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This paper proposes a profile empirical likelihood for the partial parameters in ARMA(𝑝, 𝑞) models with infinite variance. We
introduce a smoothed empirical log-likelihood ratio statistic. Also, the paper proves a nonparametric version of Wilks’s theorem.
Furthermore, we conduct a simulation to illustrate the performance of the proposed method.

1. Introduction

Consider the stationary ARMA(𝑝, 𝑞) time series {𝑦
𝑡
} gener-

ated by

𝑦
𝑡
= 𝜑
1
𝑦
𝑡−1

+ ⋅ ⋅ ⋅ + 𝜑
𝑝
𝑦
𝑡−𝑝

+ 𝜀
𝑡
+ 𝜗
1
𝜀
𝑡−1

+ ⋅ ⋅ ⋅ + 𝜗
𝑞
𝜀
𝑡−𝑞
,

(1)

where the innovation process {𝜀
𝑡
} is a sequence of i.i.d.

random variables. When 𝐸(𝜀2
𝑡
) = ∞, model (1) is an infinite

variance autoregressive moving average (IVARMA) model,
which defines a heavy-tailed process {𝑦

𝑡
}. For model (1),

statistical inference has been explored in many studies (see,
e.g., [1, 2]). Recently, for example, Pan et al. [3] and Zhu and
Ling [4] proposed a weighted least absolute deviations esti-
mator (WLADE) for model (1) and obtained the asymptotic
normality.

However, in the building ofARMAmodels, we are usually
only interested in statistical inference for partial parameters.
For example, in the sparse coefficient (a part of zero coef-
ficients) ARMA models, it is necessary to determine which
coefficient is zero. For model (1), one traditional method is
to construct confidence regions for the partial parameters of
interest by normal approximation as in [3]. However, since
the limit distribution depends on the unknown nuisance
parameters and density function of the errors, estimating

the asymptotic variance is not a trivial task. Based on these,
this paper tries to put forward a new method for the esti-
mation of partial parameters of ARMA models. We propose
an empirical likelihood method, which was introduced by
Owen [5, 6]. Based on the estimating equations of WLADE,
a smoothed profile empirical likelihood ratio statistic is
derived, and a nonparametric version of Wilks’s theorem is
proved. Therefore, we can construct confidence regions for
the partial parameters of interest. Also, simulations suggest
that, for relative small sample cases, the empirical likelihood
confidence regions are more accurate than those confidence
regions constructed by the normal approximation based on
the WLADE proposed by Pan et al. [3].

As an effective nonparametric inference method, the
empirical likelihood method produces confidence regions
whose shape and orientation are determined entirely by
the data and therefore avoids secondary estimation. In the
past two decades, the empirical likelihood method has been
extended to many applications [7]. There are also many
studies of empirical likelihood method for autoregressive
models. Monti [8] considered the empirical likelihood in
the frequency domain; Chuang and Chan [9] developed
the empirical likelihood for unstable autoregressive models
with innovations being a martingale difference sequence
with finite variance; Chan et al. [10] applied the empirical
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likelihood to near unit root AR(1) model with infinite vari-
ance errors; Li et al. [11, 12], respectively, used the empirical
likelihood to infinite variance AR(𝑝) models and model (1).

The rest of the paper is organized as follows. In Section 2,
we propose the profile empirical likelihood for the parameters
of interest and show the main result. Section 3 provides the
proofs of the main results. Some simulations are conducted
in Section 4 to illustrate our approach. Conclusions are given
in Section 5.

2. Methodology and Main Results

First, the parameter space is denoted by Θ ⊂ 𝑅𝑝+𝑞, which
contains the true value 𝜃

0
of the parameter 𝜃 as an inner point.

For 𝜃 = (𝜑
1
, . . . , 𝜑

𝑝
, 𝜗
1
, . . . , 𝜗

𝑞
), put

𝜀
𝑡
(𝜃) =

{{

{{

{

𝑦
𝑡
−

𝑝

∑
𝑖=1

𝜑
𝑖
𝑦
𝑡−𝑖

−

𝑞

∑
𝑗=1

𝜗
𝑗
𝜀
𝑡−𝑗

(𝜃) , if 𝑡 > 0,

0, if 𝑡 ≤ 0,

(2)

where 𝑦
𝑡
≡ 0 for all 𝑡 ≤ 0, and note that 𝜀

𝑡
(𝜃
0
) ̸= 𝜀
𝑡
, because

of this truncation.
We define the objective function as

𝑆
𝑛
(𝜃) =

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡

󵄨󵄨󵄨󵄨𝜀𝑡 (𝜃)
󵄨󵄨󵄨󵄨 , (3)

where 𝑢 ≥ max(𝑝, 𝑞) and the weight function 𝑤
𝑡
= 1/(1+

∑
𝑡−1

𝑘=1
𝑘−𝛼|𝑦
𝑡−𝑘
|)
4, depending on a constant 𝛼 > 2. The

WLADE, denoted by 𝜃, is a lacol minimizer of 𝑆
𝑛
(𝜃) in

a neighborhood of 𝜃
0
[3]. Denote 𝐴

𝑡
(𝜃) = (𝐴

𝑡,1
(𝜃), . . . ,

𝐴
𝑡,𝑝+𝑞

(𝜃))
𝜏, where𝐴

𝑡,𝑖
(𝜃) = −𝜕𝜀

𝑡
(𝜃)/𝜕𝜃

𝑖
. By (8.11.9) of Brock-

well and Davis [13], it holds for 𝑡 > max(𝑝, 𝑞) that

𝐴
𝑡,𝑖
(𝜃) +

𝑞

∑
𝑗=1

𝜗
𝑗
𝐴
𝑡−𝑗,𝑖

(𝜃) = 𝑦
𝑡−𝑖
, 𝑖 = 1, . . . , 𝑝,

𝐴
𝑡,𝑖+𝑝

(𝜃) +

𝑞

∑
𝑗=1

𝜗
𝑗
𝐴
𝑡−𝑗,𝑖+𝑝

(𝜃) = 𝜀
𝑡−𝑖
(𝜃) , 𝑖 = 1, . . . , 𝑞.

(4)

Hence, 𝜃 satisfies estimating equation

1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
𝐴
𝑡
(𝜃) sgn {𝜀

𝑡
(𝜃)} = 0, (5)

where sgn(𝑥) = −1 for 𝑥 < 0 and =1 for 𝑥 ≥ 0

(see [14]). Note that the above estimating equation is not
differentiable at point 𝜃 such that 𝜀

𝑡
(𝜃) = 0 for some 𝑡.

This causes some problems for our subsequent asymptotic
analysis. To overcome this problem, we replace it with a
smooth function. Define a probability density kernel𝐾(⋅) [15]
such that ∫+∞

−∞
𝑥𝑗𝐾(𝑥)𝑑𝑥 = 0, 𝜅 for 𝑗 = 1, 2, respectively,

where 𝜅 ̸= 0. Let 𝐺
ℎ
(𝑥) = ∫

𝑥/ℎ

−𝑥/ℎ
𝐾(𝑢)𝑑𝑢 for ℎ > 0. Then, a

smoothed version of (5) is

1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
𝐴
𝑡
(𝜃) 𝐺
ℎ
(𝜀
𝑡
(𝜃)) = 0. (6)

Let 𝑚
𝑡ℎ
(𝜃) = 𝑤

𝑡
𝐴
𝑡
(𝜃)𝐺
ℎ
(𝜀
𝑡
(𝜃)); a smoothed empirical

log-likelihood ratio is defined as

𝑙
ℎ
(𝜃)

= −2 sup{
𝑛

∑
𝑡=𝑢+1

log ((𝑛 − 𝑢) 𝑝
𝑡
) |

𝑛

∑
𝑡=𝑢+1

𝑝
𝑡
𝑚
𝑡ℎ
(𝜃) = 0,

𝑝
𝑡
≥ 0,

𝑛

∑
𝑡=𝑢+1

𝑝
𝑡
= 1} .

(7)

Using the Lagrange multiplier, the optimal value of 𝑝
𝑡
is

derived to be

𝑝
𝑡
(𝜃) =

1

(𝑛 − 𝑢) (1 + 𝜆(𝜃)
𝜏
𝑚
𝑡ℎ
(𝜃))

,

𝑢 + 1 ≤ 𝑡 ≤ 𝑛,

(8)

where 𝜆(𝜃) is a 𝑝 + 𝑞-dimensional vector of Lagrange
multipliers satisfying

1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑚
𝑡ℎ
(𝜃)

1 + 𝜆(𝜃)
𝜏
𝑚
𝑡ℎ
(𝜃)

= 0. (9)

This gives the smoothed empirical log-likelihood ratio statis-
tic

𝑙
ℎ
(𝜃) = 2

𝑛

∑
𝑡=𝑢+1

log (1 + 𝜆(𝜃)𝜏𝑚
𝑡ℎ
(𝜃)) . (10)

Let 𝜃 = (𝜙𝜏, 𝜔𝜏)
𝜏, where 𝜔 ∈ 𝑅𝑚 (1 ≤ 𝑚 ≤ 𝑝 + 𝑞)

is the parameter of interest and 𝜙 ∈ 𝑅𝑝+𝑞−𝑚 is the nuisance
parameter. Note that 𝑚 = 𝑝 + 𝑞 means no nuisance param-
eters. Let 𝜙

0
and 𝜔

0
denote the true values of 𝜙 and 𝜔, respec-

tively. The profile empirical likelihood is defined as

𝑙
𝑝
(𝜔) = min

𝜙

𝑙
ℎ
(𝜙, 𝜔) . (11)

That is, 𝑙
𝑝
(𝜔) = 𝑙

ℎ
(𝜙(𝜔), 𝜔), where 𝜙 = 𝜙(𝜔) := argmin

𝜙
𝑙
ℎ

(𝜙, 𝜔).
The following conditions are in order.

(A1) The characteristic polynomial 𝜙(𝑧) = 1 − 𝜑
1
𝑧 − ⋅ ⋅ ⋅ −

𝜑
𝑝
𝑧𝑝 and 𝜃(𝑧) = 1+𝜗

1
𝑧+ ⋅ ⋅ ⋅ + 𝜗

𝑞
𝑧𝑞 have no common

zeros, and all roots of 𝜙(𝑧) and 𝜃(𝑧) are outside the
unit circle.

(A2) The innovation {𝜀
𝑡
} has zero median and a differen-

tiable density 𝑓(𝑥) satisfying the conditions 𝑓(0) > 0,
sup
𝑥∈𝑅

|𝑓(𝑥)| < 𝐵
1
< ∞, and sup

𝑥∈𝑅
|𝑓󸀠(𝑥)| < 𝐵

2
<

∞. Furthermore, 𝐸|𝜀
𝑡
|𝛿 < ∞ for some 𝛿 > 0, and

𝛼 > max{2, 2/𝛿}.
(A3) As 𝑛 → ∞, 𝑢 → ∞ and 𝑢/𝑛 → 0.
(A4) The second derivative of 𝐾 exists in 𝑅 and 𝐾󸀠(𝑥) and

𝐾󸀠󸀠(𝑥) are bounded.
(A5) ℎ = 1/𝑛𝛾 with 1/4 < 𝛾 < 1/3.

First we show the existence and consistency of 𝜙(𝜔
0
).



Journal of Applied Mathematics 3

Proposition 1. Let 𝑑
𝑛
= 1/𝑛𝛽 with max{1/3, 3𝛾/2} < 𝛽 <

1/2. Assume (A1)–(A5) hold; then as 𝑛 → ∞, with probability
1, there exists a local minimizer 𝜙 of 𝑙

ℎ
(𝜙, 𝜔
0
) which lies in the

interior of the ball 𝐵 = {𝜙 : ‖𝜙 − 𝜙
0
‖ ≤ 𝑑

𝑛
}. Moreover 𝜙 and

𝜆̃ = 𝜆(𝜙, 𝜔
0
) satisfy

𝑄
1𝑛
(𝜙, 𝜆̃) = 0, 𝑄

2𝑛
(𝜙, 𝜆̃) = 0, (12)

where

𝑄
1𝑛
(𝜙, 𝜆) =

1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑚
𝑡ℎ
(𝜙, 𝜔
0
)

1 + 𝜆𝜏𝑚
𝑡ℎ
(𝜙, 𝜔
0
)
,

𝑄
2𝑛
(𝜙, 𝜆)

=
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

1

1 + 𝜆𝜏𝑚
𝑡ℎ
(𝜙, 𝜔
0
)
(
𝜕𝑚
𝑡ℎ
(𝜙, 𝜔
0
)

𝜕𝜙𝜏
)

𝜏

𝜆.

(13)

The following theorem presents the asymptotic distribu-
tion of the profile empirical likelihood.

Theorem 2. Under conditions of Proposition 1, as 𝑛 → ∞,
the random variable 𝑙

𝑝
(𝜔
0
), with 𝜙 given in Proposition 1,

converges in distribution to 𝜒2
𝑚
.

If 𝑐 is chosen such that 𝑃(𝜒2
𝑚
≤ 𝑐) = 𝑎, then Theorem 2

implies that the asymptotic coverage probability of empirical
likelihood confidence region 𝐼

ℎ𝑐
= (𝜔 : 𝑙

𝑝
(𝜔) ≤ 𝑐) will be 𝑎;

that is, 𝑃(𝜔
0
∈ 𝐼
ℎ𝑐
) = 𝑃(𝑙

𝑝
(𝜔
0
) ≤ 𝑐) = 𝑎 + 𝑜(1), as 𝑛 → ∞.

3. Proofs of the Main Results

In the following, ‖ ⋅ ‖ denotes the Euclidian norm for a vector
or matrix and 𝐶 denotes a positive constant which may be
different at different places. For 𝑡 = 0, ±1, ±2, . . ., define

𝑈
𝑡
−

𝑝

∑
𝑖=1

𝜑
0

𝑖
𝑈
𝑡−𝑖

= 𝜀
𝑡
, 𝑉

𝑡
+

𝑞

∑
𝑗=1

𝜗
0

𝑗
𝑉
𝑡−𝑗

= 𝜀
𝑡
. (14)

Put 𝑄
𝑡

= (𝑈
𝑡−1
, . . . , 𝑈

𝑡−𝑝
, 𝑉
𝑡−1
, . . . , 𝑉

𝑡−𝑞
)
𝜏, 𝑤
𝑡

= 1/(1 +

∑
∞

𝑘=1
𝑘−𝛼|𝑦
𝑡−𝑘
|)
4, and the corresponding partial vector for 𝜙

0

is denoted by 𝑄
1𝑡
. Let

Σ = 𝐸 (𝑤
𝑡
𝑄
𝑡
𝑄
𝜏

𝑡
) ,

Σ
1
= 𝐸 (𝑤

𝑡
𝑄
𝑡
𝑄
𝜏

1𝑡
) ,

Ω = 𝐸 (𝑤
2

𝑡
𝑄
𝑡
𝑄
𝜏

𝑡
) .

(15)

Assumptions A1 and A2 imply that, for 𝛿 = min(𝛿, 1),

𝐸(

∞

∑
𝑘=1

𝑘
−𝛼/2 󵄨󵄨󵄨󵄨𝑦𝑡−𝑘

󵄨󵄨󵄨󵄨)

𝛿

≤

∞

∑
𝑘=1

𝑘
−𝛼𝛿/2

𝐸
󵄨󵄨󵄨󵄨𝑦𝑡−𝑘

󵄨󵄨󵄨󵄨
𝛿

< ∞. (16)

Hence, ∑∞
𝑘=1

𝑘−𝛼/2|𝑦
𝑡−𝑘
| < ∞ with probability 1, which

ensures that 𝑤
𝑡

is well defined. Note that ‖𝑄
𝑡
‖ ≤

𝐶∑
∞

𝑗=1
𝑟𝑗|𝑦
𝑡−𝑗
| for some 0 < 𝑟 < 1 and

𝑤
1/2

𝑡

󵄩󵄩󵄩󵄩𝑄𝑡
󵄩󵄩󵄩󵄩 ≤

𝐶∑
∞

𝑗=1
𝑟𝑗
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑡−𝑗

󵄨󵄨󵄨󵄨󵄨

1 + ∑
∞

𝑘=1
𝑘−𝛼

󵄨󵄨󵄨󵄨𝑦𝑡−𝑘
󵄨󵄨󵄨󵄨
≤ 𝐶

∞

∑
𝑘=1

𝑟
𝑘
𝑘
𝛼
< ∞. (17)

Then, Σ, Σ
1
, and Ω are well-defined (finite) matrices. For

simplicity, we denote (𝜙, 𝜔
0
) and (𝜙

0
, 𝜔
0
) by 𝜙 and 𝜙

0
,

respectively, in this section. The following notations will be
used in the proofs. Let

𝑍
𝑛
(𝜙) = max

𝑢+1≤𝑡≤𝑛

󵄩󵄩󵄩󵄩𝑚𝑡ℎ (𝜙)
󵄩󵄩󵄩󵄩 ,

𝑄
𝑛ℎ
(𝜙) =

1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑚
𝑡ℎ
(𝜙) ,

𝑆 (𝜙) =
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑚
𝑡ℎ
(𝜙)𝑚

𝑡ℎ
(𝜙)
𝜏

.

(18)

To prove Proposition 1, we first prove the following lemmas.

Lemma 3. Under the conditions of Proposition 1, as 𝑛 → ∞,

(𝑖) 𝑄
𝑛ℎ
(𝜙
0
) = 𝑂(√

log 𝑛
𝑛

) a.s.,

(𝑖𝑖)
𝜕𝑄
𝑛ℎ
(𝜙
0
)

𝜕𝜙𝜏
= −2𝑓 (0) Σ

1
+ 𝑜 (1) a.s.

(19)

Proof of Lemma 3. For part (i), we may write

√𝑛 − 𝑢𝑄
𝑛ℎ
(𝜙
0
)

=
1

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
𝑄
𝑡
𝐺
ℎ
(𝜀
𝑡
)

+
1

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

[𝑤
𝑡
𝑄
𝑡
(𝐺
ℎ
(𝜀
𝑡
(𝜙
0
)) − 𝐺

ℎ
(𝜀
𝑡
))

+𝑤
𝑡
(𝐴
𝑡
(𝜙
0
) − 𝑄
𝑡
) 𝐺
ℎ
(𝜀
𝑡
(𝜙
0
)) ]

+
1

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

(𝑤
𝑡
− 𝑤
𝑡
) 𝐴
𝑡
(𝜙
0
) 𝐺
ℎ
(𝜀
𝑡
(𝜙
0
))

=: 𝐾
1
+ 𝐾
2
+ 𝐾
3
.

(20)

For𝐾
1
, we have

𝐾
1

√𝑛 − 𝑢
=

1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑍
𝑡
𝑏
𝑛𝑡

+ (
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑍
𝑡
)𝑂(ℎ

2
) ,

(21)

where 𝑍
𝑡
= 𝑤
𝑡
𝑄
𝑡
, 𝑏
𝑛𝑡
= 𝐺
ℎ
(𝜀
𝑡
) − 𝐸(𝐺

ℎ
(𝜀
𝑡
)). The second term

of (21) is 𝑂(√log 𝑛/𝑛) a.s. by the ergodicity. Now turning to
the first term, we suppose that 𝑄

𝑡
is the first element 𝑈

𝑡−1

without loss of generality. Note that, for each 𝑛 ≥ 𝑢 + 1,
{𝑍
𝑡
𝑏
𝑛𝑡
,F
𝑡
, 𝑢 + 1 ≤ 𝑡 ≤ 𝑛} is a sequence of martingale
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differences with |𝑍
𝑡
𝑏
𝑛𝑡
| ≤ 𝐶, where F

𝑡
= 𝜎(𝜀

𝑠
, 𝑠 ≤ 𝑡). For

some 𝐶
0
> 0, by the ergodicity, we have

𝑉
2

𝑛
=

𝑛

∑
𝑡=𝑢+1

𝐸 {(𝑍
𝑡
𝑏
𝑛𝑡
)
2

| F
𝑡−1
}

=

𝑛

∑
𝑡=𝑢+1

𝑍
2

𝑡
𝐸(𝑏
𝑛𝑡
)
2

≤ 𝐶

𝑛

∑
𝑡=𝑢+1

𝑍
2

𝑡
< 𝐶 (𝐸 (𝑍

2

𝑡
) + 𝐶
0
) 𝑛 a.s.

(22)

Set𝑦 = 𝐶(𝐸(𝑍2
𝑡
)+𝐶
0
)𝑛; byTheorem 1.2A in [16], for all𝐴 > 0,

we have

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑡=𝑢+1

𝑍
𝑡
𝑏
𝑛𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝐴√𝑛 log 𝑛}

= 𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑡=𝑢+1

𝑍
𝑡
𝑏
𝑛𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝐴√𝑛 log 𝑛, 𝑉2
𝑛
< 𝑦 for some 𝑛}

≤ 2 exp{
−𝐴2𝑛 log 𝑛

2 (𝑦 + 𝐶𝐴√𝑛 log 𝑛)
}

= 2 exp{
−𝐴2 log 𝑛

2𝐶 (𝐸 (𝑍2
𝑡
) + 𝐶
0
) + 2𝐶𝐴√log 𝑛/𝑛

} .

(23)

Choosing 𝐴 such that 𝐴2 > 2𝐶(𝐸(𝑍2
𝑡
) + 𝐶
0
), by the Borel-

Cantelli lemma, the first term of (21) is𝑂(√log 𝑛/𝑛) a.s.Thus,
𝐾
1
is 𝑂(√log 𝑛) a.s. For 𝐾

2
, by Davis [2], it holds that |𝜀

𝑡
−

𝜀
𝑡
(𝜙
0
)| ≤ 𝜉
𝑡
, and ‖𝐴

𝑡
(𝜙
0
)−𝑄
𝑡
‖ ≤ 𝜉
𝑡
, where 𝜉

𝑡
= 𝐶∑

∞

𝑗=𝑡
𝑟𝑗|𝑦
𝑡−𝑗
|

for some 0 < 𝑟 < 1. Therefore,

󵄩󵄩󵄩󵄩𝐾2
󵄩󵄩󵄩󵄩 ≤

𝐶

ℎ√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡

󵄩󵄩󵄩󵄩𝑄𝑡
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀𝑡 − 𝜀𝑡 (𝜙0)

󵄨󵄨󵄨󵄨

+
𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡

󵄩󵄩󵄩󵄩𝑄𝑡 − 𝐴 𝑡 (𝜙0)
󵄩󵄩󵄩󵄩

≤
𝐶

ℎ√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝜉
𝑡
+

𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝜉
𝑡

=
𝐶

ℎ√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑟
𝑡

∞

∑
𝑙=0

𝑟
𝑙 󵄨󵄨󵄨󵄨𝑦−𝑙

󵄨󵄨󵄨󵄨

+
𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑟
𝑡

∞

∑
𝑙=0

𝑟
𝑙 󵄨󵄨󵄨󵄨𝑦−𝑙

󵄨󵄨󵄨󵄨
a.s.
󳨀→ 0.

(24)

Thus,𝐾
2
is 𝑂(√log 𝑛) a.s. For𝐾

3
, we have

󵄩󵄩󵄩󵄩𝐾3
󵄩󵄩󵄩󵄩

≤
𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

󵄨󵄨󵄨󵄨𝑤𝑡 − 𝑤𝑡
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝐴 𝑡 (𝜙0)

󵄩󵄩󵄩󵄩

≤
𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

∑
∞

𝑘=𝑡
𝑘−𝛼

󵄨󵄨󵄨󵄨𝑦𝑡−𝑘
󵄨󵄨󵄨󵄨 ∑
𝑡−1

𝑗=1
𝑟𝑗
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑡−𝑗

󵄨󵄨󵄨󵄨󵄨

1 + ∑
𝑡−1

𝑘=1
𝑘−𝛼

󵄨󵄨󵄨󵄨𝑦𝑡−𝑘
󵄨󵄨󵄨󵄨

≤
𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

∞

∑
𝑘=𝑡

𝑘
−𝛼 󵄨󵄨󵄨󵄨𝑦𝑡−𝑘

󵄨󵄨󵄨󵄨

𝑡−1

∑
𝑗=1

𝑟
𝑗
𝑗
𝛼

≤
𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

∞

∑
𝑘=𝑡

𝑘
−𝛼 󵄨󵄨󵄨󵄨𝑦𝑡−𝑘

󵄨󵄨󵄨󵄨

≤
𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

∞

∑
𝑙=0

(𝑡 + 𝑙)
−𝛼 󵄨󵄨󵄨󵄨𝑦−𝑙

󵄨󵄨󵄨󵄨

≤
𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

(𝑡
−𝛼 󵄨󵄨󵄨󵄨𝑦0

󵄨󵄨󵄨󵄨 +

∞

∑
𝑙=1

2
−𝛼
𝑡
−𝛼/2

𝑙
−𝛼/2 󵄨󵄨󵄨󵄨𝑦−𝑙

󵄨󵄨󵄨󵄨)

=
𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑡
−𝛼 󵄨󵄨󵄨󵄨𝑦0

󵄨󵄨󵄨󵄨

+
𝐶

√𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑡
−𝛼/2

∞

∑
𝑙=1

𝑙
−𝛼/2 󵄨󵄨󵄨󵄨𝑦−𝑙

󵄨󵄨󵄨󵄨
a.s.
󳨀→ 0

(25)

because we have the facts that ‖𝐴
𝑡
(𝜙
0
)‖ ≤ 𝐶∑

𝑡−1

𝑗=1
𝑟𝑗|𝑦
𝑡−𝑗
| (see

[2]) and (𝑡+ 𝑙)−𝛼 ≤ 2−𝛼(𝑡𝑙)
−𝛼/2 for 𝑡 > 0, 𝑙 > 0. Thus,𝐾

3
is also

𝑂(√log 𝑛) a.s. Therefore part (i) holds. For the proof of part
(ii), we may write

𝜕𝑄
𝑛ℎ
(𝜙
0
)

𝜕𝜙𝜏

= −
1

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
𝐴
𝑡
(𝜙
0
) 𝐴
𝜏

1𝑡
(𝜙
0
)

× [𝐾(
𝜀
𝑡
(𝜙
0
)

ℎ
) + 𝐾(−

𝜀
𝑡
(𝜙
0
)

ℎ
)]

+
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡

𝜕𝐴
𝑡
(𝜙
0
)

𝜕𝜙𝜏
𝐺
ℎ
(𝜀
𝑡
(𝜙
0
))

= 𝐷
1
+ 𝐷
2
,

(26)

where 𝐴
1𝑡
(𝜙) = −𝜕𝜀

𝑡
(𝜙)/𝜕𝜙. For𝐷

1
, we may write

𝐷
1
= −

1

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
𝑄
𝑡
𝑄
𝜏

1𝑡
(𝐾(

𝜀
𝑡

ℎ
) + 𝐾(−

𝜀
𝑡

ℎ
))

−
1

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

[𝑤
𝑡
𝐴
𝑡
(𝜙
0
) 𝐴
𝜏

1𝑡
(𝜙
0
)

× (𝐾(
𝜀
𝑡
(𝜙
0
)

ℎ
) + 𝐾(−

𝜀
𝑡
(𝜙
0
)

ℎ
))

−𝑤
𝑡
𝑄
𝑡
𝑄
𝜏

1𝑡
(𝐾(

𝜀
𝑡

ℎ
) + 𝐾(−

𝜀
𝑡

ℎ
))]

= 𝐷
11
+ 𝐷
12
.

(27)
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Note that

𝐷
11
= −

1

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

𝑇
𝑡
𝑐
𝑛𝑡
−

1

(𝑛 − 𝑢) ℎ

×

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
𝑄
𝑡
𝑄
𝜏

1𝑡
𝐸(𝐾(

𝜀
𝑡

ℎ
) + 𝐾(−

𝜀
𝑡

ℎ
))

= −
1

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

𝑇
𝑡
𝑐
𝑛𝑡

− [
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
𝑄
𝑡
𝑄
𝜏

1𝑡
] (2𝑓 (0) + 𝑜 (ℎ)) ,

(28)

where 𝑇
𝑡
= 𝑤
𝑡
𝑄
𝑡
𝑄𝜏
1𝑡
and 𝑐
𝑛𝑡
= 𝐾(𝜀

𝑡
/ℎ) + 𝐾(−𝜀

𝑡
/ℎ) − 𝐸[𝐾(𝜀

𝑡
/

ℎ) + 𝐾(−𝜀
𝑡
/ℎ)]. The second term of (28) is −2𝑓(0)Σ

1
a.s. by

the ergodicity. We will prove that the first term is 𝑜(1) a.s.
We suppose that 𝑄

𝑡
is the first element 𝑈

𝑡−1
without loss of

generality. Note that, for each 𝑛 ≥ 𝑢 + 1, {𝑇
𝑡
𝑐
𝑛𝑡
,F
𝑡
, 𝑢 + 1 ≤

𝑡 ≤ 𝑛} is a sequence ofmartingale differences with |𝑇
𝑡
𝑐
𝑛𝑡
| ≤ 𝐶,

and

𝑉
2

𝑛
=

𝑛

∑
𝑡=𝑢+1

𝐸 {(𝑇
𝑡
𝑐
𝑛𝑡
)
2

| F
𝑡−1
}

=

𝑛

∑
𝑡=𝑢+1

𝑇
2

𝑡
𝐸(𝑐
𝑛𝑡
)
2

< 𝑛𝐶 (𝑓 (0) 𝐶
0
ℎ + 𝑂 (ℎ

2
)) a.s.,

(29)

where 𝐶
0
> 0 is a constant. Set 𝑦 = 𝑛𝐶(𝑓(0)𝐶

0
ℎ + 𝑂(ℎ2)); by

Theorem 1.2A in [16], for all 𝜀 > 0, we have

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑡=𝑢+1

𝑇
𝑡
𝑐
𝑛𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> (𝑛ℎ) 𝜀}

= 𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑡=𝑢+1

𝑇
𝑡
𝑐
𝑛𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> (𝑛ℎ) 𝜀, 𝑉
2

𝑛
< 𝑦 for some 𝑛}

≤ 2 exp{ −(𝑛ℎ)
2
𝜀2

2 (𝑦 + 𝐶𝑛ℎ𝜀)
}

= 2 exp{ −𝑛ℎ𝜀2

2𝐶 (𝑓 (0) 𝐶
0
+ 𝑂 (ℎ)) + 2𝐶𝜀

} .

(30)

The result follows from the Borel-Cantelli lemma.Thus𝐷
11
=

−2𝑓(0)Σ
1
+ 𝑜(1) a.s. Similar to𝐾

2
and𝐾

3
, we have

󵄩󵄩󵄩󵄩𝐷12
󵄩󵄩󵄩󵄩

≤
1

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
(
󵄩󵄩󵄩󵄩𝑄𝑡 − 𝐴 𝑡 (𝜙0)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑄1𝑡

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐴 𝑡 (𝜙0)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑄1𝑡 − 𝐴1𝑡 (𝜙0)

󵄩󵄩󵄩󵄩)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐾(

𝜀
𝑡
(𝜙
0
)

ℎ
) + 𝐾(−

𝜀
𝑡
(𝜙
0
)

ℎ
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

󵄨󵄨󵄨󵄨𝑤𝑡 − 𝑤𝑡
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝐴 𝑡 (𝜙0)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴1𝑡 (𝜙0)

󵄩󵄩󵄩󵄩

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐾(

𝜀
𝑡
(𝜙
0
)

ℎ
) + 𝐾(−

𝜀
𝑡
(𝜙
0
)

ℎ
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡

󵄩󵄩󵄩󵄩𝑄𝑡
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑄1𝑡

󵄩󵄩󵄩󵄩

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[𝐾(

𝜀
𝑡

ℎ
) + 𝐾(−

𝜀
𝑡

ℎ
)]

−[𝐾(
𝜀
𝑡
(𝜙
0
)

ℎ
) + 𝐾(−

𝜀
𝑡
(𝜙
0
)

ℎ
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
(
󵄩󵄩󵄩󵄩𝑄𝑡 − 𝐴 𝑡 (𝜙0)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑄1𝑡

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐴 𝑡 (𝜙0)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑄1𝑡 − 𝐴1𝑡 (𝜙0)

󵄩󵄩󵄩󵄩)

+
𝐶

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

󵄨󵄨󵄨󵄨𝑤𝑡 − 𝑤𝑡
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝐴 𝑡 (𝜙0)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴1𝑡 (𝜙0)

󵄩󵄩󵄩󵄩

+
𝐶

(𝑛 − 𝑢) ℎ2

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡

󵄩󵄩󵄩󵄩𝑄𝑡
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑄1𝑡

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝜀𝑡 − 𝜀𝑡 (𝜙0)

󵄨󵄨󵄨󵄨

≤
𝐶

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

𝜉
𝑡
+

𝐶

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

∞

∑
𝑘=𝑡

𝑘
−𝛼 󵄨󵄨󵄨󵄨𝑦𝑡−𝑘

󵄨󵄨󵄨󵄨

+
𝐶

(𝑛 − 𝑢) ℎ2

𝑛

∑
𝑡=𝑢+1

𝜉
𝑡

a.s.
󳨀→ 0.

(31)

Therefore, 𝐷
1

= −2𝑓(0)Σ
1
+ 𝑜(1) a.s. For 𝐷

2
, from the

definition of 𝐴
𝑡
(𝜙), it holds for 𝑡 > max(𝑝, 𝑞) that

𝜃 (𝐵)
𝜕𝐴
𝑡,𝑖
(𝜙)

𝜕𝜙
𝑗

= 0, 𝑖, 𝑗 = 1, . . . , 𝑝,

𝜃 (𝐵)
𝜕𝐴
𝑡,𝑖
(𝜙)

𝜕𝜙
𝑗+𝑝

= −𝐴
𝑡−𝑗,𝑖

(𝜙) , 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑞,

𝜃 (𝐵)
𝜕𝐴
𝑡,𝑗+𝑝

(𝜙)

𝜕𝜙
𝑖

= −𝐴
𝑡−𝑗,𝑖

(𝜙) , 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑞,

𝜃 (𝐵)
𝜕𝐴
𝑡,𝑖+𝑝

(𝜙)

𝜕𝜙
𝑗+𝑝

= −𝐴
𝑡−𝑗,𝑖+𝑝

(𝜙) − 𝐴
𝑡−𝑖,𝑗+𝑝

(𝜙) ,

𝑖, 𝑗 = 1, . . . , 𝑞,

(32)
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where 𝐵 is the backshift operator. For 𝑡 = 0, ±1, ±2, . . ., define

𝜃
0
(𝐵)𝑋
𝑡(𝑖,𝑗)

= 0, 𝑖, 𝑗 = 1, . . . , 𝑝,

𝜃
0
(𝐵)𝑋
𝑡(𝑖,𝑗+𝑝)

= −𝑄
𝑡−𝑗,𝑖

, 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑞,

𝜃
0
(𝐵)𝑋
𝑡(𝑗+𝑝,𝑖)

= −𝑄
𝑡−𝑗,𝑖

, 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑞,

𝜃
0
(𝐵)𝑋
𝑡(𝑖+𝑝,𝑗+𝑝)

= −𝑄
𝑡−𝑗,𝑖+𝑝

− 𝑄
𝑡−𝑖,𝑗+𝑝

,

𝑖, 𝑗 = 1, . . . , 𝑞,

(33)

where 𝑄
𝑡,𝑖

is the 𝑖th component of 𝑄
𝑡
. Put 𝑋

𝑡
= (𝑋

𝑡(𝑖,𝑗)
);

similar to [13], we have that ‖𝜕𝐴
𝑡
(𝜙
0
)/𝜕𝜙𝜏‖ ≤ 𝐶∑

𝑡−1

𝑗=1
𝑟𝑗|𝑦
𝑡−𝑗
|,

‖𝑋
𝑡
‖ ≤ 𝐶∑

∞

𝑗=1
𝑟𝑗|𝑦
𝑡−𝑗
|, and ‖𝑋

𝑡
− 𝜕𝐴
𝑡
(𝜙
0
)/𝜕𝜙𝜏‖ ≤ 𝜉

𝑡
. Then,

we may write

𝐷
2
=

1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
𝑋
𝑡
𝐺
ℎ
(𝜀
𝑡
)

+
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

[𝑤
𝑡

𝜕𝐴
𝑡
(𝜙
0
)

𝜕𝜙𝜏
𝐺
ℎ
(𝜀
𝑡
(𝜙
0
)) − 𝑤

𝑡
𝑋
𝑡
𝐺
ℎ
(𝜀
𝑡
)]

= 𝐷
21
+ 𝐷
22
.

(34)

Similar to𝐷
11
and𝐷

12
, we have that𝐷

21
and𝐷

22
are 𝑜(1) a.s.

This completes the proof.

Lemma 4. Under the conditions of Proposition 1, as 𝑛 → ∞,

(𝑖) 𝑍
𝑛
(𝜙) = 𝑜 (𝑛

1/3
) a.s.,

(𝑖𝑖) 𝑆 (𝜙) = Ω + 𝑜 (1) a.s.
(35)

hold uniformly in 𝐵.

Proof of Lemma 4. For part (i), from [2], we have
that ‖𝜕𝐴

𝑡
(𝜙)/𝜕𝜙𝜏‖ ≤ 𝐶∑

𝑡−1

𝑗=1
𝑟𝑗|𝑦
𝑡−𝑗
| and ‖𝐴

𝑡
(𝜙)‖ ≤

𝐶∑
𝑡−1

𝑗=1
𝑟𝑗|𝑦
𝑡−𝑗
| uniformly hold in the ball 𝐵 for sufficiently

large 𝑛. Then, for each 𝜙 ∈ 𝐵, we have
󵄩󵄩󵄩󵄩𝑚𝑡ℎ (𝜙)

󵄩󵄩󵄩󵄩 ≤ 𝑤
𝑡

󵄩󵄩󵄩󵄩𝐴 𝑡 (𝜙)
󵄩󵄩󵄩󵄩

≤
𝐶∑
𝑡−1

𝑗=1
𝑟𝑗
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑡−𝑗

󵄨󵄨󵄨󵄨󵄨

1 + ∑
𝑡−1

𝑘=1
𝑘−𝛼

󵄨󵄨󵄨󵄨𝑦𝑡−𝑘
󵄨󵄨󵄨󵄨

≤ 𝐶

𝑡−1

∑
𝑘=1

𝑟
𝑘
𝑘
𝛼

≤ 𝐶

∞

∑
𝑘=1

𝑟
𝑘
𝑘
𝛼
< ∞.

(36)

Thus, part (i) holds. For part (ii), similar to the proof of
Lemma 3, we have that 𝑆(𝜙

0
) = Ω + 𝑜(1) a.s. For each 𝜙 ∈ 𝐵,

by Taylor expansion, we have

𝑆 (𝜙) − 𝑆 (𝜙
0
)

=
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑚
𝑡ℎ
(𝜙
0
) {

𝜕𝑚
𝑡ℎ
(𝜙
∗
)

𝜕𝜙𝜏
(𝜙 − 𝜙

0
)}

𝜏

+
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

{
𝜕𝑚
𝑡ℎ
(𝜙∗)

𝜕𝜙𝜏
(𝜙 − 𝜙

0
)}𝑚
𝜏

𝑡ℎ
(𝜙
0
)

+
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

{
𝜕𝑚
𝑡ℎ
(𝜙∗)

𝜕𝜙𝜏
(𝜙 − 𝜙

0
)}

× {
𝜕𝑚
𝑡ℎ
(𝜙∗)

𝜕𝜙𝜏
(𝜙 − 𝜙

0
)}

𝜏

=: 𝑇
1
+ 𝑇
2
+ 𝑇
3
,

(37)

where 𝜙∗ lies between 𝜙
0
and 𝜙. For 𝑇

1
, we have

󵄩󵄩󵄩󵄩𝑇1
󵄩󵄩󵄩󵄩 ≤

1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
2

𝑡

󵄩󵄩󵄩󵄩𝐴 𝑡 (𝜙0)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝐴
𝑡
(𝜙∗)

𝜕𝜙𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜙 − 𝜙0
󵄩󵄩󵄩󵄩

+
1

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

𝑤
2

𝑡

󵄩󵄩󵄩󵄩𝐴 𝑡 (𝜙0)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴 𝑡 (𝜙

∗
)
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝐴1𝑡 (𝜙

∗
)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜙 − 𝜙0

󵄩󵄩󵄩󵄩

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐾(

𝜀
𝑡
(𝜙∗)

ℎ
) + 𝐾(−

𝜀
𝑡
(𝜙∗)

ℎ
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶𝑑
𝑛

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

(

𝑡−1

∑
𝑗=1

𝑟
𝑗
𝑗
𝛼
)

2

+
𝐶𝑑
𝑛

(𝑛 − 𝑢) ℎ

𝑛

∑
𝑡=𝑢+1

(

𝑡−1

∑
𝑗=1

𝑟
𝑗
𝑗
𝛼
)

3

a.s.
󳨀→ 0.

(38)

Similarly, we have 𝑇
2

a.s.
󳨀󳨀→ 0 and 𝑇

3

a.s.
󳨀󳨀→ 0. This completes the

proof.

Proof of Proposition 1. For 𝜙 ∈ 𝐵, by Taylor expansion,

𝑄
𝑛ℎ
(𝜙) = 𝑄

𝑛ℎ
(𝜙
0
) +

𝜕𝑄
𝑛ℎ
(𝜙
0
)

𝜕𝜙𝜏
(𝜙 − 𝜙

0
)

+
1

2

𝑝+𝑞−𝑚

∑
𝑗,𝑘=1

𝜕2𝑄
𝑛ℎ
(𝜙
0
)

𝜕𝜙
𝑗
𝜕𝜙
𝑘

(𝜙
𝑗
− 𝜙
0

𝑗
) (𝜙
𝑘
− 𝜙
0

𝑘
)

+
1

6

𝑝+𝑞−𝑚

∑
𝑗,𝑘,𝑙=1

𝜕3𝑄
𝑛ℎ
(𝜙
∗
)

𝜕𝜙
𝑗
𝜕𝜙
𝑘
𝜕𝜙
𝑙

× (𝜙
𝑗
− 𝜙
0

𝑗
) (𝜙
𝑘
− 𝜙
0

𝑘
) (𝜙
𝑙
− 𝜙
0

𝑙
) ,

(39)

where 𝜙
∗
lies between 𝜙

0
and 𝜙. Note that the final term on

the right side of (39) can be written as

1

6

𝑝+𝑞−𝑚

∑
𝑗,𝑘,𝑙=1

[

[

(𝜙
𝑗
− 𝜙0
𝑗
) (𝜙
𝑘
− 𝜙0
𝑘
) (𝜙
𝑙
− 𝜙0
𝑙
)

ℎ3
]

]

× (
ℎ3

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝜕3𝑚
𝑡ℎ
(𝜙
∗
)

𝜕𝜙
𝑗
𝜕𝜙
𝑘
𝜕𝜙
𝑙

) ,

(40)
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which is 𝑜(𝛿
𝑛
) a.s., where 𝛿

𝑛
= ‖𝜙 − 𝜙

0
‖, because 𝑑2

𝑛
/ℎ3 =

1/𝑛2𝛽−3𝛾 → 0 and
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

ℎ3

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝜕3𝑚
𝑡ℎ
(𝜙
∗
)

𝜕𝜙
𝑗
𝜕𝜙
𝑘
𝜕𝜙
𝑙

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶. (41)

The third term on the right side of (39) can be written as

1

2

𝑝+𝑞−𝑚

∑
𝑗,𝑘=1

[

[

(𝜙
𝑗
− 𝜙
0

𝑗
) (𝜙
𝑘
− 𝜙
0

𝑘
)

ℎ
]

]

× {
ℎ

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝜕2𝑚
𝑡ℎ
(𝜙
0
)

𝜕𝜙
𝑗
𝜕𝜙
𝑘

} ,

(42)

which is also 𝑜(𝛿
𝑛
) a.s., because 𝑑

𝑛
/ℎ = 1/𝑛𝛽−𝛾 → 0, and

ℎ

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝜕2𝑚
𝑡ℎ
(𝜙
0
)

𝜕𝜙
𝑗
𝜕𝜙
𝑘

= 𝑜 (1) a.s., (43)

by a similar proof of Lemma 3. Therefore,

𝑄
𝑛ℎ
(𝜙) = 𝑄

𝑛ℎ
(𝜙
0
) +

𝜕𝑄
𝑛ℎ
(𝜙
0
)

𝜕𝜙𝜏
(𝜙 − 𝜙

0
) + 𝑜 (𝛿

𝑛
) a.s.,

(44)

uniformly about 𝜙 ∈ 𝐵. Denote 𝜙 = 𝜙
0
+ 𝜇𝑑
𝑛
, for 𝜙 ∈ {𝜙 :

‖𝜙 − 𝜙
0
‖ = 𝑑

𝑛
}, where ‖𝜇‖ = 1. Now, we give a lower bound

for 𝑙
ℎ
(𝜙) on the surface of the ball. Similar to [6], by Lemmas

3 and 4, we have

𝑙
ℎ
(𝜙)

= (𝑛 − 𝑢)𝑄
𝑛ℎ
(𝜙)
𝜏

𝑆(𝜙)
−1

𝑄
𝑛ℎ
(𝜙) + 𝑜 (𝑛

4/3−3𝛽
) a.s.

= (𝑛 − 𝑢)[

[

𝑂(√
log 𝑛
𝑛

)

+ (−2𝑓 (0)) Σ
1
𝜇𝑑
𝑛
+ 𝑜 (𝑑

𝑛
) ]

]

𝜏

Ω
−1

× [

[

𝑂(√
log 𝑛
𝑛

) + (−2𝑓 (0)) Σ
1
𝜇𝑑
𝑛
+ 𝑜 (𝑑

𝑛
)]

]

+ 𝑜 (𝑛
4/3−3𝛽

) a.s.

≥ (𝑐 − 𝜀) 𝑛
1−2𝛽 a.s.,

(45)

where 𝑐 − 𝜀 > 0 and 𝑐 is the smallest eigenvalue of
4𝑓2(0)Σ𝜏

1
Ω−1Σ
1
. Similarly,

𝑙
ℎ
(𝜙
0
)

= (𝑛 − 𝑢)𝑄
𝑛ℎ
(𝜙
0
)
𝜏

𝑆(𝜙
0
)
−1

𝑄
𝑛ℎ
(𝜙
0
) + 𝑜 (1) a.s.

= 𝑂 (log 𝑛) a.s.

(46)

Since 𝑙
ℎ
(𝜙) is a continuous function about 𝜙 as 𝜙 belongs to

the ball 𝐵, 𝑙
ℎ
(𝜙) attains its minimum value at some point 𝜙

in the interior of this ball, and 𝜙 satisfies 𝜕𝑙
ℎ
(𝜙)/𝜕𝜙 = 0, it

follows that (12) holds. This completes the proof.

Proof of Theorem 2. Similar to the proof ofTheorem 2 of Qin
and Lawless [17], we have

(
𝜆̃

𝜙 − 𝜙
0

) = 𝑆
−1

𝑛
(
−𝑄
1𝑛
(𝜙
0
, 0) + 𝑜

𝑝
(𝑛−1/2)

𝑜
𝑝
(𝑛
−1/2

)
) , (47)

where

𝑆
𝑛
= (

𝜕𝑄
1𝑛
(𝜙
0
, 0)

𝜕𝜆𝜏

𝜕𝑄
1𝑛
(𝜙
0
, 0)

𝜕𝜙𝜏

𝜕𝑄
2𝑛
(𝜙
0
, 0)

𝜕𝜆𝜏
0

)
𝑝

󳨀→ (
𝑆
11

𝑆
12

𝑆
21

0
)

= (
−Ω −2𝑓 (0) Σ

1

−2𝑓 (0) Σ
𝜏

1
0

) .

(48)

By the standard arguments in the proof of empirical likeli-
hood (see [6]), we have

𝑙
𝑝
(𝜔
0
)

= − (𝑛 − 𝑢) (𝑄
𝑛ℎ
(𝜙
0
)
𝜏

, 0) 𝑆
−1

𝑛
(𝑄
𝑛ℎ
(𝜙
0
)
𝜏

, 0)
𝜏

+ 𝑜
𝑝
(1)

= (Ω
−1/2√𝑛 − 𝑢𝑄

𝑛ℎ
(𝜙
0
))
𝜏

× (𝐼 − 4𝑓
2
(0)Ω
−1/2

Σ
1
Δ
−1
Σ
𝜏

1
Ω
−1/2

)

× (Ω
−1/2√𝑛 − 𝑢𝑄

𝑛ℎ
(𝜙
0
)) + 𝑜

𝑝
(1) ,

(49)

where Δ = 4𝑓2(0)Σ𝜏
1
Ω−1Σ
1
. Since√𝑛 − 𝑢𝑄

𝑛ℎ
(𝜙
0
)
𝑑

󳨀→ 𝑁(0,Ω)

and

tr {4𝑓2 (0)Ω−1/2Σ
1
Δ
−1
Σ
𝜏

1
Ω
−1/2

}

= tr {Δ−14𝑓2 (0) Σ𝜏
1
Ω
−1
Σ
1
} = 𝑝 + 𝑞 − 𝑚,

(50)

it follows that 𝑙
𝑝
(𝜔
0
)
𝑑

󳨀→ 𝜒2
𝑚
.

4. Simulation Studies

We generated data from a simple ARMA(1, 1) model 𝑦
𝑡
=

𝜑
1
𝑦
𝑡−1

+ 𝜀
𝑡
+ 𝜗
1
𝜀
𝑡−1

, with𝑁(0, 1), 𝑡
2
, and Cauchy innovation

distribution. We set 𝑢 = 20, 𝛼 = 3, and the true value
(𝜑
1
, 𝜗
1
) = (0.4, 0.7) or (−0.5, 0.7), where 𝜑

1
is the parameter

of interest. The sample size 𝑛 = 50, 100, 150, 200, and
2,000 replications are conducted in all cases. We smooth the
estimating equations using kernel

𝐾 (𝑥) =
1

√2𝜋𝜎
𝑒
−𝑥
2
/2𝜎
2

, (51)
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Table 1: The coverage probability of confidence intervals when 𝜀
𝑡
∼ 𝑁(0, 1).

𝑛 EL(0.27) EL(0.30) EL(0.32) NA(0.25) NA(0.20)

𝑎 = 0.9

𝜑
1
= 0.4

50 0.8818 0.8820 0.8822 0.8193 0.7875
100 0.8898 0.8896 0.8897 0.8655 0.8431
150 0.8926 0.8927 0.8932 0.8692 0.8395
200 0.8983 0.8983 0.8986 0.8666 0.8363

𝑎 = 0.9

𝜑
1
= −0.5

50 0.8888 0.8885 0.8892 0.8156 0.7813
100 0.8967 0.8968 0.8973 0.8738 0.8448
150 0.8943 0.8944 0.8946 0.8823 0.8574
200 0.8972 0.8979 0.8977 0.8931 0.8692

𝑎 = 0.95

𝜑
1
= 0.4

50 0.9347 0.9350 0.9350 0.8724 0.8425
100 0.9424 0.9430 0.9431 0.9123 0.8862
150 0.9467 0.9471 0.9470 0.9157 0.8936
200 0.9494 0.9494 0.9497 0.9160 0.8937

𝑎 = 0.95

𝜑
1
= −0.5

50 0.9404 0.9404 0.9404 0.8705 0.8407
100 0.9472 0.9474 0.9474 0.9134 0.8931
150 0.9481 0.9479 0.9476 0.9248 0.9052
200 0.9495 0.9495 0.9490 0.9326 0.9152

where 𝜎 = 0.1, which is the so-called Gaussian kernel. The
coverage probabilities of smoothed empirical likelihood con-
fidence regions 𝐼

ℎ𝑐
with the bandwidth ℎ = 1/𝑛𝛾 are denot-

ed by EL(𝛾), where 𝛾 = 0.27, 0.30, 0.32, respectively.
As another benchmark of the simulation experiments,

we consider the confidence regions based on the asymptotic
normal distribution ofWLADEproposed by [3]. To construct
the confidence regions, we need to estimate 𝑓(0), Σ, and Ω.
We can estimate 𝑓(0) by

𝑓 (0) =
1

𝜎̂
𝑤
𝑏
𝑛
(𝑛 − 𝑢)

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
𝐾̃ {

𝜀
𝑡
(𝜃)

𝑏
𝑛

} , (52)

where 𝐾̃(𝑥) = exp(−𝑥)/(1+exp(−𝑥))2 is a kernel function on
𝑅 and 𝑏

𝑛
= 1/𝑛] is a bandwidth, 𝜎̂

𝑤
= (𝑛 − 𝑢)

−1
∑
𝑛

𝑡=𝑢+1
𝑤
𝑡
. Σ

andΩ can be estimated, respectively, by

Σ̂ =
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
𝑡
𝑄
𝑡
𝑄
𝜏

𝑡
,

Ω̂ =
1

𝑛 − 𝑢

𝑛

∑
𝑡=𝑢+1

𝑤
2

𝑡
𝑄
𝑡
𝑄
𝜏

𝑡
,

(53)

where 𝑄
𝑡
is defined in the same manner as 𝑄

𝑡
, 𝜃
0
is replaced

by 𝜃, and 𝜀
𝑡
is replaced by 𝜀

𝑡
(𝜃); see (14). Based on this, we can

construct a NA confidence region (i.e., based on the normal
approximation of WLADE). The coverage probabilities of
confidence regions 𝐼NA based on the bandwidth 𝑏

𝑛
= 1/𝑛] are

denoted byNA(]), with ] = 0.25, 0.20, respectively. Tables 1,2,

and 3 show the probabilities of the confidence intervals of 𝜑
1

at confidence levels 0.9 and 0.95, respectively.
The simulation results can be summarized as follows.The

coverage probabilities of NA(]) are much smaller than the
nominal levels and very sensitive to the choice of bandwidth
𝑏
𝑛
and 𝜀
𝑡
. On the other hand, the coverage probabilities of

EL(𝛾) are much better and less sensitive to the choice of
bandwidth ℎ and 𝜀

𝑡
. As the sample size 𝑛 increases, the

coverage probabilities for both increase to the nominal levels,
as one might expect.

5. Conclusions

This paper explores a profile empirical likelihood method to
construct confidence regions for the partial parameters of
interest in IVARMAmodels. We started with the foundation
of estimating equations of WLADE; then from there, we
derived smoothed empirical likelihood. Moreover, we have
proved that the resulting statistics has asymptotic standard
chi-squared distribution. Hence there is no need to estimate
any additional quantity such as the asymptotic variance. The
simulations indeed show that the proposed method has a
good finite sample behavior, which experimentally confirms
our method.
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Table 2: The coverage probability of confidence intervals when 𝜀
𝑡
∼ 𝑡
2
.

𝑛 EL(0.27) EL(0.30) EL(0.32) NA(0.25) NA(0.20)

𝑎 = 0.9

𝜑
1
= 0.4

50 0.8774 0.8776 0.8779 0.7627 0.7290
100 0.8850 0.8849 0.8856 0.8323 0.7995
150 0.8919 0.8917 0.8924 0.8467 0.8157
200 0.8935 0.8932 0.8932 0.8510 0.8229

𝑎 = 0.9

𝜑
1
= −0.5

50 0.8902 0.8902 0.8899 0.7295 0.7055
100 0.8942 0.8944 0.8950 0.8151 0.7836
150 0.8946 0.8941 0.8937 0.8473 0.8204
200 0.8965 0.8963 0.8961 0.8641 0.8392

𝑎 = 0.95

𝜑
1
= 0.4

50 0.9331 0.9327 0.9327 0.8163 0.7854
100 0.9412 0.9412 0.9413 0.8834 0.8542
150 0.9447 0.9446 0.9447 0.8965 0.8718
200 0.9456 0.9458 0.9459 0.9001 0.8762

𝑎 = 0.95

𝜑
1
= −0.5

50 0.9421 0.9418 0.9418 0.7963 0.7658
100 0.9455 0.9462 0.9460 0.8695 0.8430
150 0.9444 0.9442 0.9440 0.8910 0.8695
200 0.9464 0.9463 0.9464 0.9072 0.8863

Table 3: The coverage probability of confidence intervals when 𝜀
𝑡
∼ 𝐶𝑎𝑢𝑐ℎ𝑦.

𝑛 EL(0.27) EL(0.30) EL(0.32) NA(0.25) NA(0.20)

𝑎 = 0.9

𝜑
1
= 0.4

50 0.8360 0.8358 0.8361 0.6345 0.6018
100 0.8708 0.8708 0.8702 0.7286 0.6942
150 0.8811 0.8819 0.8823 0.7614 0.7270
200 0.8870 0.8864 0.8868 0.7800 0.7467

𝑎 = 0.9

𝜑
1
= −0.5

50 0.8673 0.8679 0.8678 0.5818 0.5502
100 0.8869 0.8870 0.8874 0.6756 0.6440
150 0.8972 0.8974 0.8974 0.7232 0.6867
200 0.8956 0.8955 0.8953 0.7510 0.7156

𝑎 = 0.95

𝜑
1
= 0.4

50 0.8992 0.8994 0.8996 0.6888 0.6557
100 0.9263 0.9261 0.9263 0.7870 0.7530
150 0.9362 0.9366 0.9367 0.8176 0.7857
200 0.9402 0.9398 0.9399 0.8350 0.8044

𝑎 = 0.95

𝜑
1
= −0.5

50 0.9235 0.9239 0.9240 0.6378 0.6065
100 0.9422 0.9420 0.9420 0.7342 0.7030
150 0.9474 0.9479 0.9481 0.7820 0.7530
200 0.9467 0.9471 0.9470 0.8057 0.7778
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