
Research Article
Bit-Table Based Biclustering and Frequent Closed Itemset
Mining in High-Dimensional Binary Data

András Király,1 Attila Gyenesei,2 and János Abonyi1

1 Department of Process Engineering, University of Pannonia, Veszprém 8200, Hungary
2 Bioinformatics & Scientific Computing Core, Campus Science Support Facilities, Vienna Biocenter, 1030 Vienna, Austria

Correspondence should be addressed to András Király; kandras85@gmail.com

Received 15 August 2013; Accepted 4 December 2013; Published 30 January 2014

Academic Editors: Y. Blanco Fernandez and Y.-B. Yuan

Copyright © 2014 András Király et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

During the last decade various algorithms have been developed and proposed for discovering overlapping clusters in high-
dimensional data.The twomost prominent application fields in this research, proposed independently, are frequent itemset mining
(developed for market basket data) and biclustering (applied to gene expression data analysis). The common limitation of both
methodologies is the limited applicability for very large binary data sets. In this paper we propose a novel and efficient method to
find both frequent closed itemsets and biclusters in high-dimensional binary data.Themethod is based on simple but very powerful
matrix and vectormultiplication approaches that ensure that all patterns can be discovered in a fastmanner.Theproposed algorithm
has been implemented in the commonly used MATLAB environment and freely available for researchers.

1. Introduction

One of the most important research fields in data mining
is mining interesting patterns (such as sequences, episodes,
association rules, correlations, or clusters) in large data sets.
Frequent itemset mining is one of the earliest such concepts
originating from economic market basket analysis with the
aim of understanding the behaviour of retail customers, or, in
other words, finding frequent combinations and associations
among items purchased together [1]. Market basket data can
be considered as a matrix with transactions as rows and
items as columns. If an item appears in a transaction it is
denoted by 1 and otherwise by 0.The general goal of frequent
itemset mining is to identify all itemsets that contain at least
as many transactions as required, referred to as minimum
support threshold. By definition, all subsets of a frequent
itemset are frequent.Therefore, it is also important to provide
a minimal representation of all frequent itemsets without
losing their support information. Such itemsets are called
frequent closed itemsets. An itemset is defined as closed if
none of its immediate supersets has exactly the same support
count as the itemset itself. For comprehensive reviews about
the efficient frequent itemset mining algorithms, see [2, 3].

Independently of frequent itemset mining, biclustering,
another important data mining concept, was proposed to
complement and expand the capabilities of the standard
clustering methods by allowing objects to belong to multiple
or none of the resulting clusters purely based on their
similarities. This property makes biclustering a powerful
approach especially when it is applied to data with a large
number of objects. During recent years, many biclustering
algorithms have been developed especially for the analysis
of gene expression data [4]. With biclustering, genes with
similar expression profiles can be identified not only over
the whole data set but also across subsets of experimental
conditions by allowing genes to simultaneously belong to
several expression patterns. For comprehensive reviews on
biclustering, see [4–6].

One of the most important properties of biclustering
when applied to binary (0, 1) data is that it provides the
same results as frequent closed itemsets mining (Figure 1).
Such biclusters, called inclusion-maximal biclusters (or IMBs),
were introduced in [7] together with a mining algorithm,
BiMAX, to discover all biclusters in a binary matrix that
are not entirely contained by any other cluster. By default
an IMB can contain any number of genes and samples.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 870406, 7 pages
http://dx.doi.org/10.1155/2014/870406

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194203828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 The Scientific World Journal

x1

x2

xn

B4

B4B4

B4

B3

B3

B3

B2 B2

B2

y1 y2 y3 y4 y m· · ·

...

A

Figure 1: Illustrative representation of biclusters/frequent closed
itemsets on binary data.

Once additional minimum support threshold is required
for discovering clusters having at least as many genes as
the provided minimum support threshold (i.e., minimum
number of genes), BiMAX and all frequent closed itemset
mining methods result in the same patterns.

In this paper we propose an efficient pattern mining
method to find frequent closed itemsets/biclusters when
applied to binary high-dimensional data. The method is
based on simple but very powerful matrix and vector mul-
tiplication approaches that ensure that all patterns can be
discovered in a fast manner. The proposed algorithm has
been implemented in the commonly used MATLAB envi-
ronment, rigorously tested on both synthetic and real data
sets, and freely available for researchers (http://pr.mk.uni-
pannon.hu/Research/bit-table-biclustering/).

2. Problem Formulation

In this section we will show how bothmarket basket data and
gene expression data can be represented as bit-tables before
providing a new mining method in the next section. In case
of real gene expression data, it is a common practice of the
field of biclustering to transform the original gene expression
matrix into a binary one in such a way that gene expression
values are transformed to 1 (expressed) or 0 (not expressed)
using an expression cutoff (e.g., twofold change of the log2
expression values). Then the binarized data can be used as
classic market basket data and defined as follows (Figure 2):
let 𝑇 = {𝑡

1
, . . . , 𝑡

𝑛
} be the set of transactions and let 𝐼 =

{𝑖
1
, . . . , 𝑖

𝑚
} be the set of items. The Transaction Database can

be transformed into a binary matrix, B0, where each row
corresponds to a transaction and each column corresponds
to an item (right side of Figure 2). Therefore, the bit-table
contains 1 if the item is present in the current transaction and
0 otherwise [8].

Using the above terminology, a transaction 𝑡
𝑖
is said to

support an itemset 𝐽 if it contains all items of 𝐽; that is, 𝐽 ⊆ 𝑡
𝑖
.

The support of an itemset 𝐽 is the number of transactions that
support this itemset. Using 𝜎 for support count, the support
of itemset 𝐽 is 𝜎(𝐽) = |{𝑡

𝑖
| 𝐽 ⊆ 𝑡

𝑖
, 𝑡
𝑖
∈ 𝑇}|. An itemset

is frequent if its support is greater than or equal to a user-
specified threshold sup(𝐽) ≥ minsupp. An itemset 𝐽 is called
𝑘-itemset if it contains 𝑘 items from 𝐼; that is, |𝐽| = 𝑘. An
itemset 𝐽 is a frequent closed itemset if it is frequent and there
exists no proper superset 𝐽󸀠 ⊃ 𝐽 such that sup(𝐽󸀠) = sup(𝐽).

The problem of mining frequent itemsets was introduced
by Agrawal et al. in [1] and the first efficient algorithm,
called Apriori, was published by the same group in [9].
The name of the algorithm is based on the fact that the
algorithm uses prior knowledge of the previously determined
frequent itemsets to identify longer and longer frequent
itemsets. Mannila et al. proposed the same technique inde-
pendently in [10], and both works were combined in [11].
In many cases, frequent itemset mining approaches have
good performance, but they may generate a huge number of
substructures satisfying the user-specified threshold. It can be
easily realized that if an itemset is frequent then all its subsets
are frequent as well (for more details, see “downward closure
property” in [9]). Although increasing the threshold might
reduce the resulted itemsets and thus solve this problem, it
would also remove interesting patterns with low frequency.
To overcome this, the problem of mining frequent closed
itemsets was introduced by Pasquier et al. in 1999 [12], where
frequent itemsets which have no proper superitemset with
the same support value (or frequency) are searched. The
main benefit of this approach is that the set of closed fre-
quent itemsets contains the complete information regarding
its corresponding frequent itemsets. During the following
few years, various algorithms were presented for mining
frequent closed itemsets, including CLOSET [13], CHARM
[14], FPclose [15], AFOPT [16], CLOSET+ [17], DBV-Miner
[18], and STreeDC-Miner [19]. The main computational task
of closed itemset mining is to check whether an itemset is
a closed itemset. Different approaches have been proposed
to address this issue. CHARM, for example, uses a hashing
technique on its TID (transaction identifier) values, while
AFOPT, FPclose, CLOSET, CLOSET+, or STreeDC-Miner
maintains the identified detected itemsets in an FP-tree-like
pattern-tree. Further reading about closed itemset mining
can be found in [20].

The formulations above yield the close relationship
between closed frequent itemsets and biclusters, since the
goal of biclustering is to find biclusters 𝐵

𝑘
= (𝐼
𝑘
, 𝐽
𝑘
), such

that 𝐼
𝑘
̸⊆ 𝐼
𝑙
, 𝐽
𝑘
̸⊆ 𝐽
𝑙
. Therefore, while the size restriction for

columns in a bicluster corresponds to the frequency condi-
tion of itemsets, the “maximality” of a bicluster corresponds
to the closeness of an itemset. Thus, if itemsets that contain
less than min rows number of rows are filtered out, the set
of all closed frequent itemsets will be equal to the set of all
maximal biclusters.

3. Mining Frequent Closed Itemsets Using
Bit-Table Operations

In this section we introduce a novel frequent closed item-
set mining algorithm and propose efficient implementa-
tion of the algorithm in the MATLAB environment. Note
that the proposed method can also be applied to various

The Scientific World Journal 3

TID Items
1

2

3

4

5

Bread, milk

Bread, diaper, beer, eggs

Milk, diaper, beer, coke

Bread, milk, diaper, beer

Bread, milk, diaper, coke

0

1

1

1

0

1

1

0

1

1

1

0

1

1

1

0

1

1

1

1

0

1

0

0

0

0

0

1

0

1

T1

T2

T3

T4

T5

Be
er

Br
ea

d

M
ilk

D
ia

pe
r

Eg
gs

C
ok

e

Figure 2: Bit-table representation of market basket data.

Data preprocessing Frequent itemset
mining

Extraction of
frequent closed

itemsets (biclusters)
Analysis of results

Figure 3: Schematic view of frequent closed itemset discovery.

biclustering application fields, such as gene expression data
analysis, after a proper preprocessing (binarization) step.
The schematic view of the proposed pipeline is shown in
Figure 3.

3.1. The Proposed Mining Algorithm. The mining procedure
is based on the Apriori principle. Apriori is an iterative algo-
rithm that determines frequent itemsets level-wise in several
steps (iterations). In any step 𝑘, the algorithm calculates all
frequent 𝑘-itemsets based on the already generated (𝑘−1)-
itemsets. Each step has two phases: candidate generation
and frequency counting. In the first phase, the algorithm
generates a set of candidate 𝑘-itemsets from the set of
frequent (𝑘−1)-itemsets from the previous pass. This is car-
ried out by joining frequent (𝑘− 1)-itemsets together. Two
frequent (𝑘−1)-itemsets are joinable if their lexicographically
ordered first 𝑘 − 2 items are the same and their last items are
different. Before the algorithm enters the frequency counting
phase, it discards every new candidate itemset having a subset
that is infrequent (utilizing the downward closure property).
In the frequency counting phase, the algorithm scans through
the database and counts the support of the candidate 𝑘-
itemsets. Finally, candidates with support not lower than
the minimum support threshold are added into the set of
frequent itemsets.

A simplified pseudocode of the Apriori algorithm is
presented in Pseudocode 1, which is extended by extracting
only the closed itemsets in line 9. While the 𝐽𝑜𝑖𝑛() procedure
generates candidate itemsets 𝐶𝑘, the 𝑃𝑟𝑢𝑛𝑒()method (in row
5) counts the support of all candidate itemsets and removes
the infrequent ones.

The storage structure of the candidate itemsets is crucial
to keep both memory usage and running time reasonable.
In the literature, hash-tree [9, 11, 21] and prefix-tree [22, 23]
storage structures have been shown to be efficient.The prefix-
tree structure is more common, due to its efficiency and
simplicity, but naive implementation could be still very space
consuming.

Our procedure is based on a simple and easily imple-
mentable matrix representation of the frequent itemsets. The
idea is to store the data and itemsets in vectors. Then, simple
matrix and vector multiplication operations can be applied to
calculate the supports of itemsets efficiently.

To indicate the iterative nature of our process, we define
the inputmatrix (A

𝑚×𝑛
) asA
𝑚×𝑛
= B0
𝑁0×𝑛

where b0
𝑗
represents

the 𝑗th column of B0
𝑁0×𝑛

, which is related to the occurrence
of the 𝑖

𝑗
th item in transactions. The support of item 𝑖

𝑗
can be

easily calculated as sup(𝑋 = 𝑖
𝑗
) = (b0

𝑗
)
𝑇b0
𝑗
.

Similarly, the support of itemset 𝑋
𝑖,𝑗
= {𝑖
𝑖
, 𝑖
𝑗
} can be

obtained by a simple vector product of the two related vectors
because when both 𝑖

𝑖
and 𝑖
𝑗
items appear in a given transac-

tion the product of the two related items can be represented
by the AND connection of the two items: sup(𝑋

𝑖,𝑗
= {𝑖
𝑖
, 𝑖
𝑗
}) =

(b0
𝑖
)
𝑇b0
𝑗
. The main benefit of this approach is that counting

and storing the itemsets are not needed; only matrices of
the frequent itemsets are generated based on the element-
wise products of the vectors corresponding to the previously
generated (𝑘 − 1)-frequent itemsets.Therefore, simple matrix
and vector multiplications are used to calculate the support
of the potential 𝑘 + 1 itemsets: S𝑘 = (B𝑘−1)𝑇B𝑘−1, where the
𝑖th and 𝑗th element of the matrix S𝑘 represent the support
of the 𝑋

𝑖,𝑗
= {L𝑘−1
𝑖
, L𝑘−1
𝑗
} itemset, where L𝑘−1 represents the

4 The Scientific World Journal

(1) L1 = {1−itemsets}
(2) 𝑘 = 2
(3)while L𝑘−1 ̸= {}
(4) C𝑘 = 𝐽𝑜𝑖𝑛(L𝑘−1)
(5) L𝑘 = 𝑃𝑟𝑢𝑛𝑒(C𝑘)
(6) L = L ∪ L𝑘
(7) 𝑘 = 𝑘 + 1
(8) end
(9)B = ExtractClosed(L)

Pseudocode 1: Pseudocode of the Apriori-like algorithm.

0

0

0

0

0 0 0

0

00

0

0

1 1

1

11

1 1 1 1

1 1 1

1

1

1

1

0

0 0 0

000

0 0 0

0 0

000

11

1

1

11

1

1

1

1

1

1

1 1 1

1

1

114443 322 3 3 3

1

t1
t2

t3

t4

t5

k = 2

i1 i2 i3 i4 i5 i6B1

S1

t1
t2

t3

t4

t5

B2

S2

Minsupp = 3
i1i2 i1i3 i1i4 i2i3 i2i4 i3i4

Figure 4: Mining process example using the bit-table representation.

set of (𝑘−1)-itemsets. As a consequence, only matrices of the
frequent itemsets are generated, by forming the columns of
the B𝑘
𝑁𝑘×𝑛𝑘−1

as the element-wise products of the columns of
B𝑘−1
𝑁𝑘−1×𝑛𝑘−1

; that is, B𝑘
𝑁𝑘×𝑛𝑘−1
= b𝑘−1
𝑖
∘ b𝑘−1
𝑗

, for all 𝑖 ̸= 𝑗, where
𝐴 ∘ 𝐵means the Hadamard product of matrices 𝐴 and 𝐵.

The concept is simple and easily interpretable and sup-
ports compact and effective implementation. The proposed
algorithm has a similar philosophy to the Apriori TID
[24] method to generate candidate itemsets. None of these
methods have to revisit the original data table,B0

𝑁×𝑛
, for com-

puting the support of larger itemsets. Instead, our method
transforms the table as it goes along with the generation of
the 𝑘-itemsets, B1

𝑁1×𝑛1
, . . . ,B𝑘

𝑁𝑘×𝑛𝑘
, 𝑁
𝑘
< 𝑁
𝑘−1
< ⋅ ⋅ ⋅ < 𝑁

1
.

B1
𝑁1×𝑛1

represents the data related to the 1-frequent itemsets.
This table is generated from B0

𝑁×𝑛
, by erasing the columns

related to the nonfrequent items, to reduce the size of the
matrices and improve the performance of the generation
process.

Rows that are not containing any frequent itemsets (the
sum of the row is zero) in B𝑘

𝑁𝑘×𝑛𝑘
are also deleted. If a column

remains, the index of its original position is written into a
matrix that stores only the indices (“pointers”) of the elements
of itemsets L1

𝑁1×1
. When L𝑘−1

𝑁𝑘−1×𝑘−1
matrices related to the

indexes of the (𝑘 − 1)-itemsets are ordered, it is easy to follow
the heuristics of the Apriori algorithm, as only those L

𝑘−1

itemsets will be joinedwhose first 𝑘−1 items are identical (the
set of these itemsets form the blocks of the B𝑘−1

𝑁𝑘−1×𝑛𝑘−1
matrix).

Figure 4 represents the second step of the algorithm,
using minsupp = 3 in the 𝑃𝑟𝑢𝑛𝑒() procedure.

3.2. MATLAB Implementation of the Proposed Algorithm.
The proposed algorithm uses matrix operations to identify
frequent itemsets and count their support values. Here
we provide a simple but powerful implementation of the
algorithm using the user friendly MATLAB environment.
TheMATLAB code 2 (Algorithm 1) and code 3 (Algorithm 2)
present working code snippets of frequent closed itemset
mining, only within 34 lines of code.

The first code segment presents the second step of the
discovery pipeline (see Figure 3). Preprocessed data is stored
in the variable bM in bit-table format as discussed above.The
first and second steps of the iterative procedure are presented
in lines 1 and 2, where S2 and B2 are calculated. The Apriori
principle is realized in the while loop in lines 4–19. Using
the notation in Pseudocode 1, Cks are generated in lines 10-
11 while Lks are prepared in the loop in lines 12–16.

MATLAB code 3 (Algorithm 2) shows the usually most
expensive calculation, the generation of closed frequent
itemsets, which is denoted by extraction of frequent closed
itemsets in Figure 3. Using the set of frequent items as the
candidate frequent closed itemsets, our approach calculates
the support as the sum of columns (see Section 3.2) and
eliminates nonclosed itemsets from the candidate set (line
11). Again, an itemset 𝐽 is a frequent closed itemset if it is

The Scientific World Journal 5

(1) s{1}=sum(bM); items{1}=find(s{1} ≥suppn)󸀠;s{1}=s{1}(items{1});
(2) dum=bM󸀠∗bM; [i1, i2]=find(triu(dum, 1)≥suppn); items{2}=[𝑖1 𝑖2];
(3) k=3
(4) while ∼isempty(items{k−1})
(5) items{k}=[]; s{k}=[]; ci=[];
(6) for i=1:size(items{k−1},1)
(7) vv=prod(bM(:,items{k−1}(i,:)), 2);
(8) if k==3; s{2}(i)=sum(vv); end;
(9) TID=find(vv>0);
(10) pf=(unique(items{k−1}(find(ismember(items{k−1}(:,1:end −1),
(11) items{k−1}(i,1:end −1), “rows”)), end)));
(12) fi=pf(find(pf>items{k−1}(i, end)));
(13) for jj=fi󸀠
(14) j=find(items{1}==jj);
(15) v=vv(TID).∗bM(TID,items{1}(j)); sv=sum(v);
(16) items{k}=[items{k}; [items{k−1}(i,:)items{1}(j)]]; s{k}=[s{k}; sv];
(17) end
(18) end
(19) k=k+1
(20) end

Algorithm 1: MATLAB code 2: mining frequent itemsets.

(1) for k=1 : length(items)−1
(2) Citems{k}=[];
(3) for i=1:size(items{k}, 1)
(4) part=0;
(5) for j=1:size(items{k−1}, 1)
(6) IS = intersect(items{k}(i,:), items{k+1}(j,:));
(7) if and((sum(ismember(items{k}(i,:), IS))==k), s{k}(i)==s{k+1}(j))
(8) part=part+1; end
(9) end
(10) if part==0
(11) Citemsk=[Citems{k}; items{k}(i,:)];
(12) end
(13) end
(14) end
(15) Citems{k+1}=items{end};

Algorithm 2: MATLAB code 3: the generation of closed frequent itemsets.

frequent and there exists no proper superset 𝐽󸀠 ⊃ 𝐽 such that
sup(𝐽󸀠) = sup(𝐽). This is ensured by the loop in lines 5–9.

4. Experimental Results

In this section we compare our proposed method to BiMAX
[7], which is a highly recognized reference method within
the biclustering research community. As BiMAX is regularly
applied to binary gene expression data, it serves as a good
reference for the comparison. Using several biological and
various synthetic data sets, we show that, while bothmethods
are able to discover all patterns (frequent closed item-
sets/biclusters), our pattern discovery approach outperforms
BiMAX.

To compare the two mining methods and demonstrate
the computational efficiency, we applied them to several real
and synthetic data sets. Real data come from various biolog-
ical studies previously used as reference data in biclustering
research [25–28]. For the comparison of the computational
efficiency, all biological data sets were binarized. For both
the fold-change data (stem cell data sets) and the absolute
expression data (Leukemia, Compendium, and Yeast-80)
fold-change cutoff 2 is used. Results are shown in Table 1
(synthetic data) and Table 2 (real data), respectively. Both
methods were able to discover all closed patterns for all
synthetic and real data sets.The results show that ourmethod
outperforms BiMAX and provides the best running times in
all cases, especially when the number of rows and columns

6 The Scientific World Journal

Table 1: Performance test using synthetic data.

Size Density Minsupp Number of closed itemsets Time (s) Number of BiMAX biclusters Time (s)
50 × 50 10% 2 78 0.8 78 ∼1
50 × 50 20% 4 140 1.1 140 ∼1
50 × 50 50% 15 238 0.9 238 ∼1
100 × 100 10% 3 337 5 337 ∼2
100 × 100 20% 7 488 7 488 ∼2
100 × 100 50% 30 694 9 694 ∼3
300 × 300 10% 8 437 17 437 ∼5
300 × 300 20% 22 156 6 156 52
300 × 300 50% 90 1038 40 1038 >600
700 × 700 10% 15 1318 120 1318 195
700 × 700 20% 45 375 33 375 >300
700 × 700 50% 210 283 25 283 >300
1000 × 1000 10% 20 1496 196 1496 >600
1000 × 1000 20% 60 714 92 714 >600
1000 × 1000 50% 290 1030 135 1030 >600

Table 2: Test runs using biological data.

Name Size Minsupp Number of closed itemsets Time (s) Number of BiMAX biclusters Time (s)
Compendium 6316 × 300 50 2594 12 2594 ∼19
StemCell-27 45276 × 27 200 7972 27 7972 ∼115
Leukemia 125336 × 72 400 3643 147 3643 >600
StemCell-9 1840 × 9 2 177 0.8 177 ∼1
Yeast-80 6221 × 80 80 3285 8 3285 ∼17

is higher. Biological validation of the discovered patterns
together with detailed explanations is given in [28].

5. Conclusion

In this paper we have proposed a novel and efficient method
to find both frequent closed itemsets and biclusters in high-
dimensional binary data. The method is based on a simple
bit-table based matrix and vector multiplication approach
and ensures that all patterns can be discovered in a fast
manner. The proposed algorithm can be successfully applied
to various bioinformatics problems dealingwith high-density
biological data including high-throughput gene expression
data.

Disclosure

Attila Gyenesei is joint first author.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The financial support TÁMOP-4.2.2.C-11/1/KONV-2012-
0004 Project is gratefully acknowledged. The research of

Janos Abonyi was realized in the frames of TMOP 4.2.4. A/2-
11/1-2012-0001 “National Excellence Program Elaborating
and operating an inland student and researcher personal
support system.”The project was subsidized by the European
Union and cofinanced by the European Social Fund.

References

[1] R. Agrawal, T. Imieliński, and A. Swami, “Mining association
rules between sets of items in large databases,” in Proceedings of
the ACM SIGMOD Record, vol. 22, pp. 207–216, ACM, 1993.

[2] “Fimi’03: workshop on frequent itemset mining implementa-
tions,” in Proceedings of the IEEE International Conference on
Data Mining Workshop on Frequent Itemset Mining Implemen-
tations, B. Göthals and M. J. Zaki, Eds., Melbourne, Fla, USA,
December 2003.

[3] “Fimi’04: workshop on frequent itemset mining implementa-
tions,” in Proceedings of the IEEE International Conference on
Data Mining Workshop on Frequent Item set Mining Implemen-
tations, R. Bayardo, B. Göthals, and M. J. Zaki, Eds., Brighton,
UK, 2004.

[4] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for
biological data analysis: a survey,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 1, no. 1, pp. 24–
45, 2004.

[5] S. Busygin, O. Prokopyev, and P. M. Pardalos, “Biclustering in
data mining,” Computers & Operations Research, vol. 35, no. 9,
pp. 2964–2987, 2008.

The Scientific World Journal 7

[6] A. Tanay, R. Sharan, and R. Shamir, “Discovering statistically
significant biclusters in gene expression data,” Bioinformatics,
vol. 18, supplement 1, pp. S136–S144, 2002.

[7] A. Prelić, S. Bleuler, P. Zimmermann et al., “A systematic
comparison and evaluation of biclustering methods for gene
expression data,” Bioinformatics, vol. 22, no. 9, pp. 1122–1129,
2006.

[8] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining, Pearson Addison Wesley, Boston, Mass, USA, 2006.

[9] R. Agrawal and R. Srikant, “Fast algorithms for mining associ-
ation rules,” in Proceedings of the 20th International Conference
on Very Large Data Bases (VLDB ’94), vol. 1215, pp. 487–499,
Santiago, Chile, September 1994.

[10] H. Mannila, H. Toivonen, and A. I. Verkamo, “Efficient algo-
rithms for discovering association rules,” in Proceedings of the
AAAI Workshop on Knowledge Discovery in Databases (KDD
’94), pp. 181–192, Seattle, Wash, USA, 1994.

[11] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo, “Fast discovery of association rules,” in Advances in
Knowledge Discovery and Data Mining, vol. 12, pp. 307–328,
American Association for Artificial Intelligence, Menlo Park,
Calif, USA, 1996.

[12] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering
frequent closed itemsets for association rules,” in Database
Theory—ICDT’99, LectureNotes inComputer Science, pp. 398–
416, Springer, London, UK, 1999.

[13] J. Pei, J. Han, and R. Mao, “CLOSET: an efficient algorithm for
mining frequent closed itemsets,” in Proceedings of the ACM
SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, vol. 4, pp. 21–30, Dallas, Tex, USA, 2000.

[14] J. M. Zaki and C.-J. Hsiao, “CHARM: an efficient algorithm for
closed association rule mining,” in Proceedings of the 2nd SIAM
International Conference on Data Mining, pp. 457–473, 1999.

[15] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining
frequent itemsets,” in Proceedings of the Workshop on Frequent
Itemset Mining Implementations (FIMI ’03), pp. 123–132, 2003.

[16] G. Liu, H. Lu, W. Lou, and J. X. Yu, “On computing, storing
and querying frequent patterns,” in Proceeding of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’03), pp. 607–612, Washington, DC, USA,
August 2003.

[17] J. Wang, J. Han, and J. Pei, “CLOSET+: searching for the best
strategies for mining frequent closed itemsets,” in Proceedings
of the 9th ACMSIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’03), pp. 236–245, Washing-
ton, DC, USA, August 2003.

[18] B. Vo, T.-P. Hong, and B. Le, “DBV-miner: a dynamic bit-vector
approach for fast mining frequent closed itemsets,” Expert
Systems with Applications, vol. 39, no. 8, pp. 7196–7206, 2012.

[19] A. Y. Rodriguez-Gonzalez, J. F. Martinez-Trinidad, J. A.
Carrasco-Ochoa, and J. Ruiz-Shulcloper, “Mining frequent
patterns and association rules using similarities,”Expert Systems
with Applications, vol. 40, no. 17, pp. 6823–6836, 2013.

[20] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern
mining: current status and future directions,” Data Mining and
Knowledge Discovery, vol. 15, no. 1, pp. 55–86, 2007.

[21] J. S. Park, M. S. Chen, and P. S. Yu, An Effective Hash-Based
Algorithm for Mining Association Rules, vol. 24, ACM, 1995.

[22] A. Amir, R. Feldman, andR. Kashi, “A new and versatilemethod
for association generation,” Information Systems, vol. 22, no. 6-7,
pp. 333–347, 1997.

[23] R. J. Bayardo, “Efficiently mining long patterns from databases,”
in Proceedings of the ACM Sigmod Record, vol. 27, pp. 85–93,
ACM, 1998.

[24] F. P. Pach, A. Gyenesei, and J. Abonyi, “Compact fuzzy associa-
tion rule-based classifier,” Expert Systems with Applications, vol.
34, no. 4, pp. 2406–2416, 2008.

[25] A. Gyenesei, U. Wagner, S. Barkow-Oesterreicher, E. Stolte,
and R. Schlapbach, “Mining co-regulated gene profiles for the
detection of functional associations in gene expression data,”
Bioinformatics, vol. 23, no. 15, pp. 1927–1935, 2007.

[26] G. Li, Q. Ma, H. Tang, A. H. Paterson, and Y. Xu, “QUBIC: a
qualitative biclustering algorithm for analyses of gene expres-
sion data,” Nucleic Acids Research, vol. 37, no. 15, article e101,
2009.

[27] D. S. Rodriguez-Baena, A. J. Perez-Pulido, and J. S. Aguilar-
Ruiz, “A biclustering algorithm for extracting bit-patterns from
binary datasets,” Bioinformatics, vol. 27, no. 19, pp. 2738–2745,
2011.

[28] A. Király, J. Abonyi, A. Laiho, and A. Gyenesei, “Biclustering
of high-throughput gene expression data with bicluster miner,”
in Proceedings of the 12th IEEE International Conference on Data
MiningWorkshops (ICDMW ’12), pp. 131–138, Brussels, Belgium,
December 2012.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

