘
𝑒
= max [𝑒max × 𝛽

𝑖

, 𝑒min] ,

𝑘
𝑑
= max [𝑑max × 𝛾

𝑖

, 𝑑min] ,
(12)

where 𝑒max is the predefined maximum error, 𝑒min is the
desired D-FNN accuracy, 𝛽 (0 < 𝛽 < 1) is the convergence
constant, 𝛾 (0 < 𝛾 < 1) is the decay constant, and 𝑑max and
𝑑min are the largest and the smallest length of the input space,
respectively.

The key idea of the hierarchical learning is to firstly
find the most troublesome positions, which have large errors

between the desired and the actual outputs but are not
properly covered by existing fuzzy rules. This stage is called
the coarse learning. When 𝑘

𝑒
and 𝑘

𝑑
reach 𝑒min and 𝑑min,

respectively, this stage is named the fine learning.

3.2.4. Allocation of Precedent Parameters. After a fuzzy rule
is obtained, the problem is how to determine its parameters.
The width of the RBF unit has great significant on its
generalization. If it is less than the distance between adjacent
inputs, the RBF unit does not generalize well andD-FNNwill
not give meaningful outputs in response to inputs. However,
if the width is too large, the output of the RBF nodes may
always be large irrespective of inputs. Hence, the initial
parameters of the new produced rule are allocated based on
the following equations:

𝐶
𝑖
= 𝑋
𝑖
,

𝜎
𝑖
= 𝑘 × 𝑑min,

(13)

where 𝑘 (𝑘 > 1) is an overlap factor.
What we needed to pay attention to is that when the first

pattern (𝑋
1
, 𝑡
1
) enters the D-FNN, it is selected as the first

fuzzy rule: 𝐶
1
= 𝑋
1
, 𝜎
1
= 𝜎
0
, where 𝜎

0
is a preset constant. It

is worth highlighted that only when ‖𝑒
𝑖
‖ > 𝑘
𝑒
, 𝑑min > 𝑘𝑑, one

fuzzy rule needs to be added.

3.2.5. Determination of Decision Parameters. According to
the criteria of rule generation, suppose 𝑢 fuzzy rules are
generated based on the 𝑛 observation datum. So the output
of 𝑁 nodes can be obtained according to (4), which can be
represented as follows:

𝜓 =
[
[

[

𝜓
11

⋅ ⋅ ⋅ 𝜓
1𝑛

...
...

...
𝜓
𝑢1

⋅ ⋅ ⋅ 𝜓
𝑢𝑛

]
]

]

. (14)

Then, for any input 𝑋
𝑗
(𝑥
1𝑗
, 𝑥
2𝑗
, . . . , 𝑥

𝑟𝑗
), the system

output 𝑦
𝑗
can be calculated by (5), which can be described

in more compact form:

𝑊Ψ = 𝑌. (15)

Suppose the ideal output is 𝑇 = (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) ∈ R𝑛. The

relation between Ψ ∈ R(𝑟+1)𝑢×𝑛 and 𝑇 ∈ R𝑛 is represented as
follows:

𝑌 = 𝑊 × Ψ,

𝐸 = ‖𝑇 − 𝑌‖ .

(16)

Find an optimal coefficient vector based on

𝑊
∗

× Ψ = 𝑇. (17)

The optimal𝑊∗ is in the following form:

𝑊
∗

= 𝑇(Ψ
𝑇

Ψ)
−1

Ψ
𝑇

, (18)

where Ψ𝑇 is the transposition of Ψ and Ψ+ = (Ψ𝑇Ψ)−1Ψ𝑇 is
the pseudoinverse of Ψ.
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Figure 4: Simulation results of D-FNN modeling of tower top temperature.
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Figure 5: Simulation results of D-FNN modeling of tower bottom temperature.

3.3. Simulation Results. The samples are derived from the
actual operation datum of the certain chemical corporation,
in which 250 groups of input-output data have been selected
to identify the system randomly.Theother 80 groups of input-
output data are used to test the identification effect. Then the
D-FNN models are obtained, in which the steam flow rate
and slurry flow rate are inputs variables, and the top tower
temperature and the bottom tower temperature are output
variables separately. The identification effect and test results
are shown in Figures 4 and 5. It can be seen form Figures 4
and 5 that the output curves of the D-FNN model and the

actual curves of the tower temperature match very well, and
the errors are within ±0.1, which canmeet the requirement of
the process optimization control.

4. Neural Network Decoupling Controller of
Stripping Process

4.1. Structure of Intelligent Decoupling Controller. The intelli-
gent decoupling control strategy based on neural network is
put forward aiming at the above-established PVC stripping
process model. The system diagram is shown in Figure 6.
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The control system consists of PVC stripper object (slurry
flow rate to top tower temperature and steam flow rate to
tower bottom temperature), two neural network open-loop
decoupling modules ND

1
and ND

2
, and two PID controllers

online optimized by two BP neural networks NN
1
and NN

2
.

In Figure 6, 𝑟
𝑖
is the system input, 𝑦

𝑖
is the system output,

𝑥
𝑖
is the controller output vector, 𝑢

𝑖
is the output vector of

the neural network decoupling module, and 𝑢
𝑖

is the control
input vector (𝑖 = 1, 2). The intelligent decoupling control
system of the stripping process can be divided into two stages.

4.1.1. Training Stage. The neural network PID controller is
disconnected and the system is in open-loop training state.
Firstly, the neural decoupling module ND

1
is trained and

ND
2
is maintained as no input. If decoupling is successful,

the channel between the slurry flow rate and the tower top
temperature will not have output (𝑦

1
is 0). Then 𝑦

1
is set as

the training index function of ND
1
. The connection weights

of ND
1
’s each layer are adjusted. Similarly, ND

2
is trained in

the same way. Finally, the whole stripper controlled object is
decoupled into two SISO systems (slurry flow rate, the tower
top temperature, and the steam flow rate, the tower bottom
temperature).

4.1.2. Control Stage. NN
1
and NN

2
are used to online opti-

mize the PID controller parameters for realizing the closed-
loop control for the two SISO systems. After training of ND

1

and ND
2
, the weights are maintained unchanged. At this

time, the entire stripper controlled object is decoupled into
two SISO systems. Then two BPNN PID controllers (NN

1

and NN
2
) are, respectively, adopted to realize the closed-loop

control of two SISO systems. NN
1
and NN

2
will be used to

online adjust the PID controller’s parameters𝐾
𝑝
,𝐾
𝑖
, and𝐾

𝑑
.

4.2. Structure of Neural Network Decoupling Module. The
neural network decoupling module consists of 𝑛 × (𝑛 − 1)
SISO neural network (𝑛 is the number of the object inputs),
whose structure is shown in Figure 7. Each neural network
decoupling module is single-input-single-output (SISO) sub-
system, which is responsible for only one channel decoupling.
So its structure and indicator function are relatively simple
because the total objective function has been decomposed
into single objective functions and the decoupling modules’

interconnection problem needs not be considered. At the
same time, the dispersion of the objective function is also easy
to achieve parallel distributed processing in real time. In addi-
tion, the decoupling structure does not change the dynamic
characteristics of the controlled process main channel. It will
make the design problem easy in engineering. As long as
the reasonable structure and parameters of controller 𝑐

𝑖
are

chosen, the required dynamic characteristics can be obtained.
The PVC stripping process is double input and double

output coupling system. The structure of the neural decou-
pling module is shown in Figure 7.

The decoupling module is composed of two different
neural networks ND

1
and ND

2
, which are dynamic time

delay TDNN networks. Each network has an input terminal
and an output terminal. The decoupling module outputs can
be expressed as

𝑢


2

(𝑘) = 𝑓
1
[𝑥
1
(𝑘) , 𝑥

1
(𝑘 − 1) , ∧, 𝑥

1
(𝑘 − 𝑛

1
) , 𝑢


2

(𝑘 − 1) ,

𝑢


2

(𝑘 − 2) , ∧, 𝑢


2

(𝑘 − 𝑚
2
)] ,

𝑢


1

(𝑘) = 𝑓
2
[𝑥
2
(𝑘) , 𝑥

2
(𝑘 − 1) , ∧, 𝑥

2
(𝑘 − 𝑛

2
) , 𝑢


1

(𝑘 − 1) ,

𝑢


1

(𝑘 − 2) , ∧, 𝑢


1

(𝑘 − 𝑚
1
)] ,

(19)

where u is the output of neural network decouplingmodule, 𝑘
is sampling frequency, and𝑚

1
,𝑚
2
, 𝑛
1
, and 𝑛

2
are the positive

integers, which are determined according to the controlled
process’ order.

The decoupling module in this paper adopts a three-layer
neural network. The neural network’s excitation function is
the hyperbolic tangent function𝑓(𝑥) = (1−𝑒−𝑥)/(1+𝑒−𝑥). Its
derivative is 𝑓(𝑥) = 1/(2 × (1 − 𝑓2(𝑥))). 𝑢

1
(𝑘) and 𝑢

2
(𝑘) are

the outputs of the decoupling module. After superimposing
the controller outputs 𝑥

1
and 𝑥

2
, the system control output is

obtained by 𝑢
1
= 𝑢


1

+ 𝑥
1
and 𝑢

2
= 𝑢


2

+ 𝑥
2
.

4.3. Training Algorithm of Neural Network Decoupling Mod-
ule. For the neural decoupling module shown in Figure 8,
theoretically speaking, the expected output of the neural
decoupling module should be viewed as the target function.
But the NN expected output is unknown. In order to avoid
this contradiction, the neural decoupling module and the
controlled object are viewed as a generalized object. Thus the
neural network training can adopt the system output as the
performance function. For neural decoupling modules ND

1

and ND
2
, the performance index functions are defined as

follows:

𝐽
1
=
1

2

𝑁

∑

𝐾=0

[𝑦
2
(𝑘)]
2

,

𝐽
2
=
1

2

𝑁

∑

𝐾=0

[𝑦
1
(𝑘)]
2

.

(20)
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Figure 7: Structure diagram of decoupling module.

According to the BP learning algorithm [24, 25], the net-
work weights are updated based on the following equation:

Δ𝑤 (𝑘) = −𝜂
𝜕𝐽

𝜕𝑤
+ 𝛼 ∗ Δ𝑤 (𝑘 − 1) , (21)

where 𝜂 is the learning rate, 𝛼 is the momentum coefficient,
𝑤 is the weights of the corresponding neural network, and𝑁
is the number for training samples.

For ND
1
and ND

2
, differentiate the performance index

function to obtain

Δ𝑤 (𝑘) = −𝜂

𝑁

∑𝑦
2

𝜕𝑦
2

𝜕𝑢


2

𝜕𝑢


2

𝜕𝑤
+ 𝛼 ∗ Δ𝑤 (𝑘 − 1) ,

Δ𝑤 (𝑘) = −𝜂

𝑁

∑𝑦
1

𝜕𝑦
1

𝜕𝑢


1

𝜕𝑢


1

𝜕𝑤
+ 𝛼 ∗ Δ𝑤 (𝑘 − 1) .

(22)

For the convenience of discussion, the subscripts are
omitted to get the universal formula:

Δ𝑤 (𝑘) = −𝜂

𝑁

∑𝑦
𝜕𝑦

𝜕𝑢

𝜕𝑢


𝜕𝑤
+ 𝛼 ∗ Δ𝑤 (𝑘 − 1) , (23)

where Δ𝑤 is the change of weight.
In order to adopt BP learning algorithm, the partial

derivative 𝜕𝑦/𝜕𝑢 needs to be calculated. However, the learn-
ing rate is an adjustable parameter. The partial derivatives
multiply the learning rate’s product deciding the change of
weights. Therefore, the absolute value of the partial deriva-
tives is not very important. If the partial derivative’s symbols
are known, it is recorded as sign(𝜕𝑦/𝜕𝑢). Adjust the learning
rate to obtain

𝜂


= 𝜂



𝜕𝑦

𝜕𝑢


. (24)
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Figure 8: Schematic diagram of distributed decoupling.

Therefore, (23) can be written as

Δ𝑤 (𝑘) = −𝜂
 sign(

𝜕𝑦

𝜕𝑢
)

𝑁

∑𝑦
𝜕𝑢


𝜕𝑤
+ 𝛼 ∗ Δ𝑤 (𝑘 − 1) . (25)

In the actual industrial production, there are many
controlled processes which have monotone increasing or
decreasing characteristics. That is to say, y is the monotoni-
cally increasing or decreasing function of 𝑢. When 𝑦 is the
monotone increasing of 𝑢, sign(𝜕𝑦/𝜕𝑢) = 1, or it is −1.
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The relationship between network input and output can be
expressed as

𝑢


= 𝑤
(2)

𝑢
(1)

,

𝑢
(1)

= 𝑓 (𝑤
(1)

𝑢
(0)

) ,

(26)

𝑢
(0)

= [𝑥 (𝑘) , 𝑥 (𝑘 − 1) , ∧, 𝑥 (𝑘 − 𝑛) , 𝑢


(𝑘 − 1) ,

𝑢


(𝑘 − 2) , ∧, 𝑢


(𝑘 − 𝑚)]
𝑇

,

(27)

where 𝑢 is the output signal of the network output layer,
𝑢
(1) is the output signal of the network middle layer, 𝑢(1) =
[𝑢
(1)

1

, 𝑢
(1)

2

, 𝑢
(1)

3

, ∧] and 𝑢(0) is the input signal of the network
input layer, and 𝑤(2) = [𝑤(2)

0

, 𝑤
(2)

1

, 𝑤
(2)

2

, . . .] is the connection
weight vector between networkmiddle layer and output layer.

𝑤
(1)

= [

𝑤

(1)
11 𝑤
(1)
12 ⋅⋅⋅

𝑤

(1)
21 𝑤
(1)
22 ⋅⋅⋅

⋅⋅⋅ ⋅⋅⋅ d
] is the connection weight vector between

network input layer and middle layer.
For the output layer,

𝜕𝑢


𝜕𝑤
(2)

𝑖

=
1

2
(1 − 𝑢

2

) 𝑢
(1)

𝑖

. (28)

For the middle layer,

𝜕𝑢


𝜕𝑤
(1)

𝑗𝑖

=
𝜕𝑢


𝜕𝑢
(1)

𝑗

𝜕𝑢
(1)

𝑗

𝜕𝑤
(1)

𝑗𝑖

=
1

2
(1 − 𝑢

2

)𝑤
(2)

𝑗

1

2
(1 − 𝑢

(1)2

𝑗

) 𝑢
(0)

𝑖

.

(29)

Put (28) and (29) into (23); the weight of the output layer
and middle layer is updated by the following equations.

For the output layer,

Δ𝑤
𝑖
(𝑘) = −

𝜂


2
sign(

𝜕𝑦

𝜕𝑢
)

𝑁

∑𝑦(1 − 𝑢
2

) 𝑢
(1)

𝑖

+ 𝛼 ∗ Δ𝑤
𝑖
(𝑘 − 1) .

(30)

For the middle layer,

Δ𝑤
𝑗𝑖
(𝑘) = −

𝜂

4
sign(

𝜕𝑦

𝜕𝑢
)

𝑁

∑𝑦(1 − 𝑢
2

)𝑤
(2)

𝑗

(1 − 𝑢
(1)2

𝑗

) 𝑢
(0)

𝑖

+ 𝛼 ∗ Δ𝑤
𝑗𝑖
(𝑘 − 1) .

(31)

The algorithm procedure is described as follows.

(1) Connect the neural network decouplingmodule ND
1

and ND
2
with the controlled process.

(2) Initialize the neural decoupling module weights with
the smaller random values.

(3) Give the input signals and make the controller output
signal correspond to the input signal of the neural
decoupling module.

Controlled object

NN

PID controller
−

+r e

Kp Ki Kd

yu

Figure 9: PID controller based on BP neural network.

(4) According to the selected samples and time interval,
adopt (26) to calculate the output of the neural
network 𝑢, 𝑢(1), 𝑢(0), and 𝑁 values of the process
variables changed with time (set 𝑢 = 0 at the begin
of calculation).

(5) According to (30) and (31), calculate the weight
variances of the output layer and middle layer and
update weights 𝑤(1) and 𝑤(2).

(6) Replete steps (4) and (5) until reaching the specified
iterations to determine 𝑤(2) and 𝑤(1) at the end.

The above process does not involve each variable’s sub-
script. In practice, the training of network weights can be
completed individually according to the above procedure.
When ND

1
, ND
2
, . . . ,ND

𝑛
are determined, the whole system

can be viewed as 𝑛 single variable nonlinear systems. Then
each loop can be designed the corresponded controller.

4.4. PID Controller Based on BP Neural Network. The struc-
ture of PID controller based on BP neural network is shown
in Figure 9. According to the system’s operation states, the
PID controller parameters are adjusted to achieve the opti-
mization performance. The neural units in the output layer
are in correspondence with three PID controller adjustable
parameters 𝑘

𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
. Through self-learning of neural

network, the weighted coefficients are adjusted to make the
neural network output corresponding to the PID controller
parameters with a certain optimal control law.

Three layers BP neural network [26] is used for the PVC
stripping process. The input layer have 3 neurons: input 𝑟,
output 𝑦, and error error:

𝑂
𝑖
= 𝑥
𝑖1
(𝑖) , 𝑖 = 1, 2, 3, (32)

where the subscripts 𝑖, 𝑗, and 𝑙, respectively, represent the
input layer, the hidden layer, and the output layer.

The hidden layer has 5 neurons. The input of the hidden
layer is calculated by

𝑛𝑒𝑡
𝑗
(𝑘) =

3

∑

𝑖=1

𝑤
𝑗𝑖
𝑂
𝑖
. (33)

The output of the hidden layer is calculated by

𝑂
𝑗
(𝑘) = 𝑓 (𝑛𝑒𝑡

𝑗
(𝑘)) 𝑗 = 1, 2, . . . , 5. (34)

The activation function of the hidden layer neuron adopts
the symmetrical sigmoid function 𝑓(𝑥) = tanh(𝑥) = (𝑒

𝑥

−

𝑒
−𝑥

)/(𝑒
𝑥

+ 𝑒
−𝑥

).
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The output layer has 3 neurons. The input of the output
layer is calculated by

𝑛𝑒𝑡
𝑙
(𝑘) =

5

∑

𝑗=1

𝑤
𝑙𝑗
𝑂
𝑗
(𝑘) . (35)

The output of the output layer is calculated by

𝑂
𝑙
(𝑘) = 𝑔 (𝑛𝑒𝑡

𝑙
(𝑘)) , 𝑙 = 1, 2, 3. (36)

The output layer nodes are in accordance with three
adjustable parameters 𝑘

𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
. Since 𝑘

𝑝
, 𝑘
𝑖
, and 𝑘

𝑑

cannot be negative, the output layer neuron’s activation
function is not negative sigmoid function: 𝑔(𝑥) = 1/(2 × (1 +
tanh(𝑥))) = 𝑒𝑥/(𝑒𝑥 + 𝑒−𝑥).

The performance index function is selected as 𝐸(𝑘) =

1/(2 × (𝑟(𝑘) − 𝑦(𝑘))
2

). The network weights 𝑤
𝑗𝑖
and 𝑤

𝑙𝑗
are

revised according to the gradient descent method. That is to
say, according to 𝐸(𝑘), the weighted coefficients are searched
and adjusted in the negative gradient directionwith an inertia
which make search rapidly converge to global minima.

From the output layer to the hidden layer,

Δ𝑤
𝑙𝑗
(𝑘) = −𝜂

𝜕𝐸 (𝑘)

𝜕𝑤
𝑙𝑗

+ 𝛼Δ𝑤
𝑙𝑗
(𝑘 − 1) , (37)

where 𝜂 is the learning rate and 𝛼 is the inertial coefficient:

𝜕𝐸 (𝑘)

𝜕𝑤
𝑙𝑗
(𝑘)

=
𝜕𝐸 (𝑘)

𝜕𝑦 (𝑘)
⋅
𝜕𝑦 (𝑘)

𝜕𝑢 (𝑘)
⋅
𝜕𝑢 (𝑘)

𝜕𝑂
𝑙
(𝑘)

⋅
𝜕𝑂
𝑙
(𝑘)

𝜕𝑛𝑒𝑡
𝑙
(𝑘)

⋅
𝜕𝑛𝑒𝑡
𝑙
(𝑘)

𝜕𝑤
𝑙𝑗
(𝑘)

,

𝜕𝑛𝑒𝑡
𝑙
(𝑘)

𝜕𝑤
𝑙𝑗
(𝑘)

= 𝑂
𝑗
(𝑘) .

(38)

Because 𝜕𝑦(𝑘)/𝜕𝑢(𝑘) is unknown, it is approximated
by the symbol function sign(𝜕𝑦(𝑘)/𝜕𝑢(𝑘)). The problem of
calculation accuracy can be solved by adjusting the learning
rate 𝜂 to compensate.

For the output layer,

𝜕𝑢 (𝑘)

𝜕𝑂
1
(𝑘)

= 𝑒𝑟𝑟𝑜𝑟 (𝑘) − 𝑒𝑟𝑟𝑜𝑟 (𝑘 − 1) ,

𝜕𝑢 (𝑘)

𝜕𝑂
2
(𝑘)

= 𝑒𝑟𝑟𝑜𝑟 (𝑘) ,

𝜕𝑢 (𝑘)

𝜕𝑂
3
(𝑘)

= 𝑒𝑟𝑟𝑜𝑟 (𝑘) − 2𝑒𝑟𝑟𝑜𝑟 (𝑘 − 1) + 𝑒𝑟𝑟𝑜𝑟 (𝑘 − 2) .

(39)

Thus the learning algorithm of the output layer weights is
described as

Δ𝑤
𝑙𝑗
(𝑘) = 𝛼Δ𝑤

𝑙𝑗
(𝑘 − 1) + 𝜂𝛿

𝑙
𝑂
𝑗
(𝑘) ,

𝛿
𝑙
= 𝑒𝑟𝑟𝑜𝑟 (𝑘) 𝑠𝑖𝑔𝑛 (

𝜕𝑦 (𝑘)

𝜕𝑢 (𝑘)
)
𝜕𝑢 (𝑘)

𝜕𝑂
𝑙
(𝑘)

𝑔


(𝑛𝑒𝑡
𝑙
(𝑘))

𝑙 = 1, 2, 3,

𝑔


(𝑥) = 𝑔 (𝑥) (1 − 𝑔 (𝑥)) .

(40)

Similarly, the learning algorithm of the hidden layer
weights is described as

Δ𝑤
𝑗𝑖
(𝑘) = 𝛼Δ𝑤

𝑗𝑖
(𝑘 − 1) + 𝜂𝛿

𝑗
𝑂
𝑖
(𝑘) ,

𝛿
𝑗
= 𝑓


(𝑛𝑒𝑡
𝑗
(𝑘))

3

∑

𝑙=1

𝛿
𝑙
𝑤
𝑙𝑗
(𝑘) 𝑗 = 1, 2, . . . 5,

𝑓


(𝑥) =
(1 − 𝑓

2

(𝑥))

2
.

(41)

The algorithm procedure is described as follows.

(1) Determine the structure of BP neural network.That is
to say, determine the number of the input layer nodes
and the hidden layer nodes. Given all initial weighting
coefficients, select the learning rate 𝜂 and the inertial
coefficient 𝛼.

(2) Sample and obtain 𝑟(𝑘) and 𝑦(𝑘). Then calculate
𝑒𝑟𝑟𝑜𝑟(𝑘) = 𝑟(𝑘) − 𝑦(𝑘).

(3) Calculate each layer’s input and output of the neural
network. The output in BPNN is the three adjustable
parameters of the PID controller.

(4) Calculate the PID output according to the incremen-
tal algorithm.

(5) Train BP neural network to online adjust the weights
for realizing the self-tuning of the PID controller
parameters.

(6) Set 𝑘 = 𝑘 + 1 and repeat from step (2) to step (6).

5. Simulation Experiments

In order to verify the effectiveness of the D-FNN model and
the proposed intelligent decoupling control strategy based
on neural network, the D-FNN model is used in neural
network decoupling control strategy. Based on the tower top
temperature D-FNN model and tower bottom temperature
D-FNNmodel, the neural network decoupling modules ND

1

and ND
2
and neural network controller NN

1
and NN

2
are

designed. The structure and the parameters of all neural
networks are set as follows. The structure of ND

1
and ND

2

is 5-4-1, the momentum factor 𝜂ND = 0.005, and the learning
rate 𝛼ND = 0.9. The structure of NN

1
and NN

2
is 3-5-3, the

inertia 𝜂NN = 0.25, and learning rate 𝛼NN = 0.05.
According to the technique of the PVC stripping process,

the optimum of the stripper tower top temperature is 85∘C.
Thus in our simulation, the tower top temperature is 85∘C.
The temperature should not exceed 110∘C, otherwise it will
make the PVC resin decomposed and metamorphic. There-
fore the upper limit is 110∘C. The optimum of the stripper
tower bottom temperature is 107∘C and its upper limit is
113∘C. According to the actual possible working conditions
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(a) Curves of tower top temperature step input
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(b) Curves of tower bottom temperature step input

Figure 10: Simulation results of step input without disturbance.

of the stripping process, this paper considers the following
situations in the simulation.

(1) Without any disturbance, the tracking performance
of the tower top temperature and tower bottom
temperature is verified, which is shown in Figure 10.
It can be seen form Figure 10 that the control system
can track the input changes and has a high response
performance.

(2) The random disturbance Δ𝑦
1
= 0.01 is added on the

tower top temperature and the simulation results are
shown in Figure 11. The random disturbance Δ𝑦

2
=

0.01 is added on the tower bottom temperature and
the simulation results are shown in Figure 12. By
adding the disturbance signals on the tower top tem-
perature and tower bottom temperature, the system
decoupling effects are verified. It can be seen form
Figures 10 and 11 that the neural network decoupling
modules improve the performance of the control
system and the transaction between two loops can be
controlled effectively.

0
0

5 10 15

Te
m

pe
ra

tu
re

 (∘
C)

Time (min)

Real output
Reference output

90

80

70

60

50

40

30

20

10

85

(a) Response curve of tower top temperature

110

109.5

109

108.5

108

107.5

107

106.5
0 5 10 15

Time (min)

Reference output
Real output

Te
m

pe
ra

tu
re

 (∘
C)

(b) Response curve of tower bottom temperature

Figure 11: Simulation results with tower top temperature distur-
bance.

Based on the above simulation results, the following con-
clusions can be made. (1) The tracking performance of the
system is better and is able to adapt to the change of set points.
The response time and other parameters are satisfactory.
(2) The coupling degree between the slurry flow rate, the
tower top temperature, and steam flow rate, the tower bottom
temperature, has been significantly reduced and the decou-
pling is achieved. (3) The system has certain robustness for
the external disturbances. It can overcome the temperature
disturbance of the tower top temperature and the tower
bottom temperature.

6. Conclusions

In the paper, theD-FNNwas used to set up the PVC stripping
processmodel.Then the strategy of combination of the neural
network decoupling module and the BP neural network
PID controller is put forward for controlling the stripping
process temperature. The simulation results verify the effec-
tiveness of the proposed PVC stripping intelligent control
strategy.
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Figure 12: Simulation results with tower bottom temperature dis-
turbance.
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