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The paper reviews the current status and designs of all-optical gates. Various schemes with and without semiconductor optical
amplifiers are discussed and compared. The optical gates are classified according to their design structures. It is divided into
two major divisions that is, nonsemiconductor optical amplifier based gates and semiconductor optical amplifier based gates. In
nonsemiconductor optical amplifier based gates, different schemes have been proposed to create non-linearity which is discussed.
The semiconductor optical amplifier based gates of different design structures are discussed to show the probe pulse that is
modulated in different ways to obtain results.

1. Introduction

Today the demand for high bandwidth has rapidly increased
to obtain the speed limit of electronic devices. The general
purpose of all-optical signal processing is still on the horizon.
Nowadays, prototype of all-optical logic gates at high bit-
rate are coming out from the laboratories. The researches
are going forward in this field to make it possible. However,
in optical signal processing the digital gates have compli-
cated and cumbersome electrooptic conversion. To make all-
optical systems, it is necessary that entire components which
are used in optical networks such as add-drop multiplexer,
packet synchronization, clock recovery, address recognition,
and signal regeneration, and so forth should be all-optical
elements. To make the dream come true the basic require-
ment is optical gates. Gates are the key elements to realize
all-optical functions. Thus, to realize digital gates into all-
optical logic gates at the same platform, it is necessary to
develop several basic designs. It is impractical to design an
optical component with some gates using ultrafast nonlinear
interferometer (UNI), some gates with SOA and some with
high nonlinear fiber (HNLF). So the design is only successful
when all the gates are implemented with same technique. All-
optical logic gates are core logic unit to implement various all-
optical systems for optical signal processing. To design optical
gates it is necessary to implement a nonlinear mediumwhich

modulates the signal to produce the desired results.The non-
linearity may be generated in numerous ways such as using
nonlinear loop mirror, nonlinear fiber, photonic crystal,
filter, waveguide, thyristor, acoustic waves, or semiconductor
optical amplifier. Therefore, there are many researches going
on to realize all-optical signal processing systems which are
already discussed in various papers. It may be classified in
multiple ways according to the design structures. All-optical
gates are divided in two basic structures as in Figure 1 which
are without SOA and with SOA.

2. All-Optical Gates

All-optical gates may be constructed using the nonlinearity
effect which is introducedwithout SOAorwith SOA.Numer-
ous ways of all-optical gates without SOA using length of the
fiber, waveguide, circulator, filters, acoustic-optic waves, and
changing the refractive index of the optical waveguide have
been discussed in the first part. Gates constructed with SOA
are discussed in the second part.

2.1. All-Optical Gates without SOA. The nonlinearity in silica
fiber arises from the nonlinear index of refraction. The
change in nonlinear refractive index gives rise to an intensity
dependent phase of the optical field. The effect of nonlinear
interaction between two copropagating signals in the fiber
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Figure 1: Classification of all-optical logic gates.

can be expressed by the change in electric field on one of
the signals caused by the other after propagating through
some distance in fiber. The intensity dependent refractive
index of silica medium gives rise to three effects, self-phase
modulation (SPM), cross gain modulation (XGM), and four
wave mixing (FWM).

Self-phase modulation (SPM) occurs when intensity
modulated signal travels through an optical fiber. The peak
of the pulse travels slower than the wings. Due to this the
wavelength of a pulse is stretched at the leading edge of
the pulse and compressed on the trailing edge. Therefore,
the trailing edge acquires a “blue shift” and leading edge
acquires a “red shift.” This modulates the signal and leads to
broadening of the pulse.

Cross gain modulation (XGM) is another way in which
intensity fluctuations affect the phase of a signal. Chromatic
dispersion plays a significant role in gain modulation of the
signal. Thus, the intensity fluctuation in the signal power of
one channel propagating in the fiber modulates the phase of
the other channel.

Four wave mixing (FWM) is a third-order nonlinearity
and analogous to intermodulation distortion in the optical

system. It is produced when beating between two channels
at different frequencies modulates the signal phase at that
frequency, generating new tones as side bands. The power of
the side bands is always less than the signal power [1–3].

2.1.1. Dispersion Shifted Fiber/High Nonlinear Fiber
(DSF/HNLF). The first design of Figure 2 consists of
length of a fiber which introduces nonlinearity in the
propagating signal. The length of the fiber introduced in the
designs is of three types, dispersion shifted fiber (DSF), high
nonlinear fiber dispersion shifted fiber (HNLF-DSF), and
high nonlinear fiber (HNLF). The first design of Figure 2(a)
introduced DSF that adds a constant shift due to the self-
phase modulation (SPM) between the counterpropagating
data at the output [4–6]. The counterpropagating data
produces a cross phase modulation (XPM) which changes
a pump power level and produces a constructive and
destructive interference at the output. Both the data of same
wavelength is used to avoid the four wave mixing (FWM).

In case of HNLF-DSF (Figure 2(b)), the data is depleted
through XGM affected with the power transferred to the
newly generated FWM component. When only one of the
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Figure 2: Design of gates consisting of (a) dispersion shifted fiber (DSF), (b) high nonlinear fiber-dispersion shifted fiber (HNLF-DSF), and
(c) high nonlinear fiber (HNLF).

signals is present and launched into the HNL-DSF, it appears
at the output, but if both the signals are present, no significant
power appears at the output due to the state of polarization
between the given data. By coupling these two output signals,
one can achieve the desired results depending on the strength
of the XGM [7, 8].

In the design (Figure 2(c)), all-optical logic gates are
realized on the nonlinear polarization rotation (NPR) in
HNLF. The polarization of light depends upon the intensity
and relative polarization of the signal.When pump and probe
signals travel through the HNLF, it introduces a nonlinear
phase shift due to the SPM and XPM. The polarization of
a probe signal changes and different gates can be realized
[9–12]. This type of gate design using the length of fiber
to produce a phase shift makes the design bigger and bad
competitor.

2.1.2. Waveguide Configuration. In the design of Figure 3(a)
two data A and B of different wavelengths are generated
through microelectronic and mechanical system (MEMS)
external cavity tunable laser. Both the data are coupled
through mirror into the Fabry Perot chip (FP-chip). FP-chip
basically has multimode wavelength output. As data passes
through the cavity the signal experiences the nonlinearity
effect. Due to the nonlinearity of the signals FP-chip is opti-
cally locked.The band pass filter (BPF) selects the wavelength
which results as a gate operation [13].

The design consists of lights of different wavelengths
injecting into the Si-wire waveguide with different peak
power as in Figure 3(b). While travelling through the waveg-
uide they experience two photon absorption which gives rise

to the cross gain modulation. By adjusting the proper power
of the pump and probe pulse we can get the results [14].

In Figure 3(c) twophase encodeddata streams of different
wavelengths are generated by two clock wave lasers and
modulated with 33% duty cycle to produce RZ data. Both the
data are copropagated with a continuous wave and fed into
the chalcogenide As

2
s
3
(ChG) waveguide. The ChG waveg-

uide offers broadband and flexible wavelength operation with
ultrafast nonlinear response due to the kerr nonlinear index
coefficient [15]. Due to a nondegenerate FWM process new
wavelength is generated which is fed into a tunable band pass
filter (TBPF) to extract the gate output.

The design without pump is used in periodically poled
lithium niobate (PPLN) waveguide to produce gate output
[16–18]. Here the waveguide is used to produce sum fre-
quency generation (SFG) depending on the guide length. Two
data are injected into the waveguide in which SFG occurs
under the quasi-phasematching condition.When both of the
data are the same the signal is depleted during the generation
of sum frequency wave and finally output will be zero. If any
one of the data is high, only one data will be depleted, and
simultaneously another will still exist at the output.

2.1.3. Circulator. In Figure 4, two data of different wave-
lengths are generated which are passed through first 2 ×
2 coupler and second 2 × 2 coupler. Now both pump and
probe are passed through Fabry Perot laser diode (FP-LD).
The unique property of FP-LD is that if a single mode beam
with slightly higher wavelength of longitudinal mode of FP-
LD is injected, the beam will experience the gain while the
other modes of FP-LD are suppressed. When second beam



4 Advances in Optical Technologies

BPFFP-cavityMirror

Data A

Data B

Output
port

(a)

BPF
Output port

Si-wire WG

Data A

Clock

(b)

BPF

CW laser

ChG waveguide

Data A

Data B

Output
port

(c)
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is injected to the FP-LD with a detuning range higher than
the previous beam, the first beam will be suppressed while
the second beam will experience a gain and also FP-LD will
be locked by the second beam. This is a “gain modulation”
technique in which pump power should be more than probe
signal [19].

2.1.4. Optical Channel-Dropping Filter. Novel design of all-
optical logic AND/OR designed by using dark bright soliton
conversion is shown in Figure 5. Here the dark (D) and bright
(B) solitons represent the input logic “0” and “1”, respectively.
The input of stage-1 optical channel dropping filter (OCDF) is
dark soliton (logic “0”) which is a control light pulse. In stage-
1 OCDF optical filter, the dark soliton is converted into dark

and bright solitons. Next the data A is fed into stage-2 A/D
filters, and then data B is fed into stage-3 OCDF filters. Stages
are divided according to the sequence of the input given.
OCDF is composed with two sets of coupled waveguides
which produce a phase shift of 𝜋 with respect to the input
signal [20].

2.1.5. Multilayer Waveguide. Several all-optical devices using
optical nonlinearity have been proposed and implemented.
In the design a multilayer planer waveguide with nonlinear
guided film is taken as shown in Figure 6. The waveguide is
divided in three sections L

1
, L
2,
and L

3
which corresponds

to nonlinear three branch output, nonlinear double trapped
waveguide, and linear two branch input sections, respectively.
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Branching angle between inputs is 𝜃 and output is 𝜑. The
refractive index of the upper three arms and lower two arms is
𝑛
𝑓0

and 𝑛
𝑓
, respectively. By changing the nonlinearity of the

output branch and launching the input power accordingly,
the optical gate can be verified [21, 22].

2.1.6. Double Heterostructure Optical Thyristor. In Figure 7
authors demonstrate a monolithically integrated vertical cav-
ity laser with depleted optical thyristor (VCL-DOT) structure
which can configure into many optical logic functions using
a simple operating technique by changing the condition
of the driving voltage. As in Figure 7 is a bistable PnpN
active region device. If the forward bias is applied to the
thyristor, the s-shaped current-voltage characteristics are
divided in three distinct stages, forward blocking region,
negative resistance region, and forward conduction region.
The forward conduction region is known as ON-state and the
forward blocking region is known asOFF-state for the optical
thyristor. Boolean optical gates can be realized by connecting
these thyristors in series or in parallel and changing the
reference voltage [23].
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2.1.7. Acousto Optical Tunable Filter (AOTF). Operation of
gates is based on the switching of TE and TM polarized data
ATE and BTM and vice versa as in Figure 8. The polarized
data are thenmodulated in pulse positionmodulation (PPM).
Then the polarized data are excited through SAW transducer.
Pulses pass through acoustic-optic waveguide that determine
the wavelength to be transmitted. The Boolean logic gates
are verified by the temporal displacement of the output pulse
[24].

2.2. All-Optical Gates with SOA. Again the gates are divided
according to the interferometer techniques such as ultra-high
nonlinear interferometer (UNI), sagnac interferometer (SI),
Michelson interferometer (MI), Mach-Zehnder interferome-
ter (MZI), and delay interferometer (DI) to implement the
nonlinearity in SOA. In the following sections the nonlin-
earity of SOA may be used in several ways. Different design
structures and categories of SOA-based all-optical gates have
been investigated in this section.

SOA is a small size nonlinear amplifier that offers
advantages to be integrated to produce a subsequent system
essential in optical communication system.The SOAs exhibit
low power consumption and their single mode waveguide
structures make them particularly appropriate for use with
single mode fiber [3]. At present, SOA is the most developed
optical amplifier that makes a rapid progress towards optical
signal processing. The nonlinearity effect in SOA makes it
a promising module for optical logic gates. The three non-
linearity effects that is cross gain modulation (XGM), cross
phase modulation (XPM), and four wave mixing (FWM)
make it possible to use it as nonlinear medium for gates.

In XGM data pulses at one wavelength, modulates the
carrier density and at the same time results as a gain variation
indentation in inverted copy of the clock pulse injected into
the SOA as shown in Figure 9(a). Due to the modulation of
a carrier density there is a gain compression in the pump
signal that produces a chirping of the converted signal. The
SOA is operated under the high optical intensity to reduce the
gain recovery time. The problem related to XGM is at longer
wavelength extinction ratio penalty associated with it. This
phenomenon can be easily accommodated at high bit rate.

The chirp of the converted signal is used as an advantage
byincluding the SOA in an interferometer configuration that
converts this XPM into an intensity modulation. This can be
done by SOA, incorporated with interferometer configura-
tion. To obtain a complete extinction in an interferometer
a phase shift of 𝜋 is needed as in Figure 9(b), which can be
achieved with gain compression in SOA. The phase shift is
independent of wavelength, so the conversion to a longer
wavelength has no problem with XPM. The disadvantage of
an interferometer structure is that if the phase shift increases
more than 𝜋, it impairs the extinction ratio which may
be controlled by changing the bias condition of SOA. The
interferometer configuration may be defined in two ways,
copropagation and counterpropagation. In copropagation,
filter is required because pump and probe travel in the
same direction to filter the probe signal with pump. But in
counterpropagation both travel in opposite directions, so the
filter is not required.

In FWM two signals of different wavelengths are injected
into the SOA. On passing through SOA there is an intensity
beating which arises due to the difference in frequency
modulated signals in SOA. If the frequency separation is
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small the carrier density will be modulated. If the frequency
separation is large, themodulated carrier will set up amoving
grating in the active strip of SOA. The grating scatters the
input signal and produces the sidebands which are located
at the lower and higher frequency between the input signals.
The power of the side bands is usually less as compared to the
signal power as in Figure 9(c). It is a process which depends
on the phase of the optical signal instead of their intensity. It
is a polarization dependent phenomenon and capable of han-
dling intensitymodulation, phasemodulation, and frequency
shift keying signal. As it depends upon distance between the
signals and converted wavelengths, therefore the conversion
efficiency is adequately affected. Therefore the scheme is not
used in all-optical network. The application of FWM is used
in dispersion management by optical phase conjugate. The
process produces a mirror image of the original signal which
is oppositely chirped in a spectral domain [25].

2.2.1. Ultranonlinear Interferometer (UNI) Configuration.
The concept of operation of the UNI gates relies on polar-
ization rotation of the incoming signals to be switched in
the presence of a switched pulse in SOA. It is divided in two
copropagating UNI gates and counterpropagating UNI gates.

(1) UNI Copropagating Gates. According to the design
structure UNI copropagating gates can be divided in two
categories. In the first design, the data and clock directly inter
into SOA and on the other hand the data is first modulated
through delay interferometer (DI) and then send to SOA.

(i) UNI Copropagating Gates. Figure 10(a) shows the basic
operation of UNI gates that depends on the differential phase

SOA

Data A

Data B

BPF

CW laser

Output

Figure 12: Counterpropagating UNI gate.

shift between two orthogonal polarized components of the
signal [26–37]. Here the clock pulse is orthogonally polarized
and delayed after passing through polarization maintained
fiber (PMF). The phase and amplitude of modulated data
with higher power are copropagated through SOA. If both the
data are present or absent the differential phase shift between
the probe signals includes destructive interference; therefore
output will be zero. If only one data is present, the phase
change in the probe is adjusted to introduce constructive
interference at the output. Another technique of dual SOA-
UNI gate is shown in Figure 10(b). It may be constructed with
two SOAs in UNI based elements [38].

(ii) All-Optical Conical Logic Unit. The operational princi-
pal of the design is divided into two stages as shown in
Figure 11 [39, 40]. In stage-1 the carrier wavelength of DPSK
signals is sent simultaneously to delay interferometer (DI).
DI is an asymmetric Mach-Zehnder interferometer (MZI)
with differential delay and tunable phase shift in both the
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arms, respectively. When DPSK signals pass through DI,
constructive and destructive signals are created, that are
separated through wavelength division multiplexing (WDM)
to get Buffer and NOT operation at both the output ports,
respectively. The output of DI is then launched into stage-
2. In stage-2 both the data are injected into the SOA, out of
which one acts as a pump and other as a probe. After passing
through SOA, there is a cross gain modulation (XGM)
and the output that is minterms (𝑚

2
) or AND operation

is selected accordingly at the output of tunable band pass
filter (TBPF). Again, the full set of minterms are combined
together with original data directly to obtain maxterm (𝑀

2
)

or OR operation.

(2) UNI Counterpropagating Gates. Figure 12 shows the coun-
terpropagation in UNI gates where the clock and data signal
propagate in opposite directions. Therefore the pump signal
passes through SOA causing the carrier depletion in SOA.
The carrier depletion leads to gain saturation in SOA. Due
to this, there is a marked intensity reduction of an incoming
probe signal, which leads to no pulse existence for an output
signal [41, 42]. If two SOAs are used in parallel, the output of
first can be used to construct the multifunctional logic gates.

2.2.2. Sagnac Interferometer (SI) Gates. The design as in
Figure 13 consists of optical fiber loop with SOA placed
asymmetrically. This gate is using the principle of TOAD
(terahertz optical asymmetric demultiplexer).Theoffset posi-
tion of SOA is controlled to obtain short switching window
using nonlinearity in SOA. The sagnac interferometer gate
consists of a 2 × 2 coupler which is used to join input port
and output port. To maintain the polarization state of the
fiber, polarization controller (PC) is used with polarization
maintained fiber (PMF).The clock signal propagates through
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Figure 15: Copropagation Mach-Zehnder interferometer gate.

the coupler and splits in two equal parts with phase difference
of 𝜋/2. One will travel in clockwise (CW) direction and
the other will travel in counter-clockwise direction (CCW)
in the fiber loop. The time asymmetry between CW and
CCWismaintained atΔ𝑥. Orthogonally polarized data enters
through the polarization selective coupler (PSC) into the fiber
loop. After passing through SOA there is a XPM between two
counterpropagating probe signals. If any data is present due to
differential phase shift, two probes interfere constructively on
looping back to the coupler resulting as one. If both the data
are present or absent the two probes interfere destructively
and the output become zero [43–50].

2.2.3. Michelson Interferometer (MI) Gates. The MI arrange-
ment as depicted in Figure 14 is half or folded version of MZI
of the counterpropagation scheme. The SOA is placed at the
upper and lower arm of MI. When data of same wavelengths
A and B passes through both SOAs in the opposite directions
of clock wave signal, the refractive index produces phase
variation in the medium of SOA. This modulates the clock
wave signal incorporating the phase modulation at the
output terminal. The circulator is used to recombine the
reflected clock wave from both the SOAs. When constructive
interference between two interferometer paths is maintained,
the circulator output produces a converted signal. And
destructive interference between two interferometer paths is
maintained; the circulator produces no signal. It comprises
a simple structure utilizing only one coupler, smaller in size,
and requires less signal power than MZI [51–53].

2.2.4. Mach-Zehnder Interferometer (MZI) Configuration.
There are several possibilities for realizing the optical gates
utilizing XPM in SOA based interferometer configuration.
The gates comprise two SOAs located in the two paths or
two arms, in which phase to amplitude modulation can be
obtained when a relative phase difference is introduced in
the interferometer.This phase difference may be produced in
various ways, such as using 2 × 2 coupler, inserting a phase
shifter in both the arms, or using different values of SOA, and
so forth.

(1) MZI Copropagation. The MZI configuration may be
divided into two categories that are MZI in copropagation
and MZI in counterpropagation. In MZI copropagation,
probe and pump propagate in the same direction. Thus, in
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such configuration band pass filter is required to filter the
probe pulse from pump.

(i) MZI Copropagating Gates. Copropagation MZI is a suit-
able device for high speed all-optical demultiplexing. It
operates on the principle of phase change, caused by the
ray of light propagating through the 3 dB coupler. Gates
consist of a symmetrical MZI with two SOAs placed in the
upper and lower arm of the interferometer, as shown in
Figure 15. In order to perform the operation two data streams
enter in the upper and lower arms of interferometer through
multiplexers. A continuous clock pulse through mode lock
laser (MLL) enters through upper arm of first 3 dB coupler.
When both pulses pass through SOA, the XGM will take
place due to gain saturation in SOA. Data and clock pulses of
different wavelengths are injected into SOA, operated under
the gain saturation condition, where the available optical gain
is distributed between two wavelengths depending on their
relative photon densities. Therefore, the data is transferred
in the clock pulse but in inverted form. It happens in both,
that is, lower and upper arms of interferometer. After passing
through first 3 dB coupler, the phase difference of 𝜋/2 is
created betweenupper and lower arms of clock pulse, which is
travelling through the interferometer. When saturated pulse
passes through second 3 dB coupler the total phase shift
becomes 𝜋. If both the data have same value, they will cancel
because of 𝜋 phase difference; therefore, at transmission port
zero will appear. If both the data have different value then it

will not cancel; therefore, onewill appear at transmission port
[54–64].

(ii) MZI Copropagating Push-Pull Gates. The principle of
operation of push-pull configuration is shown in Figure 16.
Two data streams A and B of same wavelengths are entered
through upper and lower armofMZI.ThedataA in the upper
arm is ahead of one bit period to data B which is travelling in
the lower arm. Similarly, lower arm data B is one bit period
ahead to upper arm data A. This creates a switching window
for data streams. Both the data are copropagated with clock
pulse which enters through 3 dB coupler. When data A is 1
and B is zero, the pulse from data A splits into two parts.
One pulse is pushed to the upper SOA and other is delayed
by the switching window. Thus, the upper SOA is switched
before the lower SOA. Therefore, the MZI is unbalanced and
clock wave is switched at the T-port. If data A is zero and data
B is one, then lower SOA is switched and again clock wave
appears at T-port. If both the data are the same, then the SOAs
are equally affected by the injected pulse. Consequently, the
respective push and pull pulse temporarily coincidewith each
other and zero phase difference is introduced between the two
arms. Thus, no switching occurs at T-port [65–70].

(2) MZI Counterpropagating Gates. In counterpropagation
the clock and data pulse propagate in opposite direction
through MZI as in Figure 17. If any of the data is one, there
is a XPM between the clock and data pulse inside SOA that
creates the differential phase shift between the two clock
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Table 1: Comparison between non-SOA based gates.

Reported gates
category

Reported
gates

Contrast
ratio/extinction

ratio

Operating
speed

Modulation
type

Nonlinear
element

Polarization
sensitivity

Integration
capacity

HNLF/DSF
XOR/OR/NOT/
AND/NXOR/
NOR/XNOR

20/24.25/30/1
6.5 dB 40G/10Gb/s FWM/XPM

/SPM/NPR

DSF/
HNLF-DSF/

DSF
More Bad

Waveguide
configuration

XOR/NOR/
NOT/NAND/

AND
30/20 dB 40G/100Mb/s FWM/TFA FP Chip/

waveguide More Moderate

Circulator NOR/NOT — 10Gb/s Gain
modulation FP-LD More Moderate

Optical
channel-Dropping
filter

AND/OR — — Dark-bright
solitons OCDF No Moderate

Multibranch
waveguide AND/OR — —

Localized
optical

non-linearity

Multibranch
non-linear
media

More Compact

Double
heterostructure
optical thyristor

AND/OR 50 dB — — VCL-DOT No Compact

AOTF AND/OR — 300Gb/s SPM AOTF More Compact

Table 2: Comparison between SOA based gates.

Reported
gates
category

Reported
gates

Extinction
ratio (dB)

Operating
speed
(Gb/s)

Modulation
type

Nonlinear
element

Polarization
sensitivity

Integration
capacity

UNI copropagating
XOR/AND/NOR/

OR/NOT/
XNOR/NAND

8/10/11 5/10/20/40 XGM, FWM SOA More Compact

UNI
counterpropagating

AND/NOR/OR/X
NOR 6.5 10 XGM, FWM SOA More Compact

Sagnac
interferometer

XOR/NOT/AND/
OR 21.12/14.7/22 10/40/100 XGM SOA No Moderate

Michelson
Interferometer XOR 11 10 XGM SOA No Compact

MZI
configuration

XOR/XNOR/AND
/NAND/OR/

NOR
15/18/30 10/20/40/80 XGM, XPM SOA No Compact

MZI
Push-pull
Configration

XOR/OR 7.8/11/12 10/20/40 XGM, XPM SOA No Moderate

MZI counter
Propagating

XOR/NOR/
XNOR 8/9.22/30 10/40 XGM, XPM SOA No Compact

DI
configuration

OR/NOR/
XOR 13.9 40 XGM, XPM SOA No Moderate

components which unbalance the MZI and the clock pulse
exits at the T-port. However, if both the data are the same, the
total phase shift will become 𝜋 and clock pulse is cancelled at
T-port. In this configuration no filter is required as data and
clock pulse counterpropagate through the arm of MZI.Thus,
at T-port there is no data pulse to filter [71–74].

2.2.5. Delayed Interferometer (DI) Gates. The delay interfer-
ometer (DI) in Figure 18, the clock, and two data pulses of

same wavelengths are injected into the SOA simultaneously
[75, 76]. The data pulses will include a XGM, which leads to
invert the clock signal in SOA.Then, the clock enters into DI
and splits into two signals propagating through the two arms
of DI with equal amplitude which interferes at the output.
One arm of DI is delayed by Δ𝑡 relative to the other arm.
Therefore, at the output there is a relative phase difference
between the two signals that interferes and produces an
output. The XPM phenomenon produces a time-varying
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SOA

Data A

Data B

CW laser

BPF
Phase
shifter

T-port

R-port

Δt delay

Figure 18: Delayed interferometer gate.

phase change on the clock pulse. The delay Δ𝑡 determines
the speed and the signal-to-noise ratio needed for good
signal quality. A low Δ𝑡 would restrict the speed of the data
processing and also degrade the signal to noise ratio.

3. Conclusion

As discussed in the paper, all-optical gates of different designs
have their utility but still the competitors are digital gates,
which are compact and easy in coupling. If one goes for speed,
optical gates are leading but in the case of extinction ratio
(ER) the digital gates are still superior. The different designs
use different nonlinear elements to create modulations. In
Tables 1 and 2, different design structures are compared
according to the polarization sensitivity and integration
capacity. The nonlinear elements used in optical gates are
length of the fiber, crystal waveguide, circulators, filters,
thyristor, acoustic tunable filter and SOAs as discussed above
in different schemes. Some optical gates such as HNLF/DSF,
sagnac interferometer and delay interferometer configura-
tions are bigger that make it inconvenient as compared to
digital gates. Some gates using circulators, optical channel-
dropping filters, thyristor, and acoustic tunable filter have
been reported less number of logical gates but still they are
compact in size.TheMZI copropagationwaveguide structure
design reported all types of logical gates with high operating
speed and good extinction ratio that makes them superior
than others.
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