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The cloud computing paradigm has brought the benefits of utility computing to a global scale. It has gained paramount attention
in recent years. Companies are seriously considering to adopt this new paradigm and expecting to receive significant benefits. In
fact, the concept of cloud computing is not a revolution in terms of technology; it has been established based on the solid ground of
virtualization, distributed system, and web services. To comprehend cloud computing, its foundations and technological landscape
need to be adequately understood. This paper provides a comprehensive review on the building blocks of cloud computing and
relevant technological aspects. It focuses on four key areas including architecture, virtualization, data management, and security
issues.

1. Introduction

Cloud computing technology has attracted significant atten-
tion from both academic and industry in recent years. It is
perceived as a shift in computing paradigm in which com-
puting services are offered and acquired on demand over the
global-scaled network [1]. In this paradigm, cloud service
providersmanage a pool of computing resources, generally by
means of virtualization, and offer services in terms of infras-
tructure, platform, and software to consumers using a mul-
titenancy model [2]. Consumers can provision and release
such computing capabilities as needed through self-service
interfaces. Service usages are automaticallymetered, allowing
consumers to pay for the services only for what they use. In
this ecosystem, cloud service providers gain an opportunity
tomaximize their profit through the economies of scale, while
consumers gain access to (seemingly) unlimited resources
to address their changing demands without requiring an
upfront investment on cost and effort to set up an IT infra-
structure.

Cloud computing has the potential to transform IT
industry and change the way Enterprise IT is operated [3].
The adoption of cloud services, that is, provisions of data
center, hosted deployment environment or on demand soft-
ware, leads to different degrees of impacts on an enterprise.
Focusing on a technical perspective, the potential benefits of

cloud services include (a) an ability to shorten the cycle from
ideas to profitable products; (b) an ability to address volatile
workload without service interruptions or slowing down
system performance; (c) simplified processes of establishing
environments for application development and deployment;
(d) decreased run time for backend jobs by using temporarily
acquired resource; (e) an efficient solution for business conti-
nuity; (f) minimized software maintenance activities due to a
shift of work to the cloud provider; and (g) centralized quality
assurance as responsibility on quality control such as security
and performance are transferred to the provider [4–7].

However, cloud services and security concerns inherited
from their underlying technologies might negatively impact
an enterprise if they are not properly managed. Technical and
security risks identified in this context include (a) data lock-
in and system lock-in; (b) unreliable system performance
due to many uncontrollable factors such as network traffic,
load balancing, and context switching cost; (c) decreased
performance due to virtualization; (d) complex integration
between legacy and cloud-based systems; (e) incompatibility
of user behaviors and enterprise process over a new version
of cloud software, as software upgrade is controlled by the
provider; (f) information leakage in a multitenant model; (g)
data interception during the transfer over public networks;
and (h) security breach in a virtualization monitoring layer
[3, 8–10].
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One of the core aspects of cloud computing is that it
hides IT complexity under service offering models. While it
is evident that components in the building blocks of cloud
services introduce a certain degree of impacts on service char-
acteristics, it is less evident how different the impacts would
be in different configurations. This knowledge is essential for
service consumers. Software developers working on cloud
platforms need to understand it to apply appropriate software
designs and properly configure their deployment environ-
ments, in order to ensure certain characteristics of resulting
software. Enterprise consumers need this knowledge during
service level agreement (SLA) negotiation and to determine
the line of responsibility. End users also need it to adjust their
usage behavior.

This paper aims to provide a better understanding over
cloud computing technology as well as its associated founda-
tions.The knowledge serves as a basis for the in-depth analy-
sis and assessment of cloud services. For software developers,
this paper adds new aspects to consider when developing
software in-the-cloud and for-the-cloud. For researchers, it
identifies the landscape of the underlying technology of cloud
computing, especially virtualization, data management, and
security.

The remainder of the paper is organized into five sections.
In the next section, we explain what cloud computing is and
what it is not through reviewing various definitions, service
models, deployment models, and relevant concepts. An in-
depth comparison between grid and cloud computing is also
presented in this section. Section 3 provides a review on
existing cloud computing reference architectures and relevant
quality attributes of cloud services. Virtualization technology
is captured in Section 4, with a focus on the approaches
to hardware system virtualization and its use scenarios.
Section 5 is focused on data management in distributed envi-
ronments and the design considerations of selected services
from leading providers. Cloud security issues are discussed in
Section 6 by considering the vulnerabilities associated to the
key architectural components of cloud computing.The paper
ends with the conclusions in the last section.

2. Cloud Computing Basics

The semantic of cloud computing is identified by its defini-
tion, service models, and deployment models.

2.1. Definition. The standard definition of “cloud computing”
is on the way of reaching its consensus [11]. Among many
interpretations of this term, its general objective and view
are agreeable. The term “cloud computing” refers to the fact
that computing services of any form—IT infrastructure,
platforms, or applications—could be provisioned and used
through the Internet. Cloud is built upon a large-scaled dis-
tributed infrastructure in which a pool of resources is gener-
ally virtualized, and offered services are distributed to clients
in terms of a virtual machine, deployment environment, or
software. In this way cloud services could be scaled dynami-
cally according to requirements and current workloads. The
usage of resources is measured, and the payment is made on
a consumption basis.

Foster et al. provide a definition of cloud computing as
they compare cloud with grid computing. According to their
definition [12], cloud computing is “a large-scale distributed
computing paradigm that is driven by economies of scale, in
which a pool of abstracted, virtualized, dynamically-scalable,
managed computing power, storage, platforms, and services are
delivered on demand to external customers over the Internet.”

Vaquero et al. identify more than 20 existing definitions
of cloud computing and propose their own definition. As it
is perceived in the end of 2008 [13], cloud computing is “a
large pool of easily usable and accessible virtualized resources
(such as hardware, development platforms and/or services).
These resources can be dynamically re-configured to adjust to
a variable load (scale), allowing also for an optimum resource
utilization. This pool of resources is typically exploited by a
pay- per-use model in which guarantees are offered by the
Infrastructure Provider by means of customized SLAs.”

The most cited definition of cloud computing is the one
proposed by The US National Institute of Standards and
Technology (NIST). NIST provides the following definition
[2]: “Cloud computing is a model for enabling convenient, on
demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.”

These definitions reveal three characteristics of the
clouds. First of all, cloud services are massively scalable, and
the acquisition and release of these services could be done
dynamically with minimum operational supports required.
Secondly, the cost is charged on a usage basis and the quality
of services is guaranteed by a providers based on a service
level agreement. Lastly, the quality of cloud services, such
as security and performance, relies primarily on availability
of Internet and how underlying resources are managed and
distributed to clients.

2.2. Service Models. A service model determines the types
of computer resources offered to consumers. Three main
types of cloud services are infrastructure (IaaS), platform
(PaaS), and software (SaaS). However, new servicemodels are
continuously emerging.

2.2.1. Infrastructure-as-a-Service (IaaS). A provider provides
a virtual infrastructure where computing resources in-
cluding processing units, storage, and network could be
provisioned in order to set up a deployment environment for
their software system. A customer has flexibility to manage
and control a software stack to be deployed ranging from
an operating system, middleware, and applications. Exam-
ples of IaaS are Amazon Elastic Compute Cloud (EC2)
(http://aws.amazon.com/), Eucalyptus (http://open.eucalyp-
tus.com/), Openstack (http://openstack.org/projects/com-
pute/), and OpenNebula (http://www.opennebula.org/).

2.2.2. Platform-as-a-Service (PaaS). PaaS provides customers
with the capability to develop and deploy applications based
on tools and programming languages supported by the
providers. This hosted platform is configurable in a limited
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manner based on a provided set of APIs. Examples of
this class of services include Google AppEngine (http://
code.google.com/appengine/), Windows Azure Platform
(http://www.microsoft.com/windowsazure/), Force.com
(http://developer.force.com/), and Rackspace (http://www
.rackspace.com/).

2.2.3. Software-as-a-Service (SaaS). SaaS provides the capa-
bility to use the applications which run on cloud infras-
tructure. These applications are accessible through standard
interfaces such as a web browser or an email client. SaaS
offers the experience of getting to work on applications and
data from anywhere at any time by using various form
of devices. Examples of widely used SaaS are Facebook,
Gmail, and OfficeLive (http://www.officelive.com/en-us/).
Enterprise SaaS exist in many domains such as accounting,
customer relationship management, content management,
and enterprise resource planning.

2.2.4. Human-as-a-Service (HuaaS). HuaaS relies on infor-
mation aggregation techniques to extract meaningful infor-
mation or prediction from massive-scale data [24]. The
services make use of information provided by large cyber
communities, such as Digg (http://digg.com/), which aims to
be the first source of news in any topic. A concept of Crowd-
sourcing [25, 26] and Crowdservicing [27], which gathers a
group of people to solve complex problems or to contribute
with innovative ideas, belongs to this model. Examples
of Crowdsourcing include community-based design and
human-based computation.

2.2.5. Everything-as-a-Service (XaaS). A computing para-
digm is moving toward a XaaS concept in which everything
could be acquired as a service. Cloud computing and afore-
mentioned service models are in support of XaaS [24]. XaaS
implies a model of dynamic environments in which clients
have a full control to customize the computing environment
to best fit their unique demands by composing varieties of
cloud-based services.

These examples are fairly well-known cloud services.
OpenCrowd taxonomy [16] presents a collection of cloud
service providers for each of the defined models.

2.3. Deployment Models. Different deployment models are
designed to support a variation of consumers’ privacy re-
quirements for cloud adoption. NIST defines cloud deploy-
ment models as public, private, community, and hybrid [2].
Virtual private cloud is introduced by Amazon as an alter-
native solution that balances flexibility of public clouds and
security of private clouds [28, 29].

(i) Public cloud. The cloud infrastructure is owned and
managed by a provider who offers its services to
public.

(ii) Private cloud. The cloud infrastructure is built for
a specific organization, but might be managed by a
third party under a service level agreement.

(iii) Virtual private cloud (VPC). Virtual private cloud
removes security issues caused by resource sharing
of public clouds by adding a security platform on
top of the public clouds. It leverages virtual private
network (VPN) technology and provides some ded-
icated resources allowing consumers to customize
their network topology and security settings.

(iv) Community cloud.The infrastructure is shared among
several organizations that have common require-
ments or concerns.

(v) Hybrid cloud. Several types of clouds are composed
together through data portability technology and
federated authentication mechanism.

2.4. History of Computing Paradigms. Cloud computing
introduces a shift in a computing paradigm. Voas and Zhang
in their article [1] illustrate the computing evolution through
six distinct phases. In the first phase people use a powerful
mainframe which is designed to multiplex its computing
cycle to support multiple applications. A personal computer
has become a convenient mean to perform a daily work in
the next phase, responding to a drop of hardware costs and
its sufficient computational power. A computer network in
a form of local area network (LAN) or wide area network
(WAN) is flourished in the third phases as amean for resource
sharing. The Internet has introduced after that as a global
network that allows people to utilize remote services. The
fifth phase has brought a concept of grid computing which
utilizes distributed systems and parallel computing to serve
high throughput and high performance computing. Finally,
in a current phase cloud computing provides a convenient
way to acquire any form of computing services through the
Internet as another utility.

2.5. Relevant Concepts. The concept of cloud computing is
not a revolution. In fact, it introduces an overlap with many
concepts and technologies, such as grid computing, utility
computing, and virtualization.This subsection gives an over-
view to these concepts and points out common angles that
each of these concepts share with cloud computing.

2.5.1. Grid Computing. Grid computing is a distributed com-
puting paradigm that enables resource sharing among mul-
tivirtual organizations in order to solve a common com-
putational problem [30]. Grid has been developed origi-
nally to serve scientific applications that require tremendous
computational power. The grid composes of heterogeneous
and physically distributed resources. To unify a computing
environment from such diversity, grid frameworks provide
standard protocols and middleware that mediate accesses to
a range of physical resources, as well as organizing basic
functionalities such as resource provisioning, catalogue, job
scheduling, monitoring, and security assurance. Compared
to cloud computing, grid shares a common objective of
achieving optimization of resource usage. The difference
is that cloud infrastructure is owned and managed by a
single organization, resulting in a homogenous platform
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by nature. The management of cloud, as a consequence,
focuses on utilizing a resource pool, rather than coordi-
nating resources. An example of grid framework is Globus
(http://www.globus.org/).

2.5.2. Utility Computing. Utility computing presents a model
that enables the sharing of computing infrastructure in which
the resources from a shared pool are distributed to clients
upon requests, and the cost of acquiring services are charged
based on the usage [31]. Cloud computing realizes the concept
of utility computing by offering computing power which
could be acquired over the Internet under a fixed or on
demand pricing model. In addition to resource optimization,
achieving a satisfactory level of service quality is a main goal
for both environments.

2.5.3. Virtualization. Virtualization is an abstraction of
a computing system that provides interfaces to hardware
including a processing unit and its register, storages, and I/O
devices [32–34]. These physical resources are visible to pro-
cesses or devices in a higher abstraction level as virtualized
resources. Virtualization at a system level allows multiple
virtual machines to operate on the same physical platform.
Virtualization at a process level is managed by an operating
system, multiplexing processing cycles and resources to
support multiple processes. Cloud computing providers in
general use system virtualization to provide the capability of
resource pooling by allocating and deallocating virtualized
resources in terms of a virtual machine to a client’s system
on demand. Examples of virtualization solutions are
VMWare (http://www.vmware.com/) (commercial), Xen
(http://www.citrix.com/) (open source), and KVM (http://
www.linux-kvm.org/) (open source).

2.5.4. Service Oriented Architecture. Architectural patterns
are used to create designs that are standardized, well under-
stood, and predictable. These patterns are proven solutions
to recurring common problems in software design [35].
Service oriented architecture (SOA) is a widely adopted
architectural pattern for designing distributed and loosely
couple systems. It is designed to help organizations to achieve
business goals including easy integrationwith legacy systems,
remove inefficient business processes, and reduce cost, agile
adaptation, and fast responses in competitive markets [36].

Varieties of architectures could be derived from SOA. Erl,
in his book “SOA design patterns” [37] and a community site
(http://www.soapatterns.org/), introduces more than eighty
patterns for service oriented systems. The following are
examples of categories and corresponding designs.

(i) Patterns for creating service inventory. Enterprise
Inventory (tomaximize recomposition), Service Nor-
malization (to avoid redundant service logic), and
Service Layer (to organize logics based on a common
functional type).

(ii) Patterns for organizing logical service layers. Utility
Abstraction (to govern common nonbusiness centric

logics), EntityAbstraction (to organize agonistic busi-
ness processes), and Process Abstraction (to organize
nonagonistic business processes).

(iii) Patterns for enhancing interoperability. Data Model
Transformation (to convert data of different sche-
mas), Data Format Transformation (to allow services
to interact with programs that use different data for-
mats), and Protocol Bridging (to allow services that
use different communication protocol to exchange
data).

(iv) Patterns for infrastructure. Enterprise Service Bus,
Orchestration, and Service Broker.

(v) Patterns for enhancing security. Exception Shielding
(to prevent disclosure of internal implementation
when exceptions occur), Message Screening (to pro-
tect a service formalformed andmalicious input), and
Service Perimeter Guard (to make internal services
available to external users without exposing other
internal resources).

SOA is considered as a basic for cloud computing, as it
provides software architecture that addresses many quality
attributes required for cloud services, such as component
composibility, reusability, and scalability.The concept of SOA
is leveraged to construct extensible cloud solution architec-
ture, standard interfaces, and reusable components [22].

2.6. A Comparison of Grid and Cloud Computing. Grid and
cloud computing have been established based on a particular
common ground of distributed and parallel computing,
targeting at a common goal of resource sharing. Both tech-
nologies offer a similar set of advantages such as flexibility
of acquiring additional resources on demand and optimizing
the usage of infrastructure. However, they pose differences
especially from a point of view of resource management.
This section provides such comparisons based on the work of
Foster et al. presented in [12]. In their work cloud and grid are
compared in terms of business models, architecture, resource
management, and programming models.

2.6.1. Business Models. A business model captures a flow in
which services are created and delivered to clients in order to
generate incomes to a service provider and to serve clients’
requirements. In cloud computing a role of providers is to
provide computing services as a basic utility. Cloud generally
offers a fixed or on demand pricing model. In either case,
clients benefit from a reduction on upfront IT investments
and flexibility in scaling its applications. In grid environ-
ments, an incentive to join the community is to get access
to additional computing utilities, with the price of sharing
one’s own resources. The whole community benefits from
optimization.

2.6.2. Architecture. In terms of infrastructure cloud is
designed to serve as an internet-scale pool of resources. The
whole infrastructure is managed by a single provider. Thus, a
single unit of resource is conformed to a common governance
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Figure 1: An architecture comparison: (a) gridmodel that provides connectivity to heterogeneous resources and (b) cloudmodel thatmanages
a pool of resources by means of virtualization [12].

model. In contrast, grid has been developed to integrate
distributed, dynamic, and heterogeneous resources. A set
of open standard protocols and facilities is established to
allow those resources to be interoperated.The differences are
reflected in their reference models (Figure 1). Composing of
four layers, distributed resources residing at a cloud fabric
layer are encapsulated (generally by means of virtualization),
so that they can be used by platform and application layers as
integrated resources. Grid composes of five layers. Instead of
depending on virtualization, grid defines standard protocols
at a connectivity layer which allows communications among
distributed nodes. A resource layer defines protocols for
publication, discovery, negotiation, and payment. A collective
layer controls interactions across collections of resources such
as scheduling and monitoring. Applications exploit services
provided at the lower layer through APIs.

2.6.3. Resource Management. Resource management targets
at the mechanisms to control resource pooling, to achieve
effective resource allocation and a satisfactory level of service
quality. It covers fourmain areas including computingmodel,
data model and locality, virtualization, and monitoring.

Computing Model. A computing model concerns with how
resources are distributed for computational work. Cloud
resources are distributed in terms of a virtual machine. A new
instance of a virtual machine is created and placed to a
physical location which is unknown to clients.The placement
algorithm is customized to maintain a balance of platform
utilization, relevant costs, and a guaranteed quality of ser-
vices. In contrast, grid uses queuing system to manage jobs
and resource allocations. Job stays in queue until the required
amount of resources are available. Once allocated, resources
are dedicated only for that job. Due to such scheduling policy,
interactive applications which require short latency time
could not operate natively on the grid.

DataModel and Locality. In both grid and cloud, data are dis-
tributed and replicated into a number of nodes to minimize
the cost of communication between data and processors.
Cloud uses a MapReduce framework to handle data locality.
MapReduce runs on top of the file system, where data files are
partitioned into chunks and replicated in many nodes. When

a file needs to be processed, the storage service schedules
a processor at the node hosting each chunk of the data
to process the job. However, data locality cannot be easily
exploited in grid, as the resource is allocated based on
availability. One technique to tackle this issue is to consider
data locality information, while a processor is schedule for
computation. This approach is implemented in a data-aware
scheduler.

Virtualization. Virtualization is a mechanism to provide
abstraction to resources in the fabric layer, allowing adminis-
trative work (e.g., configuring, monitoring) to be performed
more effectively in the cloud. Grid does not rely on virtual-
ization as much as cloud does.This is due to the scale and the
fact that each organization in grid community has ultimate
control over their resources.

Monitoring. In cloud environment, client’s capability for
monitoring is restricted to a type of services employed. A
model that provides infrastructure-as-a-service (IaaS) gives
more flexibility for clients to monitor and configure lower
level resources andmiddleware. Monitoring inside grid envi-
ronment could be done in a more straightforward manner
through user’s credential which defines the right of users to
access resources at different grid sites.

2.6.4. Programming Model. On top of Google’s MapRe-
duce, a number of programming models have been created
to facilitate the development of distributed and parallel
programming [38]. These include Sawzall (http://code.goo-
gle.com/p/szl/), Hadoop (http://hadoop.apache.org/), and
Pig (http://pig.apache.org/). Microsoft provides DryadLINQ
framework to serve the similar purpose [39]. Amain concern
of programming model in grid is due to a large number
of heterogeneous resources. Programming models which
are generally used are Message Passing Interfaces (MPI),
Grid Remote Procedural Call, and Web Service Resource
Framework which allows applications to be stateful.

In brief, cloud and grid share similarity in terms of their
goal and underlining technologies that serve as a building
block. They are different from a point of view of resource
management. These differences are caused by the fact that
(1) clouds and grids build upon resources of different nature;
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(2) clouds are operated for larger target group and serve a
wider range of applications which put emphasis on different
aspects of service quality.

2.7. Summary. The most respected definition of cloud is the
one given by NIST. Cloud embraces the following charac-
teristics: (a) it provides on demand computing capability
which is accessible through the internet; (b) the computing
capability could be provisioned and scaled with a minimum
operational effort; (c) the usage of resources is metered and
charged accordingly; (d) provider’s resources are pooled to
serve multiple clients; (e) it inherits benefits and risks from
IT outsourcing. In terms of computing paradigm, clouds
are considered as an evolution of grid computing. Both
technologies share a common goal of optimizing resource
usage and offer a similar set of advantages. However, clouds
and grid are significantly different from a perspective of
resource management.

3. Architecture and Quality of Cloud Services

Cloud computing architecture is partly represented through
service and deployment models described in the previous
section. Its complete architecture must capture relationship
and dependency among relevant entities and activities in that
environment.

3.1. Existing Cloud Computing Reference Architecture. A ref-
erence model is an abstract view of an environment of
interest. It presents relationships and dependencies among
entities in that environment, while abstracting away the
standard, technology, and implementation underneath. It is
particularly useful to identify an abstract solution to a given
issue and to determine the scope of influence.

A report by the US National Institute of Standards
and Technology (NIST) gathers cloud reference architecture
models proposed by known organizations [40]. Architectural
elements that are consistently presented in these models are
(a) a layered model, that combines key components and their
relationship; (b) actors, including their role and responsi-
bilities; and (c) management domains, which facilitate basic
operations of data centers and services on top of it.

This subsection summarizes main components of refer-
ence models list in the NIST report and proposed models
found in the literatures.

3.1.1. DistributedManagement Task Force, Inc. DMTF (http://
dmtf.org/) proposes the cloud conceptual architecture inte-
grating actors, interfaces, data artifacts, and profiles [14]. It
focuses on a provider interface layer which offers specific ser-
vices, standards, and environments to different users accord-
ing to their registered profiles.

3.1.2. IBM. IBM’s view on cloud management architecture
combines actor’s roles, services, virtualized infrastructure,
and provider management platforms [15]. It offers Business-
Process-as-a-Service (BPaaS) on to top of software capabil-
ity which allows an automated customization of business

workflows. The management platforms are customized for
business-related services and technical-related services.

3.1.3. Cloud Security Alliance. CSA (https://cloudsecurityal-
liance.org/) introduces a seven-layer stack model that cap-
tures relationship and dependency of resources and services
[16].Themodel is customized for security analysis by separat-
ing a layer of resourcemanagement to an abstraction sublayer
and a core connectivity and delivery sublayer. Elements
of cloud applications (or SaaS) are presented through four
sublayers comprising data, metadata, contents, applications,
APIs, modality, and a presentation platform.

3.1.4. Cisco. Instead of focusing on a service model rep-
resentation, Cisco explicitly puts security architecture and
service orchestration into the frame [17]. Cisco framework
consists of five layers: data center architecture, security, ser-
vice orchestration, service delivery and management, and
service customer. A security framework is built across the
whole infrastructure. An orchestration layer maps a group
of technological components to a services component for
delivery.

3.1.5. Open Security Architecture. OSA (http://www.opense-
curityarchitecture.org/) publishes a collection of cloud secu-
rity patterns for more than 25 usage contexts such as client-
server modules, identity management patterns, and SOA
internal service usages [18]. These patterns combine actors,
systems, activities, and features of related entities.They could
be used as a high level use cases that capture cloud service
interfaces for each of the actor’s activities.

3.1.6. The Federal Cloud Computing Initiative. FCCI (http://
www.info.apps.gov/) targets at government-wide adoption of
cloud computing [19]. FCCI defines eight service compo-
nents for the government to be addressed to deliver online
user interfaces. These components consist of customizable
user pages, application library, online storage, collaboration
enabler widgets, connectivity, interoperability, provisioning
and administrative tools, and the security mechanism that
apply for the entire system. FCCI also provides a drafted
layered service framework that outlines main service compo-
nents for each layer of the government cloud.

3.1.7. The Storage Networking Industry Association. SNIA
(http://www.snia.org/) proposes Cloud Data Management
Interface (CDMI) as standard interfaces to access cloud stor-
age and to manage the data stored [20]. CDMI comprises
three main interfaces to increase interoperability among
cloud storages: (1) data management interfaces that allow
application to add, retrieve, update, and delete data elements
stored in the cloud; (2) storage management interfaces
that support legacy system, scalable nonrelational database
(NoSQL), and object storages; and (3) the Resource Domain
Model which describes how requirements and quality of
services could be achieved.

3.1.8. Youseff et al. Theauthors propose cloud ontology based
on composibility of service [21]. A cloud layer is higher
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Table 1: Cloud computing reference models.

Name Objective Key components References

Distributed management task force To achieve
interoperability Actors, service interfaces, and profile [14]

IBM General purpose Actors and roles, cloud services, and management activities to
support business-related services and technical-related services [15]

Cloud security alliance Security assessment Stack model, cloud services [16]
Cisco General purpose Stack model for service composition [17]

Open security architecture Security assessment
Actors, flow of traffic and information in the cloud, security
policy implemented by each actors, and servers to secure cloud
operations

[18]

Federal cloud computing initiative
Standard for

government clouds
Stack model representing cloud core capabilities and their
associated management domain, actors, and cloud services [19]

Cloud data management interfaces
Standard interfaces
for cloud storage Interfaces to data storage and associated metadata [20]

Cloud ontology General purpose Stack model representing basic cloud resources and services [21]

Cloud computing open architecture Open standard and
cloud ecosystem

Stack model integrating cloud virtual resources, common
reusable services, core services, offerings, unified architecture
interfaces, quality and governance, and ecosystem management

[22]

in stack if its services are composed of other services of
underlying layers. Services belong to the same layer if they
have the same level of abstraction. The concept results in a
simple five-layered cloud ontology, consisting of hardware,
software kernel, cloud software infrastructure, cloud software
environment, and cloud applications.

3.1.9. Zhang and Zhou. The authors present a cloud open
architecture (CCOA) aiming to assist strategic planning and
consultancy of cloud computing services [22]. Their archi-
tecture illustrates seven principles of cloud and their correla-
tions.These principles include virtualization, service orienta-
tion for reusable services, provision and subscription, config-
urable cloud services, unified information representation and
exchange framework, quality and governance, and ecosystem
management. Cloud actors are integrated to related princi-
ples.

Table 1 summarizes key details of aforementioned mod-
els.

The existence of multiple cloud computing architectures,
even though serving different purposes, reflects a lack of
standardization and interoperability in this field. In fact, the
views of cloud represented by each model are not disrupted.
They rather reflect cloud environments at different levels of
abstraction and put a focus on different aspects. However,
having a uniformed model would enhance collaborations
among stakeholders and help to prevent a vendor lock-in
problem.

3.2. Cloud Computing Layered Models. The objective of the
first focus area is to understand the relationship and depen-
dency of basic cloud components, actors, and management
activities. A multilayer stack model allows us to put in
place the technology associated to each layer, without being
interfered bymanagement activities. Figure 2 compares three
models which depict cloud components at the different levels
of abstraction.

Model (a) is introduced by Foster et al. to identify the
differences between grid and cloud computing [12]. This
four-layer model separates the fabric layer and the unified
resource layer to present the distributed and resource-sharing
nature of cloud, as well as to identify the need of a virtualiza-
tion tool to simulate isolated environment for each consumer.
In Figure 2(b), Youseff et al. design a five-layer model to
capture different types of cloud services [21]. It distinguishes
three types of service models (i.e., IaaS, PaaS, and SaaS)
which are built upon one another, as well as three types
of virtualized resources (computing, storage, and network)
under cloud infrastructure. Interfaces to virtual resources and
operating system are not explicit in this model. Model (c)
proposed byCSA explicitly definesAPIs layerwhichmediates
communication between an operation system and integrated
virtual resources. It also illustrates dependency of relevant
SaaS components. This model is probably most appropriate
for a security assessment.

3.2.1. Facilities and Hardware Layer. The bottom layer con-
sists of physical computing resources, storages, network
devices, data centers, and amean to provide access to physical
resources from other networks. CSA separates the hardware
and facility layer to identify different kinds of security
concerns associated to hardware and data centers. Relevant
technologies in this layer include green data center, dis-
tributed system, cluster system, and firewall.

3.2.2. Abstraction Layer. Theabstraction layer provides a uni-
fied view of distributed and heterogeneous physical resources
generally by mean of virtualization. The abstract infrastruc-
ture composes of the view of servers (processor, memory, and
node), storages, network, and other facilities. Relevant tech-
nologies include virtualization and virtual machine monitor.

3.2.3. Core Connectivity and Delivery Layer. This layer pro-
vides necessary tools to perform basic cloud operations
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Figure 2: Cloud computing stacked models.

such as resource provision, orchestra, utilization,monitoring,
and backup. It allows providers to manage load balancing,
optimization of resource, and security in multitenant envi-
ronments. Relevant technologies include resource pooling,
multitenancy, distributed storages, NoSQL, virtual machine,
virtual network, load balancing, cloud service bus, and Map-
Reduce.

3.2.4. APIs Layer. The API layer provides interfaces for con-
sumers to access, manage, and control their provision re-
sources. Relevant technologies include web services, virtual
machine, virtual data center, authentication and authori-
zation mechanisms, multitenancy, and Infrastructure-as-a-
Service.

3.2.5. Integration and Middleware Layer. This layer pro-
vides a customizable development environment on top of
a virtualized platform for the development and deployment
of cloud software. Relevant technologies include hardened
pared-down operating system, development environment,
deployment environment, and Platform-as-a-Service.

3.2.6. Application Layer. This layer offers web applications
and services running on cloud infrastructurewhich are acces-
sible through standard interfaces and devices. Relevant tech-
nologies includeweb services (e.g.,WSDL, SOAP, and REST),
web technology (e.g., HTML, CSS, JavaScript, DOM, AJAX,
and mash-up), authentication and authorization (public-
key cryptography), federated identity management (OpenID,
Oauth), secured web browsers, data format (e.g., XML,
HTML, and JSON), and Software-as-a-Service.

3.3. Cloud Actors and Roles. Four types of cloud actors are
defined in the reference models and literature. These include
consumer, provider, facilitator, and developer. A consumer
refers to an end-user or an organization that use cloud

services. It could be further categorized into three subclasses
including end users of SaaS, users of PaaS, and users of IaaS. A
provider offers services to consumers at agreed quality levels
and prices. SaaS providers maintain cloud software which
is offered as a web application or a service. PaaS providers
maintain virtualized platforms for development and deploy-
ment of cloud software. IaaS providers maintain hosted data
centers. A facilitator interacts with consumers, providers,
and other facilitators to provide a requirement-specific cloud
solution by integrating and customizing standard cloud
services. Facilitators could be seen as a cloud carrier or broker.
A developer develops, tests, deploys, maintains, andmonitors
cloud services.

3.4. Cloud Management Domain. Several models (i.e., IBM,
GSA, NIS, and GSA) identify groups of management activ-
ities required to maintain cloud production environments.
We derive five cloud management domains based on man-
agement activities outlined in reviewed reference models.

3.4.1. Management of Physical Resources and Virtualization.
This domain is primarily used by providers to maintain
physical and virtualized cloud infrastructure. It allows basic
operation including resource monitoring, optimization, load
balancing, metering the usage, and providing isolation over
multitenancy environment.

3.4.2. Management of Service Catalogues. The objective of
this domain is to make cloud services and applications avail-
able to consumers. It allows services to be found, requested,
acquired, managed, and tested.

3.4.3. Management of Operational Supports. This domain
concerns with technical-related services. The responsibil-
ities are threefold. First of all, it provides management
of service instances. This includes deployment, configure,
testing, debugging, and performance monitoring. Second, it
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provides transparency and control over an isolated deploy-
ment environment. From consumer perspective, especially
for IaaS and PaaS, the provided information is sufficient for
SLA management, capacity planning, and analysis security
concerns. Lastly, it providesmanagement over resources.This
includes provisioning, configuration management, backup,
and recovery.

3.4.4. Management of Business Supports. This domain con-
cerns with business-related services, for instance, invoice,
billing, and customer management.

3.4.5. Security Management. Every layer of cloud stack needs
different securitymechanisms.The servicemodel determines
an actor who is responsible formaintaining security concerns
for each layer. Generally the security of virtualized infras-
tructure (facility, hardware, abstraction, and connectivity)
is managed by the provider. Consumers of IaaS have to
manage the integration of an operating system and virtual-
ized infrastructure. Consumers of PaaS have to manage the
configuration of deployment environments and application
security. Security concerns, including user authentication
and authorization, are all handled by the providers in SaaS.

3.5. Quality of Cloud Computing Services. Cloud computing
is considered as a form of outsourcing where the ultimate
management and control over acquired services are delegated
to an external provider [6, 42]. A needed level for services
is defined through a formal contract between the provider
and its consumers. This contract is known as service level
agreement (SLA). For the consumers, it is important to ensure
that the agreed level of service is respected, and any violation
is reported accordingly. For the providers, it is important to
manage dynamic infrastructure tomeet SLA and tomaximize
the profit and resource utilization [43].

SLA is defined in terms of quality of services such as per-
formance and availability. Dynamic nature of clouds caused
by virtualization, resource pooling, and network directly
impacts service characteristics. Quality attributes relevant to
cloud services are given in this subsection.

3.5.1. Scalability and Elasticity. Scalability refers to capability
to scale up or down the computing resources including
processing units, memory, storages, and network to response
to volatile resource requirements [2]. Elasticity refers to
ability to scale withminimumoverheads in terms of time and
operation supports [2, 38]. Providers offer this characteristic
to IaaS and PaaS through automatic resource provisions. For
SaaS, scalability means ability to address changing workload
without significantly downgrading other relevant quality
attributes [42, 44].

3.5.2. Time Behavior. Time behaviors (e.g., performance, re-
sponse time) are critical of latency sensitive applications
and introduce high impact for user experiences. As cloud
applications are operated on virtual distributed platform,
time behaviors touch upon various area such as a quality of
network, virtualization, distributed storage, and computing

model. Aforementioned factors cause unreliable time behav-
ior for cloud services [3, 9, 45].

3.5.3. Security. Security and trust issues are early challenges
to the introduction of a new technology. As cloud infrastruc-
ture is built upon several core technologies, the security relies
on every of these components. Trust requires portions of pos-
itive experiences and provider’s reputation. Common threats
to cloud security include abuse of cloud services, insecure
APIs, malicious insiders, shared technology vulnerabilities,
data loss and leakage, and service hijacking [41]. Mechanisms
to handle such issues and other cloud vulnerabilities should
be explicitly clarified prior to the service adoption.

3.5.4. Availability. Availability refers to a percentage of time
that the services are up and available for use. SLA contracts
might use a more strict definition of availability by counting
on uptime that respects at the quality level specified in the
SLA [46].

3.5.5. Reliability. Reliability is capability of services to main-
tain a specific level of performance overtime (adapted from
ISO/IEC 9126 [ISO/IEC 9126-1]). Reliability is influenced
directly by a number of existing faults, a degree of fault
tolerance, and recoverable capability of services in case of
failures. Cloud infrastructure is built upon a number of clus-
ters of commodity servers, and it is operated on the internet
scale. Partial network failures and system malfunction need
to be taken as a norm, and such failures should not impact
availability of services.

3.5.6. Portability. Portability is an ability to move cloud arti-
facts from one provider to another [47]. Migration to the
cloud introduces a certain degree of dependency between
client systems and the service providers. For instance, clients
might rely on proprietary features and versions of hardware
supported by a certain provider. Such dependency needs to be
minimized to facilitate future migrations and to reduce a risk
of system lock-in and data lock-in. A lack of standardization
for virtual machines, hypervisors, and storage APIs causes
similar issue [3].

3.5.7. Usability. Usability refers to capability of services to be
understood, learned, used, and attractive to users (adapted
from ISO/IEC 9126 [ISO/IEC 9126-1]). IaaS and PaaS pro-
viders should offer sufficient APIs to support resource pro-
visions, management, and monitoring activities. Usability is
particularly important for SaaS to retain customers due to a
low cost of switching.

3.5.8. Customizability. Capability of services to be custom-
ized to address individual user preferences is important for
services that serve internet-scale users [48]. As it is impossible
for providers to offer unique solution for each user, the service
should be designed in a way that it allows a sufficient degree
of customizability.

3.5.9. Reusability. Reusability is capability of software service
components to serve for construction of other software.
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Cloud computing amplifies the possibility of service reuse
through broad Internet access.

3.5.10. Data Consistency. Consistency characteristic is rele-
vant for SaaS. If the data is consistent, then all clients will
always get the samedata regardless ofwhich replicas they read
from. However, it is costly to maintain strong consistency in
distributed environments [49], and this is the case for clouds.
Many cloud storage solutions compromise a strong degree
of consistency for higher availability and network partition
tolerance [38, 50, 51].

3.6. Summary. In this section we reviewed existing cloud
computing reference architectures proposed by different
enterprises and researchers for different purposes. Some
intend to initiate an open standard to enhance interoperabil-
ity among providers; some aim to understand the dependen-
cies of relevant components for effective security assessment;
others are for general proposes. Three entities are generally
presented in the reference models. These include a stack
model, actors, and management domains. The most abstract
model of cloud consists of four-layers fabric, unified resource,
platform, and application. One of the most descriptive mod-
els is proposed by CSA. It separates the fabric layer into
facility and hardware sublayers. The unified resource layer is
separated into abstraction and core connectivity sublayers;
the platform layer is separated into infrastructure’s APIs
and middleware sublayers; the application layer is further
divided into a number application components. Cloud actors
might take more than one role at a time; for instance, an
enterprise could be a customer of IaaS provided by Amazon
and develop SaaS for its customers. The responsibilities of
each actor are explicitly defined in service level agreement.
Management and operational activities to maintain cloud
production environments could be grouped into five domains
including physical resources and virtualization, service cata-
logues, operational supports, business supports, and security.
Essential quality attributes relevant to cloud service are
availability, security, scalability, portability, and performance.
Cloud underlying technologies, such as virtualization, dis-
tributed storages, and web services, directly affect these
quality attributes. Fault tolerance is taken as a mandatory
requirement as partial network failures, and occasional
crashes of commodity servers are common for systems of
the internet scale. Usability is one of the most important
characteristics for SaaS due to a low cost of switching.

4. Virtualization

Cloud computing services offer different types of computing
resources over the internet as a utility service. A cloud
service provider manages clusters of hardware resources and
dynamically allocates these resources for consumers in terms
of a virtual machine. Consumers acquire and release these
virtual resources according to current workloads of their
applications. The provider ensures a secure compartment for
each of the consumer’s environments, while trying to utilize
the entire system at the lowest cost. Virtualization is an
enabler technology behind this scenario.

Platform hardware Platform hardware
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OS OS OS
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Figure 3: A comparison of a computer system with and without
virtualization [53].

4.1. Virtualization Basics. Virtualization is an abstraction
of a computer system which allows multiple guest systems
to run on a single physical platform [52]. Host’s physical
resources (e.g., processor, registers,memory, and I/Odevices)
are shared and accessible through standard virtualization
interfaces. Virtualization software creates an isolated envi-
ronment for each of the guest systems by multiplexing host’s
computing cycles and virtualizing hardware resources. It
mediates communications between guest and host systems
and manipulates their messages and instructions if necessary
to maintain the guest’s illusion of having an ultimate control
over the system.

Virtualization could be done at a process or system level.
The software for system virtualization is broadly known as a
hypervisor or a virtual machine monitor (VMM). The term
VMM is used in this document, but they are semantically
interchangeable.

Figure 3 compares a computing system with and without
virtualization. Virtualized systems have a layer of VMM
running on top of the hardware. A VMM allows multiple
and possible different guest VMs to run simultaneously on
the same physical system, while maintaining their illusions
of having a sole control over the resources. To achieve this
transparency the VMM operates in a higher privilege level
than guest VMs. It intercepts guest’s privilege instructions
and executes them differently at the hardware level when
necessary. It also maintains a secure confinement for each
of the VM instances. Thus, resources allocated to one VM
could not be interfered by other VMs running on the same
physical block. This mechanism helps to promote security,
as any compromise to system security is confined within an
original VM.

Three immediate advantages of virtualization that could
be derived from this model include: (1) hardware indepen-
dence, as it allows different operating systems to run on the
same platform; (2) easy migration, as the state of the system
and applications is kept inside the VM; and (3) resource
optimization, as the physical resources are shared to serve
multiple virtual systems.

4.2. History of Virtualization Technology. The evolution of
virtualization technology is explained by Rosenblum and
Garfinkel [34]. Virtualization has been a solution to different
issues during the evolution of computing trend. Its introduc-
tion dates back in ‘60 in the age of mainframe computing.
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Figure 4: Interfaces of a computer system at different levels of
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IBM found a way to multiplex the usage of expensive hard-
ware resources to support multiple applications in the same
time. VMM was implemented as an abstraction layer that
partitions a mainframe system to one or more virtual ma-
chines. Each of the machines held similar architecture as
the hardware platform. A decrease of hardware cost and an
emergence of multitasking OS during ‘80 caused in a drop of
VMM necessity, until the point that the design of hardware
no longer supported an efficient implementation of VMM.

The rule of polarity took place at the flourish age ofmicro-
computers and complex OS. The drop in hardware cost
has led to a variation of machines. Over-complex and large
operating systems compromised its reliability. The OS be-
came fragile and vulnerable, that the system administrator
deployed one application per machine. Clearly, these ma-
chines were underutilized and resulted in maintenance over-
heads. In ‘05, virtualization became a solution to this prob-
lem. It was used as a mean to consolidate servers. Nowadays,
virtualization is used for security and reliability enhance-
ments.

4.3. Computer Architecture. Understanding of virtualization
requires knowledge on computer architecture. Architecture
could be seen as a formal specification of interfaces at a given
abstraction level. A set of the interfaces provides a control
over the behaviors of resources implemented at that level.
Implementation complexity is hidden underneath. Smith and
Nair describe the computer architecture at three abstraction
levels: a hardware level, an operating system level, and an
operating system library level [32]. Figure 4 illustrates the
dependency among each level of interfaces. Virtualization
exposes these interfaces and interacts with virtual resources
they provide.

The interfaces at three abstraction level of computer
systems are defined as follows.

4.3.1. Instruction Set Architecture (ISA). As an interface to
hardware, ISA is a set of low level instructions that interact
directly with hardware resources. It describes a specification
of instructions supported by a certain model of processor.
This includes an instruction’s format, input, output, and the

semantic of how the instruction is interpreted. While most
of these instructions are only visible to the OS, some can be
called directly by applications.

4.3.2. Application Binary Interface (ABI). At a higher level
ABI provides indirect accesses to hardware and I/O devices
through OS system calls. The OS executes necessary vali-
dation and perform that operation on behalf of the caller.
In contrast to ISA ABI is platform independent, as the OS
handles the actual implementation on different platforms.

4.3.3. Application Programming Interface (API). At the appli-
cation level functionality is provided to application programs
in terms of libraries. API is independent from the model of
platform and OS, given that the variations are implemented
at the lower abstraction levels (ABI and ISA).

4.4. Hardware Virtualization Approaches. As mentioned, a
virtualized system contains an addition software layer called
VMM or hypervisor. The main functionality of VMM is to
multiplex hardware resources to support multiple guest VMs
and tomaintain its transparency. To achieve this VMMneeds
to handle the virtualization of a processor unit and registers,
memory space, and I/O devices [34]. This subsection sum-
marizes an implementation approach for virtualizing these
resources.

4.4.1. CPU Virtualization. There are several techniques to
allowmultiple guest systems to share similar processing units.
We summarize threemain approaches for CPU virtualization
that are largely discussed in the literature. The first technique
requires a hardware support; the second relies on a support
from an operating system; the last uses a hybrid approach.

Direct Execution. CPU is virtualizable if it supports VMM’s
direct execution [34]. Through direct execution, guest’s priv-
ileged and unprivileged instructions are executed in a CPU’s
unprivileged mode, while VMM’s instructions are executed
in a privileged mode. This architecture allows a VMM to
trap guest’s privileged instructions (kernel instructions) and
CPU’s responses and emulate them in order to let VMM run
transparently.
Figure 5 compares a CPU privileged ring that supports the
direct execution with a tradition system. In tradition system
(Figure 5(a)) operating system has the highest privilege.
VMM uses a deprivileging technique (Figures 5(b) and 5(c))
to facilitate its operations. For example, through a 0/3/3
model (Figure 5(c)) guest’s privileged and unprivileged in-
structions are executed in a CPU’s unprivileged mode, while
VMM’s instructions are executed in a CPU’s privilegedmode.

Paravirtualization. Paravirtualization technique is intro-
duced by Denali [54, 55] and is used by Xen [56]. It is one of
the most common techniques to support an implementation
of VMM on nonvirtualizable CPUs [34]. Through paravirtu-
alization, the operating systems are ported to a specific CPU
architecture. A nonvirtualizable part of ISA is replaced with
virtualized and efficient code. This allows most of typical
applications to run unmodified. This technique results in a
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Figure 5: Privileged ring options for virtualizing CPU [33].

better system performance due to a reduction of trapping
and instruction emulating overheads. However, it requires
support from operating system vendors.

Binary Translation. This technique combines direct execu-
tion with on-the-fly binary translation. Typical applications
running under CPU unprivileged mode can run using direct
execution, while nonvirtualizable privileged code is run
under control of the binary translator. The traditional binary
translator was later improved for better performance. Instead
of using a line-based translation, this translator translates the
privileged code into an equivalent blockwith a replacement of
problematic code and stores the translated block in the cache
for future uses.

4.4.2.MemoryVirtualization. Asoftware technique for virtu-
alizing memory which is to have VMM maintains a shadow
version of a guest’s page table and to force CPU to use the
shadow page table for address translation [34].The page table
contains mappings of virtual addresses (used by processes)
and physical addresses of the hardware (RAM). When a
virtual address is translated to a physical address, CPU
first searches for a corresponding address in a translation
lookaside buffer (TLB). If a match is not found, it then
searches in a page table. If a match is found, the mapping is
written into TLB for a future translation. In case the lookup
fail, a page fault interruption is generated.

To maintain a valid shadow page table, VMM must keep
track of the guest’s page table and update corresponding
changes to the shadow page table. Several mechanisms are
designed to ensure the consistency of page tables [57].

Write Protect. One technique is to write protect the physical
memory of the guest’s page table. Any modification by the
guest to add or remove a mapping, thus, generates a page
fault exception, and the control is transferred to VMM. The
VMM then emulates the operation and updates the shadow
page table accordingly.

Virtual TLB. Another technique is Virtual TLB. It relies on
CPU’s page fault interruptions to maintain the validity of
shadow page table. VMM allows new mapping to be added
to the guest’s page table without any intervention. When the
guest tries to access the address using that mapping, the page
fault interruption is generated (as thatmapping does not exist
in the shadow page table). The interruption allows VMM

to add new mapping to the shadow page. In the case that
the mapping is removed from the guest’ page table, VMM
intercepts this operation and removes the similar mapping
from the shadow page table.

In addition, VMM needs to distinguish the general page
fault scenario from the one associated to inconsistency of the
shadow page table. This could result in significant VMM
overhead.

4.4.3. I/O Virtualization. The goal of virtualizing I/O devices
is to allow multiples VM to share a single host’s hardware.
Challenges in this area include scalability, performance, and
hardware independence [58]. Existing approaches are as
follows.

Device Emulation. Through device emulation, VMM inter-
cepts an I/O operation and performs it at the hardware
devices [59]. This technique does not require changes in an
operating system and device drivers, but it generates signifi-
cant overhead of context switching between VM and VMM.

Paravirtualization. Paravirtualization is introduced to reduce
the limitation of device emulation. To achieve better perfor-
mance, a guest operating system or device drivers is modified
to support VMM interfaces and to speed up I/O operations
[60, 61]. The performance of paravirtualization is better than
the pure emulation approach, but it is significantly slower as
compared to the direct access to the device.

Direct Access. An intermediate access through VMM is
bypassed when using a direct access. VMs and I/O devices
communicate directly through a separate channel processor.
It results in significant elimination of virtualization overhead.
However, the advantage of hardware independence is lost by
having VMs tie with a specific hardware.

4.5. System Virtualization. When considering computing
architecture, virtualization is generally implemented at two
levels: at the application level (process virtualization) and at
the bottom of software stack (system virtualization). Smith
andNair summarize themechanism behind these basic types
of virtualization [32].

Process virtualization is a basic mechanism used in mul-
titasking operating systems. The OS virtualizes processing
unit, registers, memory address space, and I/O resources for
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each process, so thatmultiple processes can run simultaneous
without intervening each other. The OS maintains the isola-
tion for each process instance (no intervention), maintains
the state and context for each process instance, and ensures
that each process receives a fair share of processing cycles.

This process is executed through scheduling and context
switching. Through context switching, the OS switch in the
value of CPU registers for the current process, so that it starts
from the previous processing state. CPU is virtualized by
scheduling algorithm and context switching. The memory is
virtualized by giving an individual memory page table for
each process. Interactions between a process and virtual
resources are through ABI and API. In short, the goal of
process virtualization is to allow multiple processes to run in
the same hardware, while getting a fair share of CPU times
and preventing intervention, such as access to memory, from
other processes.

In system virtualization the whole computer system is
virtualized. This enables multiple virtual machines to run
isolated on the same physical platform. Each virtual machine
can be either different or similar to the real machine. System
virtualization is known as virtual machine monitor (VMM)
or hypervisor. VMM operates above the physical resource
layer. VMM divides the resources among VMs using static
or dynamic allocation. In a static allocation, a portion of
resources allocated to a specific VM is solely dedicated for
thatVM. For instance, each core ofCPUmight be fixedly allo-
cated to each of the client VMs. Dynamic allocation manages
entire resource as a pool. A portion of resources is dynami-
cally allocated to a VMwhen needed and is deallocated to the
pool when the job is done. Static allocation results in higher
degree of isolation and security, while dynamic allocation
helps to achieve better performance and utilization.

As mentioned, VMM provides system virtualization and
facilitates the operations of VMs running above it. Several
types ofVMMcould be found in the literature. In general they
provide similar functionalities, but implementation details
underneath are different, for instance, how the I/O resources
are shared or how ISA translations are performed. Different
approaches to system virtualization are as follows.

4.5.1. Bare-Metal or Native VMM. Native VMM runs on bare
hardware and provides device drivers to support multiple
VMs placed on top. Guest VMsmight use similar or different
ISA as an underlying platform. VMM runs in the highest
privileged mode and gains an ultimate control over the
resources. VMM needs to maintain its transparency to guest
VMs, while providing them secured compartment. To
achieve this, it intercepts and emulates guest privileged in-
structions (kernel related). Most of the guest applications
could be run unmodified under this architecture. Examples
of traditional VMM include XEN (http://xen.org/) and
VMWare ESX (http://www.vmware.com/products/vsphere/
esxi-and-esx/index.html).

Traditional VMM may virtualize a complete ISA to sup-
port guest VMs that use different ISA than the host platform.
XEN uses paravirtualization, while VMWare ESX uses binary
translation. Other VMMs might use a combination of both
techniques or their improvement or neither.This depends on

the hardware support, the collaboration from OS vendors,
and system requirements [52].

4.5.2. Hosted VMM. An alternative to native VMM places
VMM on top of the host operating system. The hosted
VMM could be installed as an application. Another advan-
tage of hosted VMM is that it relies on components and
services provided by the host OS and virtualizes them to
support multiple guest VMs. For instance, in contrast to
traditional VMMs, hostedVMMuses device driver fromhost
OS. This results in a smaller-size and less complex VMM.
However, host VMM does not support different ISA guest
VMs. Example of this type of VMM are Oracle Virtual-
Box (https://www.virtualbox.org/) andVMWare workstation
(http://www.vmware.com/products/workstation/).

4.5.3. Codesigned VMM. Codesigned VMMs target at im-
proving performance by compromising portability. It imple-
ments a proprietary ISA that might be completely new or
is an extension of an existing ISA. To achieve performance,
a binary translator translates guest’s instruction to an opti-
mized sequence of host ISA and caches the translation for
future use. Codesigned VMM is placed in a hidden part
of memory inaccessible by guest systems. Examples include
Transmeta Crusoe and IBM iSeries.

4.5.4. Microkernel. Microkernel is a thin layer over the hard-
ware that provides basic system services, for instance isolated
address space to supportmultiple processes [52].Microkernel
serves as a base for virtualization, in which provisioning
application could be deployed upon to provide a complete
system virtualization. The OS could also be paravirtualized
and run directly on the microkernel to increase the perfor-
mance.

4.6. Use Scenarios and Benefits. The benefits of virtualization
could be derived from its usage model. Uhlig et al. identify
threemain use scenarios of virtualization and their respective
benefits as follows.

Workload Isolation. Main benefits as virtualization is used for
workload isolation (Figure 6(a)) are as follows: (a) security
enhancement, as compromise to security is limited to a spe-
cific compartment; (b) reliability enhancement, a fault in one
module that might generate a system failure in one VM does
not affect others VM running on the same physical block; (c)
fault tolerance, as virtualization allows control over the state
of VM through suspend, resume, mark a checkpoint, and roll
back.

Workload Consolidation. In many cases virtualization is used
for server consolidation (Figure 6(b)). Its benefits for this use
case are (a) reduction of server maintenance cost. One solution
to increase system reliability is to run single-OS and single
application on a server. It leads to a situation that a company
needs to maintain a proliferation of underutilized servers to
support different types of applications. Virtualization could
be used to consolidate individual server into a single plat-
form, increasing utilization and reducing maintenance cost.
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Figure 6: Three usage models of virtualization [33].

(b) Supporting incompatible legacy systems, as virtualization
enable legacy and updated OS to run concurrently on the
same platform.

Workload Migration. Figure 6(c) illustrates a case that virtu-
alization supports system migration. It allows hot migrations
and load balancing to be performed easily and effectively, as
the state of the entire system is encapsulated within the VM
and decoupled from the physical platform.

4.7. Summary. This section gives a review on virtualization
technology, especially on system-level virtualization which is
used to manage a resource pool in cloud computing environ-
ments. Virtualization has been used since 1960 in mainframe
environments for a system isolation purpose. Before the
introduction of cloud computing, virtualization provides an
efficient solution to consolidate underutilized servers. The
benefits of server consolidation, including resource optimiza-
tion, a reduction of energy consumption, and a maintenance
cost reduction, drive its large adoption. System virtualization
software, known as a virtualmachinemonitor (VMM), allows
multiple guest systems to share a similar hardware system.
To enable this sharing, three main hardware elements, that
is, CPU, memory, and I/O devices, are virtualized. Based on
architecture and supports from operating system vendors,
CPU virtualization could be done in several ways. Its goal
is to multiplex CPU cycles and to remain invisible to guest
systems. VMM direct execution requires VMM to run in a
higher privileged level than the guest’s OS and applications, in
order to trap guest’s instructions and emulate CPU responses
when necessary. Paravirtualization ports an OS directly to a
specific CPU architecture, resulting in better performance.
The direct execution could be combined with line-based or
block-based binary translation to remove the dependency on
OS vendors. I/O virtualization appears to be the most prob-
lematic one that causes significant performance overhead.

5. Cloud Data Management

The goal of this section is to explore cloud storage solu-
tions and understand impacts of their design decisions to
system characteristics. Scalable storages known as NoSQL
are becoming popular, as it solves performance problems of
relation databases when dealingwith big data.The differences
between NoSQL and relational databases including their
implementation details are analyzed in this section.

5.1. Data Management Basis. For several decades traditional
ways of storing data persistently have been through relational

databases or file systems [38]. An alternative to the traditional
approaches has been introduced in recent years under the
name of NoSQL [62]. A number of cloud storage solutions,
for instance, Google Bigtable [63], Yahoo’s PNutts [50], Ama-
zon’s SimpleDB (http://aws.amazon.com/simpledb/), Cas-
sandra [64], and CouchDB (http://couchdb.apache.org/) be-
long to this category. This section summarizes the character-
istics of relational and NoSQL databases.

5.1.1. Relational Databases. Relational database is a common
term for relational database management systems (RDBMS).
RDBMS represents a collection of relations and mechanisms
that force a database to conform to a set of policies such as
constrains, keys, and indices. A relation (table) consists a
number of tuples (rows) that have a similar set of attributes
(columns). In other words, a relation represents a class and
tuples represent a set of objects which belong to the same
class. The relation is defined using data schema which de-
scribes a name and a data type for each of the attributes.

RDBMS provides operations to define and adjust a sche-
ma for table and enforces that data stored in the relation are
strictly conformed to the schema. Relations can be modified
through insert, delete, and update operations. Operations
across relations are provided based on set operations includ-
ing union, intersection, and difference. Selections of tuples
from relations with a specific criterion, projection, join of
multiple relations could be done through query languages.
RDBMS supports data indexing to improve query perfor-
mance. It also provides a concept of foreign keys to maintain
data integrity.

Characteristics and Limitations. RDBMS was designed pri-
marily for business data processing [65]. It supports a concept
of transactional operations to serve this purpose.This support
guarantees that a unit of work (transaction) performed in a
database must be done successfully, or otherwise all the ex-
ecuted operations in the same unit of work must be can-
celled [66]. This proposition is also known as all-or-nothing.
RDBMS supports flexible query languages including expen-
sive operations such as multiple joins and range queries.

However, strong data consistency and complex queries
supported by RDBMS cause several limitations in terms of
scalability, performance, and inflexibility of data schema.

(a) Scalability. Automatic partitioning which is a key for
performance scalability could not be done naturally in
RDBMS due to the guarantee on transactional consis-
tency and complex data access operations it provides
[67, 68].
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(b) Performance. As RDBMS was not originally designed
for distributed environments, the way to improve its
performance is through architectural changes and
reducing operational overheads on a single server
[62]. The performance issue of RDBMS is caused by
the fact that its core architecture was designed for
more than 30 years when hardware characteristics,
including processor performance, memory and disk
space, were much different than today [65].

(c) Inflexibility of Schema Changes. Current markets for
data storages have evolved from business data pro-
cessing to other areas, such as stream processing and
textmanagement, inwhich the data donot necessarily
conform to a strict database schema.

5.1.2. NoSQL Databases. As an alternative to RDBMS,
NoSQL databases offer scalable distributed data tier for large
scale datamanagement [38].The termNoSQLwas firstly used
in 1998 as a name for an open-source database that does not
offer SQL interfaces. It was reintroduced in 2009 referring to
nonrelational distributed database model [69].

There are two categories of NoSQL databases [62, 69], as
follows.

Key-Value Stores. Data are stored as an array of entries, where
a single entry is identified through a unique key. Common
operations are deletion, modification or read an entry of a
given key, and insertion of a new key with associated data.
Key-value stores are implemented by distributed hash tables.
Examples include Amazon Dynamo and MemcacheDB.

Document-Oriented Stores. Document-oriented storages rep-
resent loosely structured data storages where there is no pre-
defined schema or constrains limiting databases to conform
to a set of requirements. Records can contain any number of
attributes. Attributes could be added, removed, andmodified
in a flexiblemannerwithout interrupting ongoing operations.
Examples include MongoDB and CouchDB.

NoSQL databases differ significantly at the implemen-
tation level, for instance, data models, update propagation
mechanisms, and consistency scheme.However, several char-
acteristics and features are common for NoSQL systems [62,
67, 70]. First of all, it is designed for distributed environments,
where data are horizontally partitioned and replicated across
multiple sites. Second, the system uses nonrelational data
models, allowing flexibility over schema changes. Third, it
provides a restrictive set of queries and data operations, most
of which are based on a single row. Fourth, on the contrary
to a strong consistency guaranteed by relation databases,
NoSQL systems often tradeoff the consistency to yield higher
availability and better response time.

5.2. Foundation. This section covers a concept of database
transactions which is guaranteed through ACID properties
and mechanisms to support ACID in distributed systems.

5.2.1. ACIDProperties. TheACID is fundamental principle of
database system [66]. It contains the following properties.

(i) Atomicity. All actions of a transaction is executed and
reflected in the database, or the entire transaction is
rolled back (all or nothing).

(ii) Consistency. A transaction reaches its normal state,
committing only legal results and preserving the con-
sistency of the database.

(iii) Isolation. Events within a transaction are hidden from
other transactions running concurrently, allowing the
transaction to be reset to the beginning state if neces-
sary.

(iv) Durability. Once a transaction has been completed,
results have been committed to database, and the
system must guarantee that the modification is per-
manent even in the case of subsequent failures. The
durability is ensured by the use of transaction logs
that facilitate the restoration process of committed
transaction if any failure occurs.

Based on the ACID properties, a transaction can be ter-
minated in threeways. First, it successfully reaches its commit
point, holding all properties true. Second, in a case that bad
input or violations that prevent a normal termination has
been detected, all the operations that have been executed are
reset. Finally, the transaction is aborted by the DBMS in the
case of session time-out or deadlock.

5.2.2. CAP Theorem. Web services are expected to provide
strongly consistent data and to be highly available. To pre-
serve consistency they need to behave in a transactional
manner; that is, ACID properties are respected [49]. The
strong consistency is particularly important for critical and
financial systems. Similarly, the service should be available
whenever it is needed, as long as the network onwhich it runs
is available. For distributed network, however, it is desirable
that the services could sustain through a certain level of
network failures.

It is challenging in general to maintain the ACID proper-
ties for distributed storage systems, as the data are replicated
over geographic distances. In practice, it is impossible to
achieve three desired properties in the same time [49, 71]. We
could get only two out of the three. CAP theorem describes
trade-off decisions needed to bemade when designing highly
scalable systems. It is related to three core system require-
ments as follows.

(i) Consistency (atomic consistency). The notion of con-
sistent services is somewhat different than consistent
property of database systems, as it combines the
database notion of atomicity and consistence. The
consistency enforces that multiple values of the same
data is not allowed.

(ii) Availability. Requests to a nonfailure nodemust result
in a response, instead of a message about a service
being unavailable.

(iii) Partition tolerance. When data and logic are dis-
tributed to different nodes, there is a chance (which is
not rare) that a part of network becomes unavailable.
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This property guarantees that “no set of failures less
than total network failure is allowed to cause the system
to respond incorrectly.”

To deal with CAP, the designer has an option of drop-
ping one of three properties from system requirements or
improving an architectural design.The scenarios of dropping
one of the CAP are, for instance, running all components
related to the services on one machine (i.e., dropping par-
tition tolerance); waiting until data of every replicated node
become consistent before continuing to provide the services
(i.e., dropping availability); or accepting a notion of weaker
consistency.

CAP implies that if we want a service to be highly avail-
able (minimal latency) and we want the system to be tolerant
to network partition (e.g., messages lost, hardware outages),
then sometimes there will be a case that the values of the data
at different nodes are not consistent.

5.2.3. Consistency Scheme. As mentioned, dealing with the
consistency across replicas is one of challenges of distributed
services. A variety of consistencymodels have been proposed
to support applications that can tolerate different levels of
relaxed consistency [51]. The following defines well-known
classes of consistency.

(i) Strong consistency. After the update is complete, sub-
sequent accesses to any replicas will return the updat-
ed value.

(ii) Eventual consistency. The system guarantees that if
there is no new update to the object, the subsequent
accesses will eventually return the updated value.The
degree of inconsistency depends on communication
delay, system workload, and the number of replicas.

(iii) Timeline consistency. Timeline refers to a scenario
in which all the replicas of a given record apply all
updates to the record in the same order. This is done
by using a per record mastership mechanism. With
this mechanism the replica that receives the most
frequent updates for each record is set as a master for
that record [50]. As the updates are performed in an
asynchronized manner, the system provides various
data retrieval APIs that support different consistency
levels. This mechanism is introduced by Yahoo!.

(iv) Optimistic consistency (weak consistency). The system
does not guarantee that the subsequence access will
return the updated value.

5.2.4. Architectural Tradeoffs. A number of cloud storage
systems have emerged in the recent years. A lack of a
standard benchmark makes it difficult to understand the
design tradeoffs and quality of services; each of themprovides
to support different workloads. To this end, Cooper et al.
summarize main tradeoffs the providers face during the
architectural design which impact the CAP property of the
system and applications relying on it [72].

Read Performance versus Write Performance. Different types
of applications (i.e., latency sensitive applications at one

end and throughput oriented applications at another end)
needs different tradeoffs between optimizing for read and
write operations. Several design decisions for these operation
exists. An update could be written to a target file for each
single operation or could be written later as a group update. A
log could be recorded on a row basis where a complete row is
written, or it could be stored as a log-structured systemwhere
only an update delta is recorded. The structured log can be
inefficient for reads as all the updatedmust bemerged to form
a consistent record but it provides a lower cost on updates.
An access mechanism, that is, sequential and random access,
should also be suitable for a specific nature of applications.

Latency versus Durability. Updates could be written to disk
before it returns success to users, or it could be buffered for
a group write. In cases that multiple updates could be merge
to a single I/O operation, the group write results in a lower
latency and higher throughput. This advantage comes with a
risk of losing recent updates when a server crashes.

Synchronous versus Asynchronous Replication.The purpose of
synchronization is to ensure that data stored in all replicas
are updated and consistent. An algorithm for synchroniz-
ing replicas determines a level of consistency, availability
(through a locking mechanism), and response time.

Data Partitioning. A storage could be strictly row-based
structured or allows for a certain degree of column storage.
Row-based storage is efficient for accessing a few records for
their entirely content, while column-based storage is efficient
for accessing multiple records for their certain details.

The concept of “one-architecture-fits-all” does not suit
for distributed storage systems. However, the ultimate goal
for each design is to maximize key properties of storage
system: performance, availability, consistency, and durability.
Different design decisions reflect in the features and quality
of services provided by different storage providers which are
discussed in the next section.

5.3. Selected Cloud-Based Data Management Services. Cloud
providers offer a number of solutions for very large data
storages. It is necessary to understand the mechanisms that
each solution applies to enforce system requirements. This
includes, for instance, how the data are partitioned across
machines (elasticity), how the updates are routed (consis-
tency), how the updates are made persistent (durability), and
what and how failures are handled (availability).

5.3.1. Google Bigtable. Google Bigtable is a distributed data
storage designed to scale to a very large size, to be fault
tolerant, and to support a wide range of applications. It
is designed to support applications which require different
workload and performance. Bigtable is used by more than 60
products of Google, such as search engine, Google Docs, and
Google Earth. Chang et al. describe architecture of Bigtable
as summarized in this subsection [63].

(1) Data Model. Bigtable is a sparse, distributed, and multidi-
mensional sorted map.The map is indexed by a combination
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Figure 7: An example a Bigtable that stores a webpage [63].

of row key, column key, and timestamp. This design makes it
convenient to store a copy of a large collection of web pages
into a single table Figure 7.

Row. Read or write of data is atomic under a single row key
disregard of a number of columns involved. A row range
of the table is partitioned into a tablet which represents a
unit of distribution and load balancing. A read of short row
ranges is sufficient and requires communications only with
few machines.

Column Family. A column key is formed by a syntax family
(qualifier). A column family is a group of associated column
keys. A table can have unbounded number of columns, but
generally a number of column families are in hundreds at
most. An access control is performed at the column family
level.

Timestamp. Each cell of Bigtable can contain multiple ver-
sions of the same data, indexed by a timestamp.

(2) System Model. Bigtable is built on top of several compo-
nents of Google infrastructure.

Distributed File System (DFS). Bigtable uses DFS to store logs
and data files. A cluster of Bigtable is controlled by a cluster
management system which performs job scheduling, failure
handlings, consistency controls, and machine monitoring.

Google SSTable. SSTable is an immutable sorted map from
keys to values used by DFS to store chucks of data files and
its index. It provides look up services for key/value pairs of
a specific key range. Figure 8 depicts how a tablet is chucked
under SSTable.

Chubby Distributed Lock Service. Chubby is a highly available
persistent distributed lock service. It consists of five active
replicas, one of which is assigned to be a master to handle
service requests. The main task of Chubby is to ensure that
there is at most at a time only one active master which is
responsible for storing a bootstrap location of Bigtable data,
discovering tablet servers and storing Bigtable schemas and
access control lists.

A structure of Bigtable consists three main components:
a master server, tablet servers, and a library that is stored at
the client-side. The master server assigns a range of tablets
to be stored at each tablet server, monitors servers’ status,
controls load balancing, and handles changes of the table

schema. The tablet servers could be added or removed with
response to the current workload under the control of the
master. Read and write of records are performed by the tablet
server.Thus, clients communicate directly to a tablet server to
access their data. This architecture eliminates a bottleneck at
themaster server, as clients do not rely on it for tablet location
information. Instead, this information is cached in a library
at the client side.

(3) Consistency and Replication Mechanism. A large number
of Google products rely on Google File System (GFS) for
storing data and replication. While sharing the same goals
as other distributed storage systems (such as fault tolerance,
performance, and availability), GFS are optimized for the
following use scenarios [23]: (a) component failures are
treated as a norm rather than exceptions; (b) files are large
and consist in a large number of application objects; (c) in
most occasions files are changed by appending new data
rather than changing existing details; and (d) GFS APIs are
accustomed to suit application requirements.

GFS uses a relaxed consistency model which implies the
following characteristics [23].

Atomicity and Correctness. File namespace mutations are
atomic and are exclusively handled by the master server.
A global order of operations is recorded in the master’s
operation log, enforcing the correct execution order for
concurrent operations. Possible states of mutated file are
summarized in Table 2. A file region is consistent if clients get
the same data regardless of which replica has been accessed.
A file region is defined if after the mutation it is consistent
and clients see the changes from all replicas. A file region is
inconsistent if different clients see different data when reading
from different locations.

A mutation could be a write or a record append. A
write mutation writes data at an application-specific file
offset. An append mutation appends the data atomically
at least once at the offset determined by GFS and returns
that offset to the client. When the write mutation succeeds
without interferences from concurrent writes, the file region
is defined. In existence of concurrent writes, successful write
mutations leave the region consistent but undefined; that
is, data are consistent across replicas, but they might not
contain the data written by the last mutation. Failed write
mutations result in an inconsistent file region. With regards
to an append mutation, GFS guarantees that the data must
have been written at the same offset on all replicas before
the operation reports success. The region in which the data
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Table 2: File region state after mutation [23].

Write Record append
Serial success Defined

Defined interspersed
with inconsistentConcurrent success Consistent but

undefined
Failure Inconsistent

have been written successfully is defined, while intervening
regions are inconsistent.

Updates for Replicas. GFS guarantees that a file region is
defined after successful mutations by using the following
update sequence: (1) mutations are applied to a file region in
the same order on all replicas; (2) stale replicas (the ones have
missed mutation updates during the time that chunkserver is
down) is not involved during the update, thus their locations
are not given to clients.

5.3.2. Yahoo PNUTS. Yahoo PNUTS is a massively parallel
distributed storage system that serves Yahoo’s web applica-
tions.Thedata storage is organized as an ordered table or hash
table. PNUTS is designed based on an observation that a web
application mostly manipulates a single data record at a time,
and activities on a particular record are initiated mostly at a
same replica. This design decision reflects on its guaranteed
consistency and replication process. Cooper et al. describe the
architecture of PNUTS as explained in this subsection [50].

(1)DataModel. PNUTSpresents a simplified relationalmodel
in which data are organized into a table of records (row) with
multiple attributes (column). In addition to typical data types,
it allows arbitrary and possibly large structured data, which is
called bulb, to be stored in a record. Examples of bulb objects
include pictures and audio files. Schema changes are flexible,
such that new attributes can be added without interrupting
ongoing activities. The system does not enforce referential
constrains, and some of the attributes could be left unfilled.

The query language of PNUTS is more restrictive than
those supported by relation models. It allows selections and
projections over a single table. A primary key is required
for updates and deletes of records. In addition, it provides
a multiget operation which retrieves up to a few thousand
records in parallel based on a given set of primary keys.

Currently the system does not support complex and multi-
table queries such as join and group by operations.

(2) System Model. PNUTS system is divided into multi-
ple regions, each of which represents a complete system
and contain a complete copy of tables. It relies on a
pub/submechanism for replication and update propagations.
The architecture of PNUT with two regions is illustrated
in Figure 9. Each region contains three main components:
storage units, tablet controller, and routers. Message brokers
control replications and consistency among different regions.

Storage Unit. In terms of storage, tables are partitioned
horizontally into a number of tablets. A tablet size varies
from hundred megabytes to few gigabytes. A server contains
thousands of tablets.The assignments of tablets to servers are
optimized for load balancing. PNUT supports two types of
storage structures: ordered tables and hash tables.

Router. In order to localize a record to be read or written, a
router determines a tablet that contains the requested record
and a server that stores that tablet. For ordered tables, the
router stores an interval mapping which defines boundaries
of tablets and a map from tablets to a storage unit. For hash
tables, the hash space is divided into intervals, each of which
corresponds to a single tablet. Tablet boundaries are defined
by a hash function of a primary key.

Tablet Controller. Although the process of record localization
is performed by the router, it stores only a cached copy of the
mapping. The whole mappings are maintained by the tablet
controller. It controls load balancing and division of records
over tablets. Changes of record locations cause the router to
misroute the requests and trigger the new mapping retrieval.

(3) Consistency and Replication Mechanism. A consistency
model of PNUTS comes from an observation that web
applications often changes one record at a time, and different
records have activities with different locality. PNUTS pro-
poses per record timeline consistency, in which all replicas of a
given record apply a series of update to that record in the same
order. It also supports a range of APIs for various degrees of
consistency guarantees. To implement this mechanism, one
of the replicas is appointed as the master independently for
each record.The updates to that record are sent to the master.
The recordmaster is automatically adjusted to the replica that
receives the majority of write requests.
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Figure 9: PNUTS’s architecture.

The system currently provides three variations of data
accesses: read any (no consistency guaranteed), read critical
(guarantee that the returned record is at least as new as a given
version), and read latest (strong consistency guaranteed). It
provides two variations of write operations: write (trans-
actional ACID guaranteed), test-and-set-write (the write is
performed if and only if the record holds the same version
as the given one).

5.3.3. Amazon Dynamo. Amazon has developed a number
of solutions for large scale data storages, such as Dynamo,
Simple Data Storage S3, SimpleDB, and Relational Database
Service (RDS). We focus on the architecture of Dynamo
because it has served a number of core e-commerce ser-
vices of Amazon that need a tight control over the trade-
offs between availability, consistency, performance, and cost
effectiveness. The architecture of Dynamo is described by
DeCandia et al. [73].

(1) Data Model. Dynamo is classified as a distributed key-
value storage optimized for high availability for write opera-
tions. It provides read andwrite operations to an object which
is treated as an array of bytes uniquely identified by a primary
key.Thewrite operation requires that a context of the object is
specified.The object’s context encodes systemmetadata, such
as a versionwhich is necessary for validity checks before write
requests could be performed.

(2) System Model. Dynamo uses consistent hashing to dis-
tribute workloads across multiple storage hosts. Consistent
hashing is a solution for distributed systems inwhichmultiple
machines must agree on a storage location for an object
without communication [74]. Through this partitioning
mechanism, the hash space is treated as a ring in which a
largest hash value is connected to the smallest one. Each
storage node receives a random value which determines its
position on a ring. An assignment of an object to a storage
node is done by hashing an object’s key which results in a
position in the ring and walking the ring clockwise to the first
larger node than the hash value.

Dynamo replicates objects into multiple nodes. Once a
storage node is determined, that node (known as coordinator)
is responsible for replicating all data items that fall into its
range to the successor nodes in the ring. Figure 10 illustrates a
storage ring in which workloads are partitioned among node
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Figure 10: Partitioning and replication model of Amazon Dynamo.

A to G. Suppose that the hash function of key K of an object
falls between a location of node A and B, leading the object
to be stored at node B. Node B is in charge of replicating this
object to node C, D. In other words, node D will store copies
of data that their key falls between A and D.

(3) Consistency and Replication Mechanism. Dynamo pro-
vides eventual consistency, as updates are propagated to repli-
cas in an asynchronous manner. A write request responses to
the caller before the update is successfully performed at all the
replicas. As a result, a read request might not return the latest
update. However, applications that rely on this system can
tolerate the cost of relaxed consistency for the better response
time and higher availability.

Dynamo uses a vector clock to handle different versions
of the object during the update reconciliation. Awrite request
is attached with object’s context metadata which contains
the vector clock information. This data is received from
the earlier read. Read and write operations are handles by
the coordinator node. To complete a write operation, the
coordinator generates the vector clock for the new version,
writes the object locally, andpropagates the update to highest-
ranked nodes which are preferable locations for storing that
object. In addition, the system allows clients to define a min-
imum number of nodes that must participate in a successful
write. Each write request is successful when the coordinator
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receives at least that minimum number of responses from the
target nodes.

5.4. Summary. Cloud storage solutions are reviewed in this
section. We begin the section by clarifying the fundamental
differences between relational and scalable NoSQL databases.
The nameNoSQL comes from its lack of supports on complex
query languages and data integrity checks. NoSQLworks well
with big data because the data are partitioned and stored in
distributed nodes. It generally maintains better performance
as compared to relation databases by compromising strong
data consistency and complex query supports. CAP theorem
explains the dependencies between three desired properties-
consistency, availability, and partition tolerance. To deal with
CAP, one property needs to be dropped from a system
property, resulting in having a CA, CP, or AP as a main
architectural driver. Consistency schemes ordered from the
strongest to and weakest one are strong, eventual, timeline,
and optimistic accordingly.While strong consistency guaran-
tees that accesses to any replica return a single most updated
value, optimistic consistency does not guarantee whether
or not an access to a certain replica returns an updated
value at all. Three scalable storage models used by leading
cloud providers, that is, Google Bigtable, Yahoo PNUTS,
and Amazon Dynamo, are distributed key value stores that
supports relaxed consistency and provide low level APIs as
query interfaces. They are in fact significantly different in
architecture and implementation details.The diversity of data
management interfaces among providers might result in data
lock-in which is one of the primary concern of its adoption.

6. Security

Theobjective of this section is to provide an insight to security
concerns associated to cloud computing. To achieve it, first of
all, we point out security vulnerabilities associated to the key
architectural components of cloud computing. Guidance to
reduce the probability that vulnerabilities would be exploited
is described. In the end we present a mapping of cloud
vulnerabilities and prevention mechanisms.

6.1. Vulnerabilities to Cloud Computing. The architecture of
cloud computing comprises an infrastructure and a software
operating on the cloud. Physical locations of the infrastruc-
ture (computing resources, storages, and networks) and its
operating protocol are managed by a service provider. A
virtual machine is served as a unit of application deployment.
Underneath a virtual machine lies an additional software
layer, that is, virtualized hypervisor, which manages a pool
of physical resources and provides isolated environments for
clients’ virtual machines.

Vulnerability, threat, and risk are common terms in the
context of security which are used interchangeably, regardless
of their definitions. To remain consistent we provide the
definition of these terms as follows: (i)Vulnerability is defined
by NIST as “a flaw or weakness in system security procedures,
design, implementation, or internal controls that could be

exercised and result in security breach or a violation of the
system’ security policy.” (ii) Threat is defined by ENISA as
“a circumstance or event with potential to adversely impact
an asset through unauthorized access, destruction, disclosure,
modification, and/or denial of services.” (iii) Risk is defined in
ISO27005 based on the previous terms as “the potential that
a given threat will exploit vulnerability of an asset or group of
assets and thereby cause harm to an organization.”

Vulnerabilities to cloud computing arise from flaws or
weaknesses of its enabling technologies and architectural
components [10]. A simplified cloud stack model provides
a good basic for vulnerability identifications. As Section 2
explains, clouds are abstracted into five layers including: a
software layer, a platform layer, an infrastructure layer, a
unified resource layer, and a fabric layer. We explain cloud
security by discussing the vulnerabilities associated to system
procedure, design and implementation, and controls of each
component at each layer.

Vulnerabilities and security requirements of cloud ser-
vices are identified in a number of literatures. In the work
of Grobauer et al. the influences of cloud computing on
established security issues are analyzed [10]. Cloud specific
vulnerabilities are identified in association to the core tech-
nologies, essential characteristics, and architecture of cloud
computing. The discussion on the last area is based on a ref-
erence architecture proposed by University of California and
IBM [21].Themapping to those architectural components, in
turn, points out the relevant vulnerabilities to specific cloud
services’ consumers.

Through his work “Monitoring Cloud Computing by
Layer,” Spring presents a set of restrictions and audits to
facilitate cloud security [75, 76]. The discussion is organized
around a seven-layer cloud model proposed by the cloud
security alliance. These layers are either controlled by cloud
providers or consumers.The line of responsibility is generally
clarified in terms of SLA.The list of security controls by layer
assist SLA formation and security monitoring.

Iankoulova and Daneva performed a systematic review
to address requirements of SaaS security and propose solu-
tions to deal with it [77]. Their selection criterion leads to
identifying 55 papers for a detailed analysis.The discussion is
organized into nine areas following the taxonomy of security
quality factors. These include access control, attack/harm
detection, nonrepudiation, integrity, security auditing, phys-
ical protection, privacy, recovery, and prosecution. Top areas
for cloud security research include integrity, access control,
and security auditing, while the issues related to physical
protection, nonrepudiation, recovery, and prosecution are
not broadly discussed.

In this subsection we shortly review the functionalities
and components at each cloud layer and point out a number
of vulnerabilities and subvulnerabilities related to them.

6.1.1. Application Layer. At the highest layer, SaaS is offered to
consumers based on web technologies. The reliability of web
services (backend), web browsers (frontend), and authen-
tication and authorization mechanisms influences service
security.
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Vulnerabilities of Web Services (v1). The vulnerabilities of web
services are associated to the implementation of a session
handler and the mechanism to detect inputs which creates
erroneous executions.

(i) Session-handling vulnerability (v1a).Http is a stateless
protocol, while a majority of nontrivial applications
and transactions require the notion of state. The state
is handled by a session-handling mechanism. An
inappropriate implementation of the session-handler
might introduce vulnerabilities on session riding and
session hijacking, where the credential of themessage
originator is stolen and misused [10].

(ii) Injection vulnerability (v1b). This vulnerability is
exploited by manipulating service requests or input
to an application with an intension to create an
erroneous execution at the backend. Injections occur
in three forms: SQL injection (targeting at backend
database), command injection (targeting at backend
operating system), and cross-site scripting (targeting
at a victim’s web browser) [10].

Vulnerabilities of Client-Side Data Manipulation (v2). Client-
side data manipulation vulnerability is caused by inappro-
priate permissions given to web browser components such
as plug-ins and mash-ups, allowing these components to
read and modify data sent from the web application to the
server [10, 78]. Attacks targeting at this vulnerability impact
information confidentiality and integrity.

Vulnerabilities of Authentication and Authorization (v3). The
vulnerability of authentication and authorization refers to
the weaknesses in a credential verification process and the
management of credential information from both provider
and user sides. A variety of consumer population increases
the complexity in managing the controls in this area [79].
Moreover, an enterprise authentication and authorization
framework does not generally cover the integration of SaaS
[80].

(i) Authentication vulnerability (v3a). It includes inse-
cure user behaviors (for instance, reused credentials,
weak password), the usage of one-factor authentica-
tion, and a weak credential changing and resetting
process.

(ii) User authorization scheme vulnerabilities (v3b). It is
caused by insufficient authorization checks on pro-
gramming interfaces, coarse authorization scheme
which does not support delegation of user privileges
(to access only required resources).

Vulnerabilities of Encryption and Keys (v4). The use of a weak
encryption algorithm, an insufficient key length, or an inap-
propriate key management process introduces encryption
vulnerability.

(i) Weak cryptography vulnerability (v4a). Keys and en-
cryption are crucial to protect confidentiality and
integrity of data in shared environment. The use of

insecure and obsolete cryptography is vulnerable in
cloud environments especially for public clouds.

(ii) Key management vulnerability (v4b). Key manage-
ment concerns how the encryption keys are created,
stored, transferred, backed up, and recovered. Com-
promise in this process results in information leakage
and a loss of data those keys protect.

6.1.2. Platform Layer. A virtualized cloud platform is com-
posed of a layer of development and deployment tools,
middleware, and operating system (OS) which are installed
on a virtual machine. The security of platforms relies on the
robustness of each component, their integration, the platform
management portal, and provided management APIs.

Vulnerabilities of Cloud Operating Systems (v5). An OS
arranges communications (system calls) between applica-
tions and hardware, therefore it has access to all data stored
in the virtual machine. Data leakage could occur when an OS
contains malicious services running on the background. For
PaaS, a common practice of providers to secure cloudOS is to
deploy single, harden, pared-down OS, and monitor binary
changes on the OS image [75]. However, this mechanism
is not applied to IaaS where an OS monitoring process is
performed individually by each client.

Vulnerabilities of Access to Platform Administrative and Man-
agement Interfaces (v6). PaaS providers must provide a portal
which allows system administrators to manage and control
their environments. These administrative and management
accesses share a similar set of web services vulnerabilities and
the vulnerabilities of identity authentication and authoriza-
tion control [10].

6.1.3. Infrastructure Layer. Cloud infrastructure is trans-
ferred to consumers in terms of a virtual machine (VM)
that provides computing capability, memory, storages, and
connectivity to a global network. Vulnerabilities to cloud
infrastructure are caused by traditional VM weaknesses,
management of VM images, untraceable virtual network
communications, data sanitization in shared environments,
and access to infrastructure administrative and management
APIs.

Vulnerabilities of a Virtual Machine and Its Interfaces (v7).
Apart from the vulnerability residing in a VM image itself,
this issue is concerned with the common practice of a
provider to offer cloned VM images for IaaS and PaaS
consumers and the management of these images.

(i) Traditional VM vulnerability (v7a). Data centers are
traditionally protected by perimeter-security mea-
sures such as firewalls, security zone, intrusion pre-
vention and detection tools, and networkmonitoring.
In contrast, security controls in virtual environments
must be implemented also at theVM level. Vulnerable
areas of VM include the remote access to administra-
tive interfaces, the ease of reconfiguration that might
propagate unknown configuration errors, and patch
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management which is difficult, if not impossible, to
maintain by the providers to ensure the compatibility
for all VMs’ configuration [81].

(ii) Cloned VM image vulnerability (v7b).This vulnerabil-
ity is concerned with how VM images are handled.
The usage of cloned VM andOS images as an abstract
platform is a common practice for PaaS consumers
[78]. As attackers could easily register for IaaS and
gain access to the image, they could track useful
knowledge related to the drawbacks and limitations
of that type of VM such as determining the channel
of data leakage andmight be able to attack consumers
using the same product [10, 81].

(iii) Insecure VM image vulnerability (v7c). Another issue
is that an IaaS consumer might obtain and use ma-
nipulated VM images from a notorious source. In this
case, attackers gain a back-door access to the victim’s
platform to conduct their malicious activities [10].

Vulnerabilities of Virtual Network Communications (v8). Vir-
tual communication channel vulnerability is concerned with
the communications between VMs on the same physical
resources. Generally a VM provides the capability for users
to configure virtual network channels in order to directly
communicatewith anotherVMrunning on the same physical
platform.Themessages sent through such channels are invis-
ible to networkmonitoring devices and therefore untraceable
[78].

Vulnerabilities of Data Sanitization (v9). As previously men-
tioned, data in use, in transit and at rest must be secured.
Access control and encryption are employed to protect data
at rest. Secure network protocol, encryption, and public key
are used to protect data in transit. However, themechanismof
freeing resources and removing sensitive data is overlooked,
even though it is equally important in a shared environment.
Data sanitization vulnerability is related to deletion of data,
applications, and platform instances in the end of their life
cycle, which is more difficult to perform when the physical
resources are shared with other tenants [10, 78]. Flaws in data
sanitization could result in data leakage.

Vulnerabilities of Access to Infrastructure Administrative and
Management Interfaces (v10). IaaS must provide interfaces
allowing administrators to perform their administrative and
management activities. This includes remote accesses to uti-
lize and configure computing services, storages, and network.
These accesses share a similar set of web services vulnera-
bilities and the vulnerabilities of identity authentication and
authorization control [10].

6.1.4. Unified Resource Layer. Multitenancy is a core mecha-
nism of cloud computing to achieve the economies of scale.
A virtualized hypervisor is designed to operate multiple VMs
on a shared platform and therefore leads to resource opti-
mization, decreased energy consumption, and cost reduction.

There are, however, a number of vulnerabilities associated to
hypervisors and the multitenancy architecture.

Vulnerabilities of a Virtualized Hypervisor and Its Interfaces
(v11). An insecure implementation of a hypervisor causes
several vulnerabilities as follows.

(i) Vulnerabilities of a complex hypervisor (v11a). A sim-
ple, small-sized, and feature-limited hypervisor is
generally more robust and easier to maintain. How-
ever, several hypervisors are adapted from an operat-
ing system and combined with advanced features. A
proper tradeoff between simplicity and functionality
is essential in order to maintain its robustness [78].

(ii) Vulnerabilities of access to administrative and man-
agement interface (v11b). A hypervisor provides APIs
and web portals, allowing cloud administrators to
perform their activities.These accesses share a similar
set of web service vulnerabilities.

Vulnerabilities of Multitenant Environments (v12). The con-
cept of multitenancy holds different definitions based on an
abstraction to which it is applied [16]. It generally refers to an
architectural approach that leverages shared infrastructure,
data, services, and applications to serve different consumers.
Achieving secure multitenancy thus requires policy driven
enforcement, segmentation, service level agreement, and
billing models for different use scenarios. The followings
point out its vulnerabilities.

(i) Vulnerabilities of data leakage in multitenant envi-
ronments (v12a). The leakage could occur when the
process of data sanitization does not completely
remove the data stored in the physical resources
before returning them to the share pool.

(ii) Vulnerabilities of cross-tenant access (v12b).Malicious
cross-tenant access refers to an attempt of malicious
code to escape from its compartment and to interfere
with processes of other VMs running on the same
tenant.

Vulnerabilities of Sharing Network Components (v13). In IaaS,
it is likely that several VM instances share network infras-
tructure components such as DNS servers and DHCP servers
[10]. Attacks to such components would create a cross-tenant
impact.

6.1.5. Fabric Layer. This layer is concerned with physical
security including servers, processors, storages, and network
devices hosted in a data center.

Vulnerabilities of Physical Resources (v14). The physical secu-
rity of cloud data centers is concerned with the following
issues [78].

(i) Malicious insider vulnerability. Malicious insiders
could introduce severe security threats, as they might
gain physical access to the datacenter if a provider
neglects in applying an appropriate privilege and
access control.
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Table 3: Cloud computing core technologies and associated vulnerabilities.

Layer Functionality Vulnerabilities

(1) Application Provide services through web applications and web
services.

(v1) Vulnerabilities of web services
(v2) Vulnerabilities of client-side environments
(v3) Vulnerabilities of authentication and authorization
(v4) Vulnerabilities of encryption mechanisms and keys

(2) Platform
Provide programming interfaces and mediate
communications between software and the underlining
platform.

(v5) Vulnerabilities of a cloud platform
(v6) Vulnerabilities of access to platform administrative

and management interfaces

(3) Infrastructure Provide computing and storage capabilities and
connectivity to a global network.

(v7) Vulnerabilities of a virtual machine
(v8) Vulnerabilities of virtual network communications
(v9) Vulnerabilities of data sanitization
(v10) Vulnerabilities of access to infrastructure

administrative and management interfaces

(4) Unified resources

Three main features of hypervisors: operate multitenant
virtual machine and application built up on it; provide
isolation to multiple guest VMs; support administrative
work to create, migrate, and terminate virtual machine
instances.

(v11) Vulnerabilities of a virtualized hypervisors and its
interfaces

(v12) Vulnerabilities of multi-tenant environments
(v13) Vulnerabilities of shared network components

(5) Fabric
Cloud physical infrastructure including servers,
processors, storages, and network devices hosted in the
data center.

(v14) Vulnerability of physical resources

(ii) Natural disaster vulnerability. Environmental con-
cerns impact the availability of data and the continuity
of services running on the cloud. A data center must
have a comprehensive continuity of services plan in
place, preferably conforming to an accepted standard.

(iii) Internet access vulnerability. This refers to an attempt
for an unauthorized outsider to gain access to a
datacenter through network channels.

A summary of the vulnerabilities associated to each of the
cloud enabling technologies is presented in Table 3.

6.2. Common Threats to Cloud Security. Having identified
the associated vulnerabilities to cloud computing, we are
able to analyze to which extent they cover security breaches
occurred and the concerns raised by current and prospect
cloud consumers. In this section we present a list of threats
to cloud security based on the cloud security alliance “Top
threats to cloud computing” report [41].

Abuse of Cloud Computing. Based on its simple registration
process and flexible usage model, clouds attract a number
of attackers to host and conduct their malicious activities.
Several malicious cloud adoptions have been found in recent
years. Examples include Zeus Botnet which steals victims’
credential and credit card information, InfoStealer Trojan
horses designed to steal personal information, and download
for Microsoft Office and Adobe exploits. It could be prevented
by enforcing a strict initial registration which allows for
sufficient identity validation.

Insecure Application Programming Interfaces. Clouds pro-
vide interfaces for consumers to use services and perform
administrative and management activities such as provision,
monitoring, and controlling VM instances. These features
are generally designed as web services and thus inherit

their vulnerabilities. Robust designs must ensure appropriate
authentication and authorization mechanisms, a secure key
management process, strong encryption, and sufficient mon-
itoring of intrusion attempts.

Malicious Insiders.This threat is concerned with considerable
damage that malicious insiders could create by getting an
access ormanipulating data in a data center. Centralization of
data inside cloud servers itself creates an attractive condition
for an adversary to try out fraud attempts. To reduce the
risk, cloud providers must ensure strong and sufficient phys-
ical access controls, perform employee’s background checks,
make security process transparent to consumers, and allow
for external audits.

Shared Technology Vulnerabilities. A virtualized hypervisor
provides secure compartments andmediates communication
between guest systems and physical resources underneath.
Flaws in hypervisors might grant an inappropriate permis-
sion for an operating system to access or modify physical
resources which belong to other tenants. The risk could be
reduced by monitoring physical resources for unauthorized
activities, implementing best practices for deployment and
configuration, performing a vulnerability scan and configu-
ration audits on a hypervisor, and following best practices
during its installation and configuration.

Data Loss and Data Leakage. Data loss and leakage could
be a result of unauthorized access, data manipulation, or
physical damage. To protect unexpected loss and leakage,
providers must implement robust access controls and secure
key management process. Backup and recovery mechanisms
should be put in place.

Account and Service Hijacking. Cloud service models put
paramount importance to authentication and authorization,
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as the security of every service depends on its accountability
and robustness. The use of two-factor authentication, secure
keymanagement process, and a careful design of web services
help to reduce the damage of this attack.

While most of the common threats to cloud security
are associated to its underlining technologies (web services
and virtualization), some of them (abusing and malicious
insiders) could be solved by better governances. This list is
expected to be updated as the usage of cloud computing grows
in popularity.

6.3. Recommended Practices to Enhance Cloud Security. This
subsection presents a list of best practices to enhance
cloud security as proposed by leading cloud providers and
researchers. The practices are organized into five main
areas including: identity and access control, data security,
application security, security of virtualized environment, and
physical and network security.

6.3.1. Identity and Access Control. The provisions of IT
infrastructure offered by cloud computing extend the focus
of identity and access control from the application level to
the platform and virtual machine level. The goal of identity
and access control is to ensure that accesses to data and
applications are given only to authorized users. Associated
areas include strong authentication, delegated authentication
and profile management, notification, and identity federa-
tion. A set of recommended practices is relevant to both cloud
providers and consumers.

Authentication. The challenges of authentication include the
use of strong authentication methods, identity management,
and federation.

(i) Verification of users identities and access rights is se-
curely performed before the access to data and ser-
vices is granted [82].

(ii) Multifactor authentication is applied before the access
to highly sensitive and critical data (e.g., customer’s
identity, financial information) and processes (e.g.,
an administrative portal) is granted [82, 83]. Cloud
providers should provide various authentication
methods, including, for instance, biometrics, certifi-
cates, and one-time password, to support different
security requirements.

(iii) A secure communication tunnel (e.g., VPN connec-
tions using SSL, TSL, or IPSEC) and a valid certificate
are required to access highly sensitive and critical
assets [16, 82].

(iv) The use of federated identity, that is, authenticating
users through identity providers, enables a single
sign-on or a single set of identities which are valid
among multiple systems [82]. A privilege granted to
an external user authenticated through identity fed-
eration should be limited appropriately [16].

(v) Delegated authentication capability is provided for
enterprise consumers. Several current standards for

exchanging authentication (and authorization) are
Security Assertion Markup Language (SAML) and
WS-federation [16].

Authorization. The goal of authorization is to ensure ade-
quacy and appropriateness of the access control to data and
services. It could be achieved by matching a user’s privileges
to his/her job responsibilities and to the characteristics of
assets to be accessed and maintaining information necessary
for audits.

(i) Least-privileged scheme. Users are granted the access
only to the data and services necessary for their job
responsibilities [82–84]. A least-privileged model for
authorization and role-based access model support
this practice. Access to additional data and services
requires a formal approval and an audit trail is
recorded [84].

(ii) Asset classification. Assets are classified according to
their sensitivity levels and criticality levels [82, 83].
This information is used to determine the strength of
authentication methods and the access granted.

(iii) Regular review and audit trails. User access lists and
granted authority need to be regularly updated and
reviewed. Audit trails are maintained [16, 82–84].

Identity Management. Strong identity management includes
the restriction of a strong password, password expiration,
secure password changing, and resetting mechanisms [82–
84]. A full list is provided in [82].

Notification. Cloud providers should implement a notifica-
tion process to inform users of security breaches that (might)
happen [82, 84]. Logs of activities on users’ behavior and
access patterns, such as the one implemented by Facebook
and Google to monitor users’ log-in behaviors, can be
monitored formalicious attempts [76].Unexpected behaviors
are notified for user considerations.

6.3.2. Data Security. The security of data and information on
the cloud is one of the main hindrances for prospective cloud
consumers. ISO 27001 defines information security through
the following six perspectives: confidentiality—ensuring that
the information is prevented fromdisclosure to unauthorized
parties; integrity—ensuring that the information is not mali-
ciously modified during the transit; availability—ensuring
that the denial of service is prevented so the information
is available when needed; authenticity—ensuring that the
retrieved information is genuine; authorization—ensuring
that the information could be accessed only by authorized
parties; and nonrepudiation—ensuring that each party could
not deny their action.

The responsibility of cloud providers is to guarantee that
the security is satisfied at every state of the data life cycle, that
is, created, stored, used, transferred, archived, and destroyed.
Data security policy and practices adopted by a provider
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should be explicitly declared and adhered to the quality of
services agreed in the SLA.

Data Classification and Access Control. This practice area
supports authorization. Its challenge is to define appropriate
and practical data classification scheme and access controls
for different classes of data.

(i) Data owner’s practices. The data owner is responsible
for determining the data category and the access
control. The classification scheme should at least
consider the data sensitivity, criticality, and the fre-
quency of use [82–84]. The access control defines
who (individual person, role) get access to the data,
under which permission (read, write, modify, and
delete) and under which circumstances. It is equally
important to keep the classification scheme and the
access control updated. Tools such as Digital Right
Management and Content Discovery are designed to
facilitate this process [16].

(ii) Provider’s support. The providers should support dif-
ferent levels of protection according to the classifi-
cation scheme. Necessary information is logged for
audit.

Encryption and Key Management. Encryption is used to
ensure confidentiality, integrity, authenticity, and nonrepudi-
ation. It should be applied at all states of the data life cycle
when operating in shared environments.

(i) Strong encryption. Encryption is done by using a
trustworthy encryption algorithm and an appropriate
key length. At minimum, the 128-bit key length is
required for symmetric encryption, and the 2048-bit
key length is required for asymmetric encryption [83].

(ii) Keymanagement.A keymanagement process ensures
the protection of key storages, the appropriateness of
access controls, and key backup and recoverability.
IEEE1619.3 is designed to support this process [16].

(iii) Understanding security mechanisms used by the pro-
vider. Consumers should understand the encryption
mechanisms used in the cloud storage and apply
additional mechanisms when the provided features
are not sufficient for a security level required.

Backup and Recovery. Data availability is guaranteed by an
appropriate backup and recovery plan. Its challenge is to
ensure that the backup is performed regularly, and data
encryption is done when it is required. In addition, it is
equally important to perform the recovery test. In Google,
the backup is supported by a distributed file system, in which
the data are segregated into chunks and replicated over many
places [84].

Data Sanitization. Data sanitization is the process of remov-
ing data stored in memory and storage before returning such
resources to the shared pool. Sanitization is more difficult
in a multi-tenancy environment where physical resources
are shared [75]. The challenge is to ensure that the data is

completely deleted and unrecoverable, and the sanitization
does not impact the availability of data resided in other
tenants. Several techniques such as crypto shredding, disk
wiping, and degaussing facilitate this process [16].

6.3.3. Application Security. People and processes are themain
factors to achieve secured software. It is essential to have
motivated and knowledgeable team members to adopt a
development process which suits to the context and to have
sufficient resources. This practice area aims to ensure that
all of these factors are in place to support the development
of secured software. We set the primary focus on web
applications which is a general form of SaaS.

Software Development Life Cycle. Software quality is influ-
enced by the whole software development life cycle. The
development team ought to set quality as a priority, apart
from scheduling and financial concerns. Compromise on
quality impacts a company’s sustainability in a long run, if
not worse. The challenge in this area is to put appropriate
and sufficient practices in place to ensure their compliance, to
implement an appraisal program, and to provide the relevant
knowledge to associated people. A list of best practices to
ensure security of developed software adopted in Google [84]
and Microsoft [83] is presented in this subsection.

(i) Team and software development process. A develop-
ment team should be well trained and understand
products and the context of the project. The team is
equipped with sufficient knowledge on design pat-
terns, web services, vulnerability patterns, protection
strategies, and cloud computing. Quality attributes on
focus are identified as a basis for design decisions. A
developmentmodel is selected and customized to suit
the nature of the project and the resources.

(ii) Practices for design. For the design, software design
best practices are adopted when appropriate. The
related practices are formal architecture reviews,
identifications of high-level security risks, develop-
ment of sufficient detailed designs, measurement
programs for software security tracking, identifica-
tion alternative implementation solutions, and tak-
ing associated risks to project-level decision making
process, obtaining an architecture review from an
external third party to assess the possible limitations
of an internal review.

(iii) Practice for coding. For code artifacts, the related best
practices are conformance to the coding standard and
guidance, pair programming, test first, code inspec-
tions, peer review on critical modules, and develop-
ment of reusable components which are proved to be
secure for certain types of vulnerabilities for common
usages. Google has implemented a database access
layer which is robust for SQL injection vulnerability,
and aHTML template framework designed to prevent
cross-site-scripting vulnerability.

(iv) Practices for testing. For testing, automate tests help to
detect common coding errors, especially in interfaces,
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application logics, and workflows. In addition to the
normal test practices, fuzzing tools could be used to
detect vulnerabilities. This tool generates erroneous
inputs to the program and records crashes and errors
that occur, so that developers could correct them
before deployment [76].

Web Services Implementation. A web service holds certain
classes of vulnerabilities when it is not appropriately imple-
mented. In cloud, web services are one of the core technolo-
gies in which cloud applications and operations (for instance,
administration, provision, and service orchestration) rely
on. It is a challenge for a development team to understand
vulnerability and possible attack scenarios and to adopt
counter mechanisms to ensure all perspectives of security.
An example of standard counter mechanisms isWS-Security
which combines three elements to secure service commu-
nications: security tokens—to verify a user’s identity and
his/her access rights; encryption—to ensure confidentiality
and integrity; and signature—to ensure integrity and non-
repudiation.

Frontend Environment. A frontend environment, including
web browsers and front front-end systems, is one area of the
attack surfaces [8]. The vulnerability of web browsers mainly
results from an inappropriate level of permission given to its
plug-ins. To ensure the front-end security, users should allow
only necessary and trustable plug-ins to be installed in web
browsers, avoid saving their identity in the web browsers, and
use antivirus and antispyware with updated profiles.

6.3.4. Virtualized Environment. Virtualization covers the lay-
ers of a virtualized hypervisor which handles compartmen-
talization and resource provisions, a virtual machine, and an
operating system.

Virtualized Hypervisor. A special care should be given to a
hypervisor, as it introduces a new attack surface, and its erro-
neous executions generate a cross-tenant impact [8]. Con-
sumers should understand the supported features and lim-
itations of the virtualized hypervisor used by providers,
including the mechanism they employ to perform compart-
mentalization and provide security controls.Whennecessary,
additional security mechanisms should be integrated to
reduce the dependency on the provider [16]. A hypervisor
should provide an interface to monitor the traffic crossing
VMbackbones through virtualized communication channels
(betweenVMs resided in the same tenant) which are invisible
to traditional network monitoring devices [16, 75].

Virtual Machine. A VM runs on a compartment managed by
a hypervisor. The challenge for securing a VM is to verify the
provided security controls, the robustness and the authentic-
ity of an acquired VM image.

(i) Secure image life cycle. Providers and consumers
maintain a secured life cycle of VM images. IaaS and
PaaS consumers should acquire a VM image from a
reliable source. Even in the case that the image is taken

from the provider, the authenticity of the acquired
image needs to be verified. The provider maintains a
secureVM imagemanagement process from creating,
storing, and cataloguing to distributing it.

(ii) Understanding security mechanisms used by the
provider. Consumers should identify the security
controls which are in place for acquired VM images
and their dependencies. VM access channels and
types of connection should be also identified.

(iii) Various security zones for VM instances.The provider
segregates VMs of different classes into different secu-
rity zones. VM classification considers the criticality
of hosted data and processes, types of usage, and the
production stage for, for example, development and
production [16].

(iv) Using tools designed for multi-tenancy. There are sev-
eral techniques to enhance VM security such as the
use of bidirectional firewalls on each VM instantia-
tion and the hypervisor-level security controls [81].
Concurrent applications of protection tools, designed
for stand-alone systems onmulti-tenants,might affect
the performance of the whole physical platform.
Cloud providers should consider performing this
work at the hypervisor level.

Cloud Operating System and Middleware. Compromises to
the security of an OS affect the security of the whole data
and processes resided in the systems, therefore an OS should
be highly robust and secure. The following practices are
recommended to secure an OS.

(i) Robust OS. Rich-featured OS and complex config-
uration could compromise system robustness. Con-
sumers should consider an OS which contains only
necessary features and has been scanned for vulner-
abilities [75]. Architecture flaws could be a result of
misconfiguration of resources and policies.Maintain-
ing a simple architecture prevent erroneous settings
that might threaten security controls [76]. A strong
authentication mechanism is required for an admin-
istrative access to the OS [16].

(ii) Single hardened OS deployment. Best practices for
providers are the use of a single hardened OS and
white list process monitoring. A common technique
for PaaS providers to enhance security is to deploy
a single hardened OS throughout the cloud and scan
for its binary changes to detect security breaches [75].
Questionable changes result in a system rollback, thus
keeping the system in a knowngood state.Walters and
Petroni demonstrate this process in their paper [85].
A process-monitoring feature should run against a list
of allowed processes, instead of a black list [76].

6.3.5. Network and Physical Security

Robust Physical Access Control. The centralization of data
residing in a data center poses a significant security concern.
Cloud consumers should be aware of a malicious insider
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threat in a cloud environment, where centralized data ampli-
fies the motivation of malicious attempts [41]. The goal of
having a robust and appropriate physical access control is to
prevent insider abuse within a cloud provider.

(i) Various security zones.The data center should be sep-
arated to different security zones for hosting data and
services which require different levels of protection.
Control mechanisms are applied according to the
criticality of different security zones.

(ii) Using a least privilege policy for access controls. A
least privilege policy is applied to give only necessary
permission to limited users. Employees should have
limited knowledge on customers. Additional access
requires a formal approval, and audit trail is always
respected. Employee privilege is up-to-date and reg-
ularly reviewed. Background check on employees is
performed.

Business Continuity Plan (BCP). The objective of this reg-
ulation is to ensure the availability of data and services
hosted in cloud infrastructures. Consumers should ensure
that the provider implements and respects standard Business
Continuity Plan. Examples of such standard are BS25999 and
ISO22301 [41].

Network Control. In cloud environments a provider is respon-
sible for protecting a customer’s data from accesses across
the Internet. Network borders should be protected by robust
mechanisms or devices. Firewalls are in place to protect each
external interface, only necessary ports are open, and the
default setting is denial. Intrusion detection and prevention
mechanisms should be employed and kept up-to-date [41].

The mapping between the cloud vulnerabilities identified
in Section 6.1 and the recommended security practices is
presented in Table 4.

6.4. Summary. Security is one of the most critical hindrances
to nontrivial adoptions of new technologies. Cloud comput-
ing inherits security issues from its enabling technologies
such as web services, virtualization, multi-tenancy, and cryp-
tography. A virtualized hypervisor which enables resource
sharing leads to the economies of scale but introduces a new
attack surface. We analyze the security in the cloud by under-
standing the weaknesses associated to system procedures,
design, and implementation of the components of cloud
infrastructure. These weaknesses, known as vulnerability,
could be exploited and result in security breaches, thus
requiring stakeholders to be attentive and adopt appropriate
counteractions. At the application layer (SaaS), programmers
need to handle the vulnerabilities of web services, authen-
tication and authorization, and encryption and keys. End
users need to prevent their frontend environments from
malicious plug-ins and malware. At the platform layer in
which a cloud OS and middleware are offered as a ready-
made solution for development and deployment platforms,
security mechanisms are generally integrated to the solution.
PaaS consumers should understand which mechanisms are
in place and impacts they might have on different system

configurations. The vulnerabilities at the infrastructure level
(IaaS) are associated to virtual machines and virtual network
communications. IaaS consumers are responsible for their
own security controls from this layer up to the application
layer. The vulnerabilities to the unified resource layer related
to multi-tenancy and virtualized hypervisors are critical as
their compromises would affect the whole cloud services.The
security mechanisms and processes adopted by a provider
at this level should be explicitly clarified as a part of the
SLA. Physical security deals with malicious insiders, business
continuity plans for natural disaster, and the preventions
of unauthorized accesses through network channels. Having
vulnerabilities identified, we gathered the security practices
recommended by leading cloud providers, and experts and
classified them into 17 practice areas.

7. Conclusions

In this paper we depicted a comprehensive scenery of cloud
computing technology. The view of cloud computing is
shaped by its definition, service model, and deployment
model. The characteristic of cloud services is shaped by
its architecture, service management approach, and under-
lying technologies. Based on its solid foundations, cloud
promises significant benefits on enterprise-level cost reduc-
tion, increased agility, and better business-IT alignment.
Many more benefits arise when other levels or perspectives
are taken into consideration. Apart from these benefits,
however, cloud services still pose a number of limitations that
hinder their wider adoption. Such limitations originate in the
very nature of its building blocks.An example is the instability
of large-scaled network. A limited capability of network has
become a main obstacle for services that require reliable
response time, such as high performance computing and
latency sensitive applications, to be deployed in the clouds.
Security is another major hindrance of cloud adoption that
touches upon many technological factors including multi-
tenancy, virtualization, and federated identity management.
It is further aggravated by the fact that service level agree-
ments are generally explicit about placing security risks on
consumers. As cloud computing is not the silver bullet for
all circumstances, it is necessary for technology adopters
to sufficiently understand its concerns and properly handle
them. Without comprehending its underlying technology,
finding the most appropriate adoption approach seems to be
an impossible mission. Our paper can assist this endeavor
by offering a comprehensive review of the fundamentals and
relevant knowledge areas of cloud computing.
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